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Abstract 
Summary: Recent years have seen the release of several toolsets that reveal cell-cell 
interactions from single-cell data. However, all existing approaches leverage mean celltype 
gene expression values, and do not preserve the single-cell fidelity of the original data. Here, 
we present NICHES (Niche Interactions and Communication Heterogeneity in Extracellular 
Signaling), a tool to explore extracellular signaling at the truly single-cell level. NICHES allows 
embedding of ligand-receptor signal proxies to visualize heterogeneous signaling archetypes 
within cell clusters, between cell clusters, and across experimental conditions. When applied to 
spatial transcriptomic data, NICHES can be used to reflect local cellular microenvironment. 
NICHES can operate with any list of ligand-receptor signaling mechanisms and is compatible 
with existing single-cell packages and pseudotime techniques. NICHES is also a user friendly and 
extensible program, allowing rapid analysis of cell-cell signaling at single-cell resolution. 
Availability and implementation: NICHES is an open-source software implemented in R under 
academic free license v3.0 and it is available at github.com/msraredon/NICHES. Use-case 
vignettes are available at https://msraredon.github.io/NICHES/. 
Contact: michasam.raredon@yale.edu; yuval.kluger@yale.edu 
 
1. Background 

Cellular phenotype across tissues and organs is heavily influenced by the biological 
microenvironment in which a given cell resides (Baccin, et al., 2020; Davidson, et al., 2020; 
McCarthy, et al., 2020; Nabhan, et al., 2018; Qadir, et al., 2020; Rodda, et al., 2018; Tikhonova, 
et al., 2020; Zhou, et al., 2018). Understanding the influence of cell-cell signaling on cell 
phenotype is a major goal in developmental and tissue biology and has profound implications 
for our ability to engineer tissues and next-generation cellular therapeutics. Single-cell 
technologies, which capture information both from individual cells and their surrounding 
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cellular environment at the same time, are uniquely suited to exploring phenotype-
environment relations. Many techniques are available to extract and prioritize extracellular 
signaling patterns from single-cell data, reviewed well in (Dimitrov, et al., 2022) and (Armingol, 
et al., 2021), including CellPhoneDB (Efremova, et al., 2020), NicheNet (Browaeys, et al., 2019), 
CellChat (Jin, et al., 2021), Connectome (Raredon, et al., 2022), SingleCellSignalR (Cabello-
Aguilar, et al., 2020), iTALK (Wang, et al., 2019), iCELLNET (Noël, et al., 2021), Cellinker (Zhang, 
et al., 2021), CellCall (Zhang, et al., 2021), and PyMINEr (Tyler, et al., 2019). All of these 
techniques, however, rely on mean expression values calculated from single-cell clusters. Mean 
expression representation does not take full advantage of the single-cell resolution of the 
original measurements, thereby obscuring the rich repertoire of signaling patterns between 
cells. The field can benefit from a tool to assesses cell-cell signaling at the truly single-cell level, 
so that intra- and inter-cluster signaling patterns can be explored within observed data. 

Here, we describe NICHES (Niche Interactions and Communication Heterogeneity in 
Extracellular Signaling), a software package to characterize cellular interactions in ligand-
receptor signal-space at the single-cell level and to allow cross-platform low-dimensional 
embeddings of the resulting information. NICHES is designed for analysis of two types of 
cellular interactions: cell-cell signaling (defined as the signals passed between cells, determined 
by the ligand expression of the sending cell and the receptor expression of the receiving cell) 
and cellular niche (defined as the signaling input to a cell, determined by the ligand expression 
of surrounding or associated cells and the receptor expression of the receiving cell). The 
outputs from NICHES may be analyzed using existing single-cell software including Seurat 
(Butler, et al., 2018), Scanpy (Wolf, et al., 2018), Scater (McCarthy, et al., 2017), and Monocle3 
(Cao, et al., 2019), thereby allowing deep computational analysis of cell signaling systems 
topology unapproachable with existing tools. 
 
2. Approach 

NICHES takes single-cell data as input and constructs matrices where the rows are 
extracellular ligand-receptor signaling mechanisms and the columns are cell-cell extracellular 
signaling interactions (Fig. 1A-C). Cell-cell interactions are represented as columns whose 
entries are created by crossing ligand expression on the sending cell with receptor expression 
on the receiving cell, for each mechanism (Fig. 1B, see Methods). Cellular niches, an estimate of 
cellular microenvironment, are represented as columns that are created by crossing mean 
ligand expression from sets of sending cells with the receptor expression on receiving cells (Fig. 
1C, see Methods). Row names are defined by the ground-truth ligand-receptor mechanism list 
set by the user. NICHES provides built-in access to ligand-receptor lists from the OmniPath and 
FANTOM5 databases (Ramilowski, et al., 2015; Türei, et al., 2021) and is compatible with 
custom mechanism lists containing any number of ligand or receptor subunits (Fig. S1, see 
Methods). 

When applied to spatial transcriptomic data, interactions may be constrained to those 
occurring between spatial neighbors. When applied to single-cell data, NICHES assumes full 
cellular connectivity for niche interactions and samples unique cell pairs from each celltype-
celltype cross for cell-cell interactions. Biological assumptions, limitations to the mathematical 
formalism, best practice recommendations, and detailed methods are provided in the 
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Supplement. Replicable vignettes covering a wide-variety of biological use-cases are available 
both within the NICHES software package and at https://msraredon.github.io/NICHES/. 

 
3. Application 
 
3.1 Advantages of NICHES over Existing Techniques 
 
Because NICHES does not leverage cluster-wise mean values, signaling heterogeneity hidden by 
existing cell-cell signaling inference tools is easily observed (Fig. S2A-C, Supplemental Text). 
Archetype shifts between conditions with conserved mean expression may also be observed, 
which are difficult to capture with existing tools (Fig. S3A-D, Supplemental Text). NICHES also 
uniquely allows users to explore changes in system-level signaling due to the addition or loss of 
cell populations, a task which is not possible with current methods (Fig. S4A-C, Supplemental 
Text).  
 
3.2 Cell-Cell Signaling Atlases 
 
NICHES allows comprehensive visualization of ligand-receptor patterns that are present in 
single-cell systems data (Fig. 1D-F). A uniform sample is taken of every celltype-celltype 
interaction resulting in a cell-cell signaling atlas that can be viewed via low-dimensional 
embedding (Fig. 1D). Celltype-celltype interactions generally display quantifiable signaling 
signatures as well as intra-relationship heterogeneity (Fig. 1E). Individual celltype-celltype 
crosses may be subclustered to further explore relationship heterogeneity and to identify 
mechanisms marking subtypes of cell-cell crosses (Fig. 1F).    

  
3.3 Mapping Local Microenvironment in Spatial Atlases 
 
NICHES can estimate local microenvironment in spatial transcriptomic data. Interactions may be 
limited to spatial nearest neighbors, allowing an estimation of local niche for each 
transcriptomic spot (Fig. 1G). Celltypes generally display stereotyped niche signatures with 
observable intra-niche heterogeneity (Fig. 1H). NICHES can reveal tightly localized 
microenvironments and mechanisms which can be visualized in spatial context (Fig. 1I). Sub-
clustering can reveal microenvironment heterogeneity associated with tissue boundaries and 
transition regions (Fig. S5). 
 
3.4 Differential Analysis Across Conditions and Pseudotemporal Orderings 
 
NICHES allows differential and Pseudotemporal analysis of cell-to-cell signaling, system-to-cell 
signaling, and cell-to-system signaling in both spatial and single-cell datasets. For brevity, we 
have compiled a series of vignettes online (https://msraredon.github.io/NICHES/) 
demonstrating these specific use cases. Best practices are discussed in the Supplement. 
 
4. Conclusion 
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NICHES is a simple but powerful approach to explore cell-cell signaling interactions in single-cell 
and spatial transcriptomic data. NICHES supplements the capabilities of current techniques, 
allowing single-cell resolution of niche signaling and cell-cell interactions, and establishes rich 
representations to analyze environment-phenotype relationships in tissues. 
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Figures 

 
 
Figure 1: NICHES allows analysis of cell-cell interactions with single-cell resolution. A) A set of 
cells may interact through many different ligand-receptor mechanisms. B) NICHES represents 
cell-cell interactions as columns whose entries are calculated by crossing ligand expression on 
the sending cell with receptor expression on the receiving cell, for each signaling mechanism. 
Low-dimensional embeddings may then be made of cell-cell interactions. Note schematic 
clustering of similar profiles. C) Cellular microenvironments, or niches, of each cell are 
represented as columns calculated by crossing mean ligand expression in the system with 
receptor expression on the receiving cell. This allows low-dimensional embedding of a proxy for 
sensed microenvironment for each cell. D) NICHES analysis of single-cell (SC) data of three cell 
types co-localized in the rat pulmonary alveolus yields a quantitative cell-cell signaling atlas 
visualized by low-dimensional embedding. E) Biologically-relevant marker mechanisms may be 
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identified for each celltype-celltype interaction. Because single-cell fidelity is preserved, NICHES 
allows observation of fine intra-cluster heterogeneity unobservable using mean-wise 
techniques. F) Further analysis of a single celltype-celltype cross allows identification of 
mechanisms marking only subsets of cell pairings (see Tgfb1-Cav1 in this instance, green arrow, 
which marks Cluster 2.)  G) Local microenvironment may be estimated from spatial 
transcriptomic (ST) datasets by limiting cell-cell interactions to those within local 
neighborhoods, yielding a ‘niche’ atlas for each transcriptomic spot, which may be visualized in 
low dimensional space. H) Signaling mechanisms marking the microenvironments of selected 
celltypes. Fgf1-Fgfr2 (cyan arrow) is a known potent regulator of oligodendrocyte phenotype 
(Furusho, et al., 2020; Furusho, et al., 2015) and here is found to be associated with 
oligodendrocyte-labeled spots. I) Microenvironment mechanisms may be directly visualized in 
situ. 
 
 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.01.23.477401doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477401
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

Main References 
 
Armingol, E., et al. Deciphering cell–cell interactions and communication from gene expression. 
Nature Reviews Genetics 2021;22(2):71-88. 
Baccin, C., et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular 
and spatial bone marrow niche organization. Nature cell biology 2020;22(1):38-48. 
Browaeys, R., Saelens, W. and Saeys, Y. NicheNet: modeling intercellular communication by 
linking ligands to target genes. Nature Methods 2019:1-4. 
Butler, A., et al. Integrating single-cell transcriptomic data across different conditions, 
technologies, and species. Nature biotechnology 2018;36(5):411. 
Cabello-Aguilar, S., et al. SingleCellSignalR: inference of intercellular networks from single-cell 
transcriptomics. Nucleic Acids Research 2020;48(10):e55-e55. 
Cao, J., et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 
2019;566(7745):496-502. 
Davidson, S., et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports 
tumor growth. Cell reports 2020;31(7):107628. 
Dimitrov, D., et al. Comparison of methods and resources for cell-cell communication inference 
from single-cell RNA-Seq data. Nature Communications 2022;13(1):3224. 
Efremova, M., et al. CellPhoneDB: inferring cell–cell communication from combined expression 
of multi-subunit ligand–receptor complexes. Nature protocols 2020;15(4):1484-1506. 
Furusho, M., et al. Developmental stage‐specific role of Frs adapters as mediators of FGF 
receptor signaling in the oligodendrocyte lineage cells. Glia 2020;68(3):617-630. 
Furusho, M., et al. Fibroblast growth factor signaling in oligodendrocyte‐lineage cells 
facilitates recovery of chronically demyelinated lesions but is redundant in acute lesions. Glia 
2015;63(10):1714-1728. 
Jin, S., et al. Inference and analysis of cell-cell communication using CellChat. Nature 
communications 2021;12(1):1-20. 
McCarthy, D.J., et al. Scater: pre-processing, quality control, normalization and visualization of 
single-cell RNA-seq data in R. Bioinformatics 2017;33(8):1179-1186. 
McCarthy, N., Kraiczy, J. and Shivdasani, R.A. Cellular and molecular architecture of the 
intestinal stem cell niche. Nature Cell Biology 2020;22(9):1033-1041. 
Nabhan, A.N., et al. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. 
Science 2018;359(6380):1118-1123. 
Noël, F., et al. Dissection of intercellular communication using the transcriptome-based 
framework ICELLNET. Nature communications 2021;12(1):1-16. 
Qadir, M.M.F., et al. Single-cell resolution analysis of the human pancreatic ductal progenitor 
cell niche. Proceedings of the National Academy of Sciences 2020;117(20):10876-10887. 
Ramilowski, J.A., et al. A draft network of ligand–receptor-mediated multicellular signalling in 
human. Nature communications 2015;6:7866. 
Raredon, M.S.B., et al. Computation and visualization of cell–cell signaling topologies in single-
cell systems data using Connectome. Scientific Reports 2022;12(1):4187. 
Rodda, L.B., et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-
associated heterogeneity. Immunity 2018;48(5):1014-1028. e1016. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.01.23.477401doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477401
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Tikhonova, A.N., et al. Cell-by-cell deconstruction of stem cell niches. Cell stem cell 
2020;27(1):19-34. 
Türei, D., et al. Integrated intra‐and intercellular signaling knowledge for multicellular omics 
analysis. Molecular systems biology 2021;17(3):e9923. 
Tyler, S.R., et al. PyMINEr finds gene and autocrine-paracrine networks from human islet 
scRNA-Seq. Cell reports 2019;26(7):1951-1964. e1958. 
Wang, Y., et al. iTALK: an R package to characterize and illustrate intercellular communication. 
BioRxiv 2019:507871. 
Wolf, F.A., Angerer, P. and Theis, F.J. SCANPY: large-scale single-cell gene expression data 
analysis. Genome biology 2018;19(1):1-5. 
Zhang, Y., et al. CellCall: integrating paired ligand–receptor and transcription factor activities for 
cell–cell communication. Nucleic Acids Research 2021. 
Zhang, Y., et al. Cellinker: a platform of ligand–receptor interactions for intercellular 
communication analysis. Bioinformatics 2021. 
Zhou, X., et al. Circuit design features of a stable two-cell system. Cell 2018;172(4):744-757. 
e717. 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.01.23.477401doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477401
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

 
 
 
 
 
 

Supplementary Materials for 
 
 

Comprehensive visualization of cell-cell interactions in single-cell and 
spatial transcriptomics with NICHES 

 
 

Authors 
Micha Sam Brickman Raredon1,2,3,4,♱,* and Junchen Yang5,♱, Neeharika Kothapalli3, 

Wesley Lewis5, Laura E. Niklason1,2, Naftali Kaminski3, Yuval Kluger5,6,7,* 

 

Contact: michasam.raredon@yale.edu; yuval.kluger@yale.edu 
 

 

 

This PDF files includes: 
Supplemental Text 

Supplemental Findings 
Supplemental Figures 

Software Methods 
Application Methods 

Supplemental References 
 
 

Software and Vignettes associated with this manuscript are available here: 
https://msraredon.github.io/NICHES/ 

https://github.com/msraredon/NICHES 
10.5281/zenodo.6846813 

 
Data used in Vignettes is available at: 

10.5281/zenodo.6846617 
10.5281/zenodo.6878944 
10.5281/zenodo.6878953 

 
 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.01.23.477401doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477401
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Supplemental Text 
 
Assumptions, Limitations, and Best Practices 
 

1) NICHES is an extracellular connectivity tool designed to quantify the likelihood of cell-cell 
communication based on cognate ligand-receptor expression between cells. Complete 
biological communication requires not only this cognate ligand-receptor expression but also 
appropriate cellular co-localization for a given mechanism, evidence of signal transduction, 
absence of downstream signal inhibition, and subsequent phenotypic response, which is cell-
state dependent. We think of NICHES as quantifying the mechanistic ‘wavelengths’ that a 
sending and receiving cell are jointly ‘tuned’ to. 

 
2) In its present form, NICHES multiplies ligand expression on sending cells with receptor 

expression on receiving cells. This operator was chosen because it is zero-preserving. 
 

3) When mechanisms are queried which containing more than one ligand subunit or more than 
one receptor subunit, NICHES multiplies the expression of all ligand subunits to yield a single 
ligand-mechanism expression value and multiplies the expression of all receptor subunits to 
yield a single receptor-mechanism expression value (see Figure S1 for a diagram of this 
computation). We have chosen this approach so that zero expression of any subunit within a 
given mechanism yields zero connectivity for that mechanism. It should be noted, however, 
that the sparse nature of single-cell transcriptomic data means that NICHES may output zero 
connectivity for a given mechanism between two cells if all subunits were not captured in a cell 
used for a given cell-cell pairing. Imputation prior to running NICHES can lessen this artifact, at 
the cost of using pseudo-values to calculate connectivity. For a demonstration of this 
difference, please see 
https://msraredon.github.io/NICHES/articles/02%20NICHES%20Single.html 
 

4) The SystemToCell and CellToSystem outputs estimate connectivity between an entire single-cell 
system and each individual cell within that system. These tools are designed to quantify 
changes in system signaling character due either to altered cellular gene expression or to 
altered cellular distribution or representation. These tools use the mean operator to combine 
ligand information from multiple sending cells and/or to combine receptor information from 
multiple receiving cells.   

 
5) When spatial information is provided, NICHES allows users to limit analysis to connectivity 

within either a defined radius or to local nearest-neighbor communities. However, when spatial 
information is not provided, NICHES treats all barcodes within an input system as available for 
sampling and analysis. If cells have been captured which are not to be treated as within a 
biological system of interest, we recommend removing these cells from the input data prior to 
running the SystemToCell or CellToSystem functionality, as otherwise ligand or receptor 
information from these cells will be included downstream. 
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6) We recommend standardizing total input cell number to maximize the accuracy of cross-system 
system-level comparisons. We make this recommendation because artifacts may otherwise 
theoretically be created in instances in which variable cell-number denominators act on 
constant system-expression numerators for a given mechanism. 

 
7) Batch effects which cause biologically artifactual variance in ligand and receptor expression will 

affect the outputs from NICHES. This should be noted by users. 
 

8) Differential testing may be performed on NICHES output data. If comparing experimental 
conditions containing multiple batches, users may run NICHES either for each batch 
independently or for an entire condition (containing multiple batches) at once. Running NICHES 
on individual batches will preserve batch effects for downstream analysis. Conversely, running 
NICHES on an experimental condition containing multiple batches will have the effect of 
smoothing cell-signaling batch effects, since cells will be crossed with other cells within their 
condition but not necessarily within their specific batch. 

 
9) If a single dataset is input into NICHES which contains information across multiple experimental 

conditions, cells may be crossed with cells outside of their respective condition. We currently 
do not recommend doing this unless such patterns are deliberately of interest to a user. 

 
10) Pseudotime ordering may be performed on either the NICHE output data or on the original cell 

data and then used to align NICHES information. We currently recommend the latter approach, 
as we have not investigated how well the NICHES outputs adhere to the fundamental 
assumptions underlying the diverse array of existing pseudotemporal techniques.  
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Supplemental Findings 
 

Simulation 1: NICHES reveals hidden intra-cluster signaling heterogeneity 
 
To demonstrate NICHES’s ability to discover intra-cluster heterogeneity, we generated a synthetic 
single-cell RNA-seq dataset with 400 cells equally divided into 2 cell types (C1 and C2), which can be 
separated by their marker genes (Figure S2, A, top).  
 
Additionally, there are 2 subtypes S1 and S2 within C1 and 2 subtypes S3 and S4 within C2 (Figure S2, A, 
bottom). By design, S1 and S2 interact differentially with S3 and S4 through 2 ligand-receptor 
mechanisms. Specifically, S2 has a higher expression of A2m ligand gene compared to S1 
(corresponding receptor gene is Lrp1 that is highly expressed in S3 and S4), and S3 has a higher 
expression of receptor gene Agtr2 compared to S4 (corresponding ligand gene is Ace which is highly 
expressed in S1 and S2), as shown in Figure S2, B. Due to the subtle gene expression difference, one 
cannot distinguish the subtypes based on the overall gene expression profiles. But because the nuance 
involves ligand and receptor genes, we may apply NICHES to capture this signal.  
 
Figure S2, C, shows the cell-cell matrix output of NICHES, embedded in 2D mechanism space, clustered 
via k-means (top) and labeled by ground-truth subtype interaction (bottom). Sending cells are all from 
C1 and receiving cells are all from C2, and the space is 2-dimensional because there are only 2 ligand-
receptor mechanisms in this simulation: A2m-Lrp1 and Agtr2-Ace. Note that the clustering results 
(Figure S2, C, top) are almost completely identical to the ground truth subtype interaction pair labels 
(Figure S2, C, bottom). For reference, we have added a single black point representing the single mean 
connectivity value between C1 and C2 which results from using a mean-wise computational method to 
assess ligand-receptor connectivity in this simulation. 
 
 
Simulation 2: NICHES preserves information regarding differential signaling distributions in disparate 
experimental conditions 
 
Next, we sought to demonstrate that NICHES can register how cellular archetype shift influences cell-
cell connectivity. We simulated 2 scRNAseq cases, both of which contain 2 cell types (C1 and C2), as 
shown in Figure S3, A. In both cases, we simulated 1 active ligand-receptor channel between C1 and C2 
(C1 expresses the ligand gene A2m and C2 expresses the receptor gene Lrp1). C1 expression level of 
ligand A2m is sparse but high in Case 1, and broad but low in Case 2, with similar mean values (Figure 
S3, B). By design, the expression level of receptor by population C2 is identical in both cases. Because 
the mean expression level of A2m is similar, the mean connectivity of A2m-Lrp1 is similar between the 
2 cases (Figure S3, C). NICHES, however, is able to detect this significant difference in connectivity 
(Figure S3, D). 
 
 
Simulation 3: NICHES allows high-dimensional visualization of altered systems-cell topology due to 
addition or removal of cells 
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 5 

Next, we sought to evaluate the ability of NICHES to map changes in system-to-cell signaling topology. 
We simulated two cell systems to be compared. The first contains two cell types (C1 and C2, Figure S4, 
A) while the second contains  3 cell types (C1, C2, and C3, Figure S4, B). C1 and C2 are identical in 
character in each case, and are connected via two simulated mechanisms, A2m-Lrp1 and Ace-Agtr2, 
where C1 cells express the ligands A2m and Ace and C2 cells express the receptors Lrp1 and Agtr2. C3, 
which is only present in the three-cell system, also expresses ligands A2m and Ace. From the 
perspective of a receiving cell (from population C2, in this simulation), the mean expression of ligand is 
higher in the three-cell system as compared to the two-cell system. NICHES quantifies this difference 
and allows analysis and visualization between conditions (Figure S4, C).   
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Supplemental Figures 
 

 
 
Figure S1: NICHES connectivity for mechanisms with multiple subunits 
 
NICHES is capable of calculating intercellular connectivity for ligand-receptor mechanisms with any 
number of subunits. For a given mechanism, ligand subunit expressivities on the sending cell are 
multiplied together and receptor subunit expressivities on the receiving cell are multiplied together. 
These two values are then multiplied to yield mechanism connectivity between the sending and 
receiving cell. This operation is zero-preserving by design, so that the lack of expression of even a single 
subunit on either the sending or receiving cell within a given cell-cell pairing will cause a connectivity 
value of zero. 
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 7 

 
 
Figure S2: NICHES captures heterogeneity in cell-cell connectivity 
 
In this simulation using synthetic data (see Methods) there are two celltypes labeled C1 and C2 
containing signaling subtypes S1-S4 which do not resolve in gene space (A). These subtypes 
communicate in distinct ways via two distinct signaling mechanisms: A2m-Lrp1 and Ace-Agtr2 (B). 
Subpopulation S2 expresses ligand A2m higher than S1 while subpopulation S3 expresses receptor 
Agtr2 higher than S4. This expression pattern creates four distinct cell-cell signaling relationships even 
though only two celltypes have been crossed. NICHES allows rapid observation of these distinct 
relationships using two-dimensional embeddings and k-means clustering (C, top) which closely 
matches the ground truth subtype crosses in this simulation (C, bottom). Mean connectivity between 
C1 and C2 is represented in black in the lower panel of (C). A biological counterpart to this simulation is 
show in Figure 1F. 
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 8 

 
 
Figure S3: NICHES captures cross-condition archetype shift in cell-cell connectivity 
 
In this simulation using synthetic data (see Methods), we compare two cell-systems (A, Case 1 and 
Case 2) representing different experimental conditions or tissues containing the same number of cells, 
with the same celltypes present, and similar mean connectivity for a given signaling mechanism. Case 1 
cells express ligand sparsely but highly, while Case 2 sending cells express ligand broadly but lowly (B). 
Receptor expression is identical in each case. While mean connectivity is nearly identical (C), NICHES 
captures the significantly different ground-truth connectivity between the two cases (D).  
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 9 

 
 
Figure S4: Differential System-to-Cell Signaling 
 
In this simulation using synthetic data (see Methods), we demonstrate the capability of NICHES to 
measure altered system-cell signaling topology due to the addition or removal of cells. In Case 1 we 
have a two-cell system containing communicating cell types C1 and C2 (A). In Case 2, a third cell type 
(C3) has entered the system which expresses ligands cognate to receptors on C1 and C2 (B). When we 
use NICHES to calculate system-to-cell signaling within each case, we see a clear shift in the character 
of the sensed environment of celltype C2 due to the altered mean ligand expression within the system. 
This functionality of NICHES empowers the study of complex biological questions, such as how added, 
aberrant or infiltrating cells might affect the microenvironment of a receiving celltype across 
experimental conditions or disease states. A biological counterpart to this simulation is shown here: 
https://msraredon.github.io/NICHES/articles/09%20System%20Effects%20of%20Aberrant%20Cells.ht
ml 
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Figure S5: NICHES Reveals Intra-Celltype Microenvironment Heterogeneity 
 
A) Spatial transcriptomic data labeled by dominant celltype (see Methods). B) UMAP embedding of 
cellular niche for each transcriptomic location. C) Sub-clustering of the L5 IT niche represented spatially 
and D) within UMAP space. Exploration of marker mechanisms reveals niche interactions specific to the 
microenvironments within each subcluster (E-I). 
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Figure S6: NICHES runtime and scalability 
 
NICHES is designed to allow rapid analysis of cell-cell signaling patterns. Runtime scales reasonably well 
with respect to the number of edges (columns in NICHES output matrices.) Edge number is a function 
of input cell number and cell type number and is dataset specific. 
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Software Methods 

 
Dependencies 
The internal workings of NICHES are dependent on a large number of other R software packages, in 
particular dplyr (Wickham, et al., 2019) and Seurat (Butler, et al., 2018). A maintained list of 
dependencies can be viewed in the DESCRIPTION file. 
 
Mathematical and Computational Formalism 
 
First, we define basic notations: 
 

Table S1. Notations 
Notation Description and terminology 

𝑪 𝑪 = {𝑐!, 𝑐", … , 𝑐#!}. An ordered set of cells in the system where 𝑁$  is 
the total number of cells in the system. In the spatial transcriptomic 
datasets, we also use 𝑪 to represent each measurement (e.g. spots). 

𝑿 Normalized Gene Expression Matrix. For Cell 𝑐%, 𝑿&" =

*𝑥&"
'# , 𝑥&"

'$ , … , 𝑥&"
'%& 	-

(
 is its gene expression vector, where 𝑔%  is the 𝑖th 

gene 𝑖	 ∈ {1,2, … , 𝑁)} and where 𝑁)  is the total number of genes. For 
instance, 𝑥&"

*'  is the gene expression level of ligand 𝑙+ from Cell 𝑐%, 𝑥&(
,)  

is the gene expression level of receptor 𝑟- from Cell 𝑐.  
𝑴 𝑴 = 6𝑚!, 𝑚", … ,𝑚#*8. An ordered set of ligand-receptor 

mechanisms where 𝑁/ is the total number of mechanisms. Each 
mechanism 𝑚+has a corresponding ligand 𝑙+ and receptor 𝑟+ 

𝑳 𝑳 = [𝑙!, 𝑙", … , 𝑙#*]. A vector of reference ligands. Each 𝑙+ has a 
corresponding mechanism 𝑚+ from 𝑴 in which it participates. 𝑙+ can 
consist of multiple subunits. 

𝑹 𝑹 = [𝑟!, 𝑟", … , 𝑟#*]. A vector of reference receptors. Each 𝑟+ has a 
corresponding mechanism 𝑚+ from 𝑴 in which it participates. 𝑟+ can 
consist of multiple subunits. 

𝑬 𝑬 ∈ {0,1} , unweighted and directed adjacency matrix that indicates 
which cells are connected and can interact in the system. For 
instance, 𝐸%. = 1 indicates that Cell 𝑖 and Cell 𝑗 are connected and 
the ligand signals of Cell 𝑖 can be received by the receptors of Cell 𝑗 
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Given the gene expression data 𝑿 of a cell system 𝑪, along with a list of known ligand-receptor 
mechanism 𝑴, we aim to define a vector 𝑆$"$( ∈ ℝ

#*  for every connected cell pair cell 𝑖 and cell 𝑗 in a 
pre-defined cell adjacency matrix 𝑬, such that 𝑆$"$(  can characterize the 𝑁/ -dimensional ligand-
receptor interaction profiles between cell 𝑖 sending signal via ligand and cell 𝑗 receiving signal via its 
receptors. 
 
Cell-Cell Matrix Construction 

To construct the Cell-Cell Matrix, we define 𝑆$"$( = *𝑠$"$(
0# , 𝑠$"$(

0$ , … , 𝑠$"$(
0%*-

(
in which 𝑠$"$(

0' = 𝑥$"
*' × 𝑥$(

,', 

where the mechanism 𝑚+ consists of ligand 𝑙+ and receptor 𝑟+. We choose the multiplication 
operation so when the ligand or the receptor are not expressed the product is zero, representing no 
cell-cell signaling. 
  
We concatenate the 𝑆$"$(  Cell-Cell Interaction vectors to construct the Cell-Cell Matrix: 𝑺 ∈ ℝ#*×#+, 
where 𝑁/ is the total number of mechanisms and 𝑁2 = ∑ 𝐸%.

#!
%,. 	is the total number of (directed) 

connected cells. 
 
𝑺 can be used as input to many computational analysis pipelines, including dimensionality reduction, 
clustering, differential expression, pseudo-temporal ordering, and trajectory inference, etc., to 
investigate cell-cell interactions at the individual cell level. 
 
Computing the Adjacency Matrix 𝐄 

One step before computing a Cell-Cell Matrix is to compute the adjacency matrix 𝑬. For single-cell 
RNA-seq datasets we assume a fully connected cellular system. However, the computational 
complexity of 𝑺 becomes 𝑶I𝑵𝑪

𝟐K, which greatly hinders the application of Cell-Cell Matrix onto cellular 
systems of large number of cells (e.g. 𝑁$ > 1	 × 106).  
 
To reduce the complexity, we adopt a random sampling scheme to down-sample edges and to 
compute a new 𝑬M as follows: Let’s denote the set of cell type labels in the system by 𝑃 =
6𝑝!, 𝑝", … , 𝑝#78 where 𝑁7 is the total number of cell types. The set of cells associated with each type is 
denoted by 𝑁 = 6𝑛!, 𝑛", … , 𝑛#78. For each pair of cell types within 
{(𝑝+ , 𝑝0)|𝑘 = 1,2, … , 𝑁7; 𝑚 = 1,2, … , 𝑁7}, we draw 2 sets of cells 𝐶89:,;'and 𝐶89:,;,  from cells of cell 
type 𝑝+ and 𝑝0 uniformly, i.e., {𝐶89:,;' ⊆	𝐶;'|	|𝐶89:,;'| 	= min	(𝑛+ , 𝑛0)} and {𝐶89:,;, ⊆
	𝐶;,|	|𝐶89:,;,| 	= min	(𝑛+ , 𝑛0)} (|𝑆| denotes the number of elements in set S). Then we pair up 
𝐶89:,;'  and 𝐶89:,;,: 𝑄 = 6I𝑐%

89:,;' , 𝑐%
89:,;,K\𝑖 = 1,2, … ,min	(𝑛+ , 𝑛0)}. Lastly, each entry in the new 

adjacency matrix can be set as 𝐸]%. =	 ^
1, 𝑖𝑓	I𝑐% , 𝑐.K ⊆ 𝑄
0,																					𝑒𝑙𝑠𝑒

	.  

 
For spatial transcriptomic datasets we constrain the interactions among cells to be only within a 
certain distance threshold or a certain local neighborhood.  To be more specific, let us denote 𝑫 as the 
Euclidean distance matrix among cells computed from the spatial locations, where 𝑑%.  is the distance 
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between Cell 𝑖 and Cell 𝑗. Given a distance threshold 𝑟, 𝐸%.  is computed as  𝐸%. =	 ^
1, 𝑖𝑓	𝑑%. ≤ 𝑟
0,													𝑒𝑙𝑠𝑒

 for 

each entry of 𝑬 for spatial transcriptomic datasets. Alternatively, the user can specify the parameter k 
which computes a k-nearest neighbor (knn) graph from	𝑫 and the adjacency matrix 𝐸 will be 
computed as a mutual nearest neighbor graph	from this knn graph, i.e., as  𝐸%. =

	^1, 𝑖𝑓	𝑖, 𝑗	𝑎𝑟𝑒	𝑚𝑢𝑡𝑢𝑎𝑙	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠0,																																																		𝑒𝑙𝑠𝑒 

 
Niche Matrix Construction 
 
Besides the base cell-cell interaction formulation, we extend our original definition of the Cell-Cell 
Matrix to investigate cellular niche and cellular influence interactions.  
 
Specifically, we define the Niche Matrix as: 𝒀 ∈ ℝ#*×#!, where 𝑁/ is the total number of mechanisms 
and 𝑁$  is the total number of cells in the system. A column vector of 𝒀 is defined as 𝑌$" =

*𝑦$"
0# , 𝑦$"

0$ , … , 𝑦$"
0%*-

(
∈ ℝ#*, i.e., each column of 𝒀 is a 𝑁/ -dimensional vector that characterizes the 

interaction profiles between cells sending ligand signals to Cell 𝑖 which possesses the relevant 
receptors to receive these signals.  
 
The connectivity value on one mechanism (e.g. 𝑚+) between sending cells and Cell 𝑖 is defined as 
𝑦$"
0' = 𝑜𝑝(𝑋*') 	× 𝑥$"

,'  where the mechanism 𝑚+ consists of ligand 𝑙+ and receptor 𝑟+, 𝑋*'  denotes the 
row vector of 𝑙+’s expression levels across the cells that are connected to Cell 𝑖, and 𝑜𝑝() is a vector 
operator which, in our implementation, can be either 𝑠𝑢𝑚 (default) or 𝑚𝑒𝑎𝑛.  
 
Similarly, we define the Influence Matrix as: 𝒁 ∈ ℝ#*×#!  where each column of 𝒁 is a 𝑁/ -dimensional 
vector that characterizes the interaction profiles between Cell 𝑖 that sends the ligand signals and the 
cells receiving from it. Each connectivity value between Cell 𝑖 and the system is defined as 𝑧$"

0' =
𝑥$"
*' × 𝑜𝑝(𝑋,') where the mechanism 𝑚+ consists of ligand 𝑙+ and receptor 𝑟+, 𝑋,'  denotes the row 

vector of 𝑟+’s expression levels across the cells that connect to Cell 𝑖 in the system, and 𝑜𝑝() is again 
either 𝑠𝑢𝑚 (default) or 𝑚𝑒𝑎𝑛. 
 
For single-cell RNA-seq datasets without spatial coordinates, we assume a fully connected 𝑬 involving 
all cells measured within a system. For spatial transcriptomic datasets, we construct 𝑬 in the same 
fashion as for the spatial Cell-Cell Matrix, limiting edges to neighbors within radius 𝑟 or within a user-
defined set of nearest neighbors. 
 
Metadata Mapping 
 
NICHES allows the researcher to carry over any and all metadata (i.e. sample labels, coarse- and fine-
grain cluster labeling, experimental conditions) from source data, allowing rapid downstream 
differential analysis between already tagged groupings of cells. For every input metadata category, the 
NICHES Cell-Cell Matrix output object has Sending Metadata, Receiving Metadata, and Sending-
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Receiving Metadata associated with every column. The Niche Matrix and Influence Matrix have only 
Receiving Metadata and Sending Metadata associated with their columns, respectively.  
 
Because each Cell-Cell Matrix contains many individual measurements of cell pairings (or environment-
cell pairings in the Niche Matrix), differential analysis can be used to reveal ligand-receptor 
mechanisms preferential to a given celltype-celltype cross within a system, or to identify top 
differential signaling mechanisms across subject, disease state, experimental condition, or tissue. Such 
calculations may be performed for specific celltype-celltype crosses or for other custom groupings as 
the user desires, based on mapped metadata. We recommend using ROC analysis to measure how well 
a mechanism differentiates two groups compared to standard two-sample tests when the columns in 
Cell-Cell Matrix or Niche Matrix are no longer independent. 
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Application Methods 
 
Methods for Application to Synthetic Data 
 
We generate 3 simulation datasets (Simulation 1, Simulation 2, Simulation 3) for 3 separate simulation 
analyses (Supplemental Fig A-C, Fig E-I, Fig J-L) respectively. For each dataset, we simulate 3 categories 
of genes: signaling genes (ligands and receptors), 50 non-signaling marker genes to differentiate each 
cell type, and 5000 noise genes. We assume the genes in the datasets follow negative binomial (NB) 
distributions parametrized by parameter 𝜇 which characterizes the mean expression level, and the 
dispersion parameter 𝛾. We describe the exact parameter settings for each dataset as follows: 

 
Table S2: Count matrix design for Simulation 1 

 Cell type 1 (C1) (200 cells) Cell type 2 (C2) (200 cells) 
 Subtype 1 (S1) 

(100 cells) 
Subtype 2 (S2) 

(100 cells) 
Subtype 3 (S3) 

(100 cells) 
Subtype 4 (S4) 

(100 cells) 
A2m NB(𝜇=1,	𝛾=20) NB(𝜇=30,	𝛾=20) 0 
Lrp1 0 NB(𝜇=30,	𝛾=20) NB(𝜇=30,	𝛾=20) 
Ace NB(𝜇=30,	𝛾=20) NB(𝜇=30,	𝛾=20) 0 

Agtr2 0 NB(𝜇=30,	𝛾=20) NB(𝜇=1,	𝛾=20) 
Marker genes 

(50 genes) 
NB(𝜇=10,	𝛾=20) NB(𝜇=20,	𝛾=20) 

Noise genes 
(5000 genes) 

NB(𝜇=15,	𝛾=20) 

 
Table S3: Count matrix design for Simulation 2 (Case 1) 

 Cell type 1 (C1) (100 cells) Cell type 2 (C2) (100 cells) 
A2m NB(𝜇=100,	𝛾=20) 

(10 cells) 
0 (90 cells) 0 

Lrp1 0 NB(𝜇=5,	𝛾=20) 
Marker genes 

(50 genes) 
NB(𝜇=10,	𝛾=20) 

 
NB(𝜇=20,	𝛾=20) 

 
Noise genes 
(5000 genes) 

NB(𝜇=15,	𝛾=20) 

 
 Table S4: Count matrix design for Simulation 2 (Case 2) 

 Cell type 1 (C1) (100 cells) Cell type 2 (C2) (100 cells) 
A2m NB(𝜇=10,	𝛾=20) 0 
Lrp1 0 NB(𝜇=5,	𝛾=20) 

Marker genes 
(50 genes) 

NB(𝜇=10,	𝛾=20) 
 

NB(𝜇=20,	𝛾=20) 
 

Noise genes 
(5000 genes) 

NB(𝜇=15,	𝛾=20) 
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Table S5: Count matrix design for Simulation 3 
 Cell type 1 (C1) (1000 

cells) 
Cell type 2 (C2) (1000 

cells) 
Cell type 3 (C3) (1000 

cells) 
A2m NB(𝜇=5,	𝛾=20) 0 NB(𝜇=5,	𝛾=20) 
Lrp1 0 NB(𝜇=30,	𝛾=20) 0 
Ace NB(𝜇=5,	𝛾=20) 0 NB(𝜇=5,	𝛾=20) 

Agtr2 0 NB(𝜇=30,	𝛾=20) 0 
Marker genes (50 

genes) 
NB(𝜇=10,	𝛾=20) NB(𝜇=20,	𝛾=20) NB(𝜇=30,	𝛾=20) 

Noise genes 
(5000 genes) 

NB(𝜇=15,	𝛾=20) 

 
Methods for Application to Native Lung scRNAseq Data 
 
Data was downloaded from (Raredon, et al., 2019), subset to 4 main populations of interest, and run 
through standard principle component analysis (PCA), clustering, and UMAP embedding pipelines in 
Seurat (McInnes, et al., 2018; Stuart, et al., 2019). Data was imputed using ALRA (Linderman, et al., 
2022) and then run through the NICHES function RunCellToCell. The resulting signaling matrix was then 
used to create a new Seurat object which was scaled and run through PCA again and embedding using 
UMAP. FindAllMarkers was used in Seurat to identify cell-cell interaction markers of interest. 
 
Methods for Application to Brain Spatial Transcriptomic Data 
 
Anterior mouse brain data was downloaded from 10x Genomics (2020) and preprocessed following the 
steps in Seurat (Stuart, et al., 2019), with subsetting to the frontal cortex region only. We integrated 
the data with a reference single-cell RNA-seq dataset (Tasic, et al., 2016) and used its cell type 
annotations to predict the labels of the spatial pixels by a probabilistic classifier (Seurat TransferData 
function). We then annotated each spatial pixel by its most probable label. 
 
For NICHES matrix construction, we imputed the data with ALRA (Linderman, et al., 2022) based on the 
normalized data matrix, and then applied the NICHES Neighborhood-to-Cell function to compute niche 
signaling between direct histologic neighbors. The resulting niche matrix was embedded using UMAP 
(McInnes, et al., 2018) in Seurat 4.0 (Hao, et al., 2021). FindAllMarkers in Seurat was used to compute 
top markers for each celltype niche. 
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