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Abstract 
A robust and fast two-sample test for equal Pearson correlation coefficients (PCCs) is important 
in solving many biological problems, including, e.g., analysis of differential co-expression. 
However, few existing methods for this test can achieve robustness against deviation from 
normal distributions, accuracy under small sample sizes, and computational efficiency 
simultaneously. Here, we propose such a method for testing DIfferential COrrelation using a 
Saddlepoint Approximation of the Residual bootstrap (DICOSAR). To achieve robustness, 
accuracy, and efficiency, DICOSAR combines the ideas underlying the pooled residual 
bootstrap, the signed root of a likelihood ratio statistic, and a multivariate saddlepoint 
approximation. Through a comprehensive simulation study and a real data analysis of gene co-
expression, we demonstrate that DICOSAR is accurate and robust in controlling the type I error 
rate for detecting differential correlation and provides a faster alternative to the permutation 
method. We further show that it can also be used for testing differential correlation matrices. 
These results suggest that DICOSAR provides an analytical approach to facilitate rapid testing 
for the equality of PCCs in a large-scale analysis.      
 
Keywords: Pearson correlation coefficient, equal correlations, residual bootstrap, saddlepoint 
approximation, signed root of likelihood ratio statistic, gene co-expression 

Introduction 
Testing the equality of Pearson correlation coefficients (PCCs) between two groups is one of the 
most fundamental statistical problems for investigating whether the dependency between 
variables differs between groups of interest. Its application can be widely found in many 
research areas, including biology and social science. For example, the correlation between 
gene expression can imply co-regulation in the same pathway and thus provide insights into the 
study of dysfunctional regulatory networks (de la Fuente, 2010).  
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Despite its importance, to the best of our knowledge, this two-sample homogeneity test of PCCs 
still poses significant challenges if pursue robustness, statistical accuracy, and computational 
efficiency are simultaneously required. The major challenges in real data analysis include small 
sample sizes, violation of a normality assumption, and computational burden. The 
computational cost often becomes a major concern in applications involving a considerable 
number of tests. For example, in the co-expression analysis, millions of gene pairs may need to 
be tested. A common fast approach for testing PCCs is through Fisher’s z-transformation 
(Fisher, 1925), which converts the sample distribution of the PCC to a normal distribution with 
the variance equal to 1/�� � 3�, where � is the sample size. The two-sample homogeneity test 
can then be readily carried out by testing a difference between two variables of normal 
distributions. Unfortunately, the normality of the z-transformation is valid only under the strong 
assumption that the variables are bivariate normal (Hawkins, 1989), which can be easily 
violated in real data analysis. Multiple studies demonstrate that the distribution of the z-
transformation departs from a normal distribution if such an assumption does not hold (Bishara 
and Hittner, 2017; Puth et al., 2014). Another widely used approach is to first transfer the 
original variables before testing the correlation. However, as shown in (Bishara and Hittner, 
2017), many transformations of the raw data that aim to approach normality might not 
completely solve the problem or cannot be used if the linear relationship must be measured on 
the original scale. On the other hand, rank-based transformations like Spearman’s rho can 
reduce the statistical power if the normality does hold for the raw data (Pernet et al., 2013). 
  
To relax the normality assumption, Hawkins (Hawkins, 1989) proposes a delta method based on 
U-statistics to obtain the asymptotic distribution of the z-transformation and shows that the 
variance depends on higher-order joint moments of the two variables. The problem of this 
method is that the sample higher-order joint moments are less accurate under a small sample 
size. Nevertheless, as shown in our simulation study, the delta method exhibits an inflated type I 
error rate under a small or even moderate sample size of 200 subjects, which is even worse 
than the z-transformation for bivariate normal variables. In, e.g., gene expression data, it is very 
common to have only dozens of samples in a group, and therefore such inflation is not ignorable 
in many real data analyses. Instead of directly estimating the joint moments, an approximation 
distribution is developed and shows better accuracy in terms of confidence interval (Bishara et 
al., 2018). However, our simulation indicates that its performance depends on the PCC and the 
underlying distribution of the variables. Consequently, various resampling strategies such as the 
residual permutation or bootstrap (Boos and Brownie, 1989; Krzanowski, 1993; Tesson et al., 
2010; Yang and DeGruttola, 2012; Zhang and Boos, 1992, 1993) are broadly adopted to 
compute the p-value in real problems. Despite being robust against assumptions and its 
straightforward implementation, these resampling methods can be computationally expensive 
particularly in the multiple testing problem. To obtain accurate significant p-values, the 
resampling methods need to generate a huge number of replicates, which is computationally 
inhibitive, particularly in a situation where many hypotheses need to be tested. For 
example, >106 random samples might be required for providing a decent estimate of a p-value 
<10-5. Therefore, it is appealing to find a fast, accurate, and robust method for testing the 
equality of two PCCs that can work well even under a small sample size and does not rely on a 
resampling procedure. 
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The aim of this study is to develop such an analytical algorithm for testing the equality of PCCs 
that can accurately control type I errors even under a small sample size and nonnormal 
distributions. We propose a method for testing DIfferential COrrelation using a Saddlepoint 
Approximation of the Residual bootstrap, referred to as DICOSAR. DICOSAR combines the 
ideas underlying the residual bootstrap method (Zhang and Boos, 1992, 1993) and an accurate 
approximation for the cumulative distribution of a function of multiple random variables proposed 
in (DiCiccio et al., 1994). Our basic idea is using a multivariate saddlepoint method (Daniels and 
Young, 1991) to approximate the distribution of the summary statistics under the null hypothesis 
and then employing a higher-order approximation for the cumulative distribution of a smooth 
function of the summary statistics (DiCiccio and Martin, 1991). Under the same sample size, we 
show that this method is much more accurate than the delta method, which assumes normality 
in both steps. In a comprehensive simulation study and an analysis of differential gene co-
expression, we demonstrate that DICOSAR has comparable performance to the pooled residual 
permutation in controlling the type I errors, and is computationally faster than the permutation 
method.. To demonstrate its performance in real data analysis, we applied DICOSAR to detect 
genes showing differential co-expression with APOE between controls and patients with 
Alzheimer’s disease (AD) in bulk and single-nucleus RNA-seq (snRNA-seq) data sets.    

Materials and Methods 

The main algorithm in DICOSAR 
We start with reviewing the residual permutation and bootstrap strategies. Consider that we 
collect quantitative data in two groups for which we want to test the equality of the PCCs of two 
continuous variables of interest. Denote the datasets of the two groups by �� 	 
���� and �� 	 
����, where �� and �� are the sample size, respectively. By centering and standardizing 
the variables within each group, we obtain the residuals �� � 
���

�� (� � 1, 2), where 
� � �� �
�

��

������ and �� � �	
��
�
�
��

����
. Here, � is the identity matrix, � is the �� � 1 matrix of ones, the 

subscript � stands for the matrix transpose, and diag��� is a diagonal matrix containing the 
diagonal entries of �. The statistic that we propose to test the equality of the PCCs is  

δ � ��� � ��� � 12 �log !"� # 1!"� � 1 � log !"� # 1!"� � 1$ , �1� 

where !"� � �

����
∑ &���&���

��

���  is the sample PCC !� in group � and &��� is the element in �� 

corresponding to the jth variable of sample ' in group �. Throughout this manuscript, matrices or 
vectors are denoted by boldface uppercase letters. The statistic δ is essentially the difference of 
the Fisher’s z-transformation between the two groups. To test !� � !�, we need the sampling 
distribution of the statistic δ under the null hypothesis. Note that ��� follows a normal distribution 
only when �� follow a bivariate normal distribution. A robust approach to obtain the null 
distribution without the strong assumption of normality is the pooled residual permutation 
(Krzanowski, 1993; Tesson et al., 2010) or bootstrap (Yang and DeGruttola, 2012; Zhang and 
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Boos, 1992, 1993). The minor difference between them is whether the random sample is drawn 
with or without replacement. The rationale of such a pooling procedure is that under the null 
hypothesis, the residuals are asymptotically exchangeable under the condition of a shared 
fourth moment of the sample distribution (Zhang and Boos, 1993). So, one can generate a 
pooled sample � by stacking the rows of �� and �� and then resampling from the rows of �. In 
each random sample ��, the dataset is split into ��

� 	 
���� and ��
� 	 
����, and δ� is calculated 

according to formula (1) by substituting the original data with ��
� and ��

� . Our simulation study 
shows that this strategy is robust against deviation from the normality assumption and controls 
type I errors properly. More consideration about violation of the fourth-moment condition can be 
found in the Discussion section. However, the drawback of the permutation or bootstrap method 
is its computational intensity, particularly for testing many pairs of variables. In this case, it may 
require a very large number of permutations to obtain a significant p-value that passes the 
multiple testing correction.  
 
The key idea in DICOSAR is to obtain an accurate analytical approximation of the cumulative 
null distribution of δ without resorting to a time-consuming resampling procedure. Following the 
spirit of the pooled residual bootstrap method, the distribution of the statistic δ under the null 
hypothesis can be obtained based on the pooled residual sample �. That is, � is treated as a 
sample from the null hypothesis. More specifically, �� and �� samples are randomly chosen 
from � independently for the two groups, denoted by ��

� and ��
� . Then, we have   

δ� � g��(�
� , �(�

�� � 12 )log !�
� # 1!�
� � 1 � log !�

� # 1!�
� � 1*, 

!�
� � ���

� ���
�++++++++ � �(��

� �(��
�

,-���
� �++++++ � �(��

� �. -���
� �++++++ � �(��

� �., 
where ���

�  is the jth variable (/ 	 01,21) in group � and �(�
� � -&2��� , &2��� , &��

� �+++++, &��
� �+++++, &��

� &��
�+++++++. is a vector of 

the summary statistics including the sample means &2��� , &2��� , second moments &��
� �+++++, &��

� �+++++, and joint 

moment &��
� &��

�+++++++ for group �. Thus, it remains to derive the distribution of δ� based on the joint 
distribution of the summary statistics �(�

� and �(�
� .  

 
Following the spirit of the analytical approximation to bootstrap distribution functions proposed in 
(DiCiccio et al., 1994), we approximate the distribution of δ� in two steps. In the first step, we 
approximate the joint distribution of �(�

� and �(�
�  using a multivariate saddlepoint method. Because 

the two groups are independent, we can apply the saddlepoint method to �(�
� separately. More 

specifically, the cumulant generating function (CGF) of the joint distribution of 3��
� , 3��

� , 3��
� �, 3��

� �, 3��
� 3��

�  conditional on �, which is independent of �, is  4�5� � 4���, �� , �� , ��, ���
� log 6��� # ����� 7 exp;��&�� # ��&�� # ��&��

� # ��&��
� # ��&��&��<�����

���

= , �2� 
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where &�� is the element at the kth row and jth column in �. Then, the general multivariate 

saddlepoint approximation (Butler, 2007; Daniels and Young, 1991) to the joint distribution of �(�
� 

given � is  

>���
��?�� @ |4��;���� , ���� , ���� , ���� , ����<|��

� exp B�� )4;���� , ���� , ���� , ���� , ����< � 7 ����C��

�

���
*D, 

where ����, E � 1, … ,5, satisfy the following saddlepoint equation 4�;5H�< � 4�;���� , ���� , ���� , ���� , ����< � ?� , �3� 
where 4� and 4�� are the Jacobian and Hessian matrix of the CGF, respectively. Under the 
assumption that the two groups are independent, the joint distribution of �(�

� , �(�
�  is approximated 

by  >���
� ,���

� �?�, ?�� � >���
� �?��>���

� �?�� 

@ I4��;5H�<I��
�I4��;5H�<I��

� exp B�� )4;5H�< � 7 ����C��

�

���
* # �� )4;5H�< � 7 ����C��

�

���
*D.  �4� 

 
Our goal is to approximate the tail probability M�δ� N δ� � M;δ� N g��(�, �(��<. Given the 

approximated joint distribution >���
� ,���

� �?�, ?��, in the second step, we attempt to approximate M�δ� N δ� using a signed root of the likelihood ratio statistic, which has been discussed in 
(Barndorff-Nielsen, 1986; McCullagh, 1984). Let 

E�?�, ?�� � �� )4;5H�< � 7 ����C��

�

���
* # �� )4;5H�< � 7 ����C��

�

���
* 

and  

O�?�, ?�� � I4��;5H�<I��
�I4��;5H�<I��

� , 
where 5H�, 5H� are functions of ?�, ?� through the saddlepoint equation (3). We define the signed 
root of the likelihood ratio statistic as 

P�δ� � sgn -δ � g;?��, ?��<. ,2 -E;?��, ?��< � E;?S�, ?S�<., 
where sgn�·� is the sign function extracting the sign of a real number, ?��, ?�� are the values that 
maximize E�?�, ?��, and ?S�, ?S� are the values that maximize E�?�, ?�� subject to the constraint g�?�, ?�� � δ. To find ?S�, ?S� under this nonlinear constraint, we introduce the following 
Lagrangian  U�V, ?�, ?�� � E�?�, ?�� � V�g�?�, ?�� � δ�, �5� 
where V is the Lagrange multiplier. Thus, ?S�, ?S� can be obtained by solving the equations of the 
gradient of the Lagrangian, i.e., U�;VW, ?S�, ?S�< � 0. Denote U��;VW, ?S�, ?S�< the bordered Hessian 

matrix of the Lagrangian evaluated at VW, ?S�, ?S�. We adopt the following high-order tail probability 
approximation proposed in (DiCiccio and Martin, 1991),  

M�δ� N δ� Y Φ;P�δ�< # [;P�δ�< � 1P�δ� # \$ , �6� 

where Φ and [ are the cumulative and density distribution functions of the standard normal 
distribution, respectively,  
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\ � 1VW O;?S�, ?S�<O;?��, ?��< ^ I�E��;?��, ?��<I�I�U��;VW, ?S�, ?S�<I, 
and E��;?��, ?��< is the Hessian matrix of E�?�, ?�� evaluated at ?��, ?��. This approximation (6) is 
derived in (DiCiccio and Martin, 1991) by combining the two approximation methods proposed 
in (Diciccio et al., 1990) and (Tierney et al., 1989, 1991). In the expression of \, �E��;?��, ?��< is 

positive definite at the minimum ?��, ?�� and the determinant of the minus bordered Hessian 
matrix �U��;VW, ?S�, ?S�< is negative if ?S�, ?S� is a maximum because the sign of IU��;VW, ?S�, ?S�<I is ��1��	��� �!��	��� �! based on the rule of the second derivative test for constrained local extrema 
(see e.g., (Colley, 2006)). Therefore, the term in the square root is always positive if the 
constrained optimization algorithm finds the correct solution. Finally, by substituting the 
approximation (6), the p-value for a two-sided test of !� � !� can be obtained by  _ � 2 ` min;M�δ� N δ�, 1 � M�δ� N δ�<.  �7� 

Computational implementation and numerical issues  
The major computational burden in DICOSAR is to solve the saddlepoint equations in (3) to 
obtain 5H� and the Lagrangian equations U�;VW, ?S�, ?S�< � 0 to obtain VW, ?S�, ?S�. We use the multiroot 

function in the rootSolve R package to solve the equations in (3) numerically. Because 5H� 
maximize E�?�, ?�� given ?�, to solve U�;VW, ?S�, ?S�< � 0, it follows from the envelope theorem (see 
e.g., (Carter, 2001)) that  cU�V, ?�, ?��c?�

� ���5H� � V cg�?�, ?��c?�
� 0, 

and cU�V, ?�, ?��cV � ��g�?�, ?�� � δ� � 0, 
where 

"����,���

"��
 is the partial derivative with respect to ?� and can be calculated explicitly. We use 

the nleqslv function with the parameters “method=’Newton’” and “global='hook'” to solve these 
11 equations numerically. We use the jacobian function in the numDeriv R package for 
computing Jacobian matrices numerically. Practically, we find that the algorithm converges very 

well except for some rare cases where the matrix ����
� , ���

� , ���
� �, ���

� �, ���
� ���

� � is almost singular. 
The higher-order approximation (6) is very accurate in general, but \ might be sensitive to the 
numerical precision of the jacobian function when ?S�, ?S� are very close to ?��, ?��. In this situation, E�;?S�, ?S�< is almost zero and thus 

�

#$
� �����,���

���� �,� �!
 becomes less accurate and stable. Therefore, 

when max;I?S� � ?��I< is very small (e.g., <0.001), we practically adopt the following first-order 

approximation, which is d����

��,  M�δ� N δ� Y Φ;P�δ�<.  �8� 

Additionally, special attention should be paid when applying this method to discrete random 
variables, especially if they have only several levels, e.g., genotypes. For example, if one of the 

variables has only two values, zero and one, the conditional distribution of 3�
�, 3�

�, 3�
��, 3�

��, 3�
�3�

� 

given � is degenerated because 3�
�� (or 3�

��) is determined by 3�
� (or 3�

�). The similar issue 
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occurs if the rows of � have only five or less different levels. In these situations, this method 
cannot be applied directly without a specific adjustment for the data.  

Comparison with other methods  
We consider three analytical and resampling methods, and compare their statistical and 
computational performance with DICOSAR. First, we include the pooled residual permutation 
method. In this method, we merge the standardized residuals to generate � and permute the 
rows of � for M times. In our simulation study, we chose M to be 5000, and in our real data 
analysis, we ran M times until there were at least five more extreme values than the observed 
PCC. In each of the permutation replicates, we split the permuted data into two groups and 
calculate the statistic in formula (1). We obtain an empirical null distribution from the M 
replicates and calculate the p-value using equation (7).  
 
We also consider a fast testing algorithm based on the Delta method proposed in (Hawkins, 
1989). In this method, we assume that ��� and ��� in the z-transformation (1) follow normal 

distributions with means 
�

�
log %���

%���
 and 

�

�
log %���

%���
, and variances f�

� and f�
� in these two groups. 

Hence, under the null hypothesis of !� � !�, the difference ��� � ��� follows a zero-mean normal 
distribution with variance f�

� # f�
�. An asymptotic estimate of f�

� using the Delta method is a 

function of the fourth moment of 3�� and 3�� , and the joint moments g�3��
� 3���, g�3��3��

� �, and g�3��
� 3��

� �, where 3�� is the jth variable in group �. We use the sample moments to estimate these 

quantities. Because the sample joint moments might not be accurate estimates under a small 
sample size, (Bishara et al., 2018) propose an improved method by assuming third-order 
polynomials for the variables to estimate these joint moments, which shows superior 
performance in terms of estimating confidence intervals. We further include a variant of the 
Delta method introduced in (Bishara et al., 2018). To run this method, we directly use the R 
script provided in the supplemental material of (Bishara et al., 2018).  
 
We further include a separate bootstrap method, in which the variances of ��� and ��� are 
estimated using a non-parametric bootstrap within each of the groups. In the simulation study, 
we tested ��� � ��� by assuming that it follows a zero-mean normal distribution under the null 
hypothesis using 2000 bootstrap replicates.  

Global test of multiple differential correlation coefficients 
In some applications, one can be further interested in testing the global correlation pattern of 
multiple (>2) variables after testing each pair of these variables. For example, given K variables, 
one may want to test the equality of two correlation matrices h� and h� 	 
&�&, or a subset of 
the elements in the correlation matrices. Suppose that we perform a global test of all 4�4 �1�/2 elements in the 4 � 4 correlation matrices. One simple analytical approach is to combine 
the 4�4 � 1�/2 p-values obtained by testing each pair of the 4 variables. Because these p-
values are not independent, we adopt the Cauchy combination test (Liu and Xie, 2020). The 
idea underlying this test is based on the finding that a weighted sum of some class of correlated 
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Cauchy variables still follows a Cauchy distribution as proved by (Pillai and Meng, 2016). 
Specifically, let _�� be the p-value of testing the equality of PCCs between the 'th and Eth 
variables. The test statistic is  

\\i � 24�4 � 1� 7 7 tan;k�0.5 � _���<&

�����

&��

���
.  �9� 

Under the null hypothesis of the equality of the two correlation matrices, \\i approximately 
follows a standard Cauchy distribution at the extreme tail under a large sample size. The p-
value for testing small _�� globally is calculated by the cumulative probability of a standard 
Cauchy variable from the right tail, i.e.,  M�\\i� � 0.5 � arctan �\\i�/k. 
This test works well for aggregating a small number of p-values. If the dimension is large, 
additional assumptions about the correlation structure of these single tests are required (Liu and 
Xie, 2020). Roughly speaking, the single tests cannot be too closely correlated with each other 
at a large scale under the high-dimensional scenario.  

Simulation study  
We perform a comprehensive simulation study to investigate the statistical and computational 
performance of DICOSAR and compare it with the other methods. We evaluate the empirical 
type I error rate under a wide range of settings that differ in the sample size, the distribution of 
the variables, and the correlation strength. Specifically, the jth simulated data set of group � is 
produced using the following generative model  -o���o���

. � p�
� -q���q���

. , / � 1, … , �� 

where p is the Cholesky decomposition of the correlation matrix, i.e., p�
�p� � � 1 !�!� 1 $, 

and q��� and q��� are independent and identically distributed random variables. Here, we 

evaluate the following distributions for q��� and q���, (i) the standard normal distribution, (ii) two 

t-distributions with six and four degrees of freedom, respectively, (iii) the gamma distribution 
with the shape and rate equal to 1, and (iv) a mixture of a standard normal distribution and a 
normal distribution with mean equal to five. The rationale of choosing these distributions for the 
assessment is to examine different scenarios, including skewness, excessive kurtosis, and 
multimodal distributions. The two t-distributions are heavy-tailed distributions, one with a finite 
fourth moment and the other with an infinite fourth moment. The gamma distribution has both 
skewness and excessive kurtosis, and the mixture of two normal distributions is a common 
bimodal distribution. We consider ��, the sample size of group �, being 25, 50, 100, 200, and 
400, and !� being 0, 0.4, and 0.8 for independent, moderate, and strong correlations, 
respectively. We investigated the empirical power under the same settings except that only the 
normal and gamma distributions are considered. 
  
We examine the empirical type I error rate of testing the equality of two correlation matrices by 
using statistic (9). Similarly, we simulate the 4-dimensional data set of group � using the 
generative model  
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with !� � 0.5, and a matrix whose off-diagonal elements share the same value, i.e., h� �
B 1 v !�r w r!� v 1 D with !� being 0.3 and 0.6.  

Processing of gene expression data 
In the real data analysis, we applied DICOSAR to co-expression analyses using two gene 
expression data sets in ROSMAP. In both analyses, we used the diagnosis of AD based on 
brain pathology to define the control and AD groups.  
 
The raw count matrix of the bulk RNA-seq gene expression data of 482 samples in ROSMAP 
(Bennett et al., 2012a, 2012b) was downloaded from Synapse. The biological samples are 
extracted from the human dorsolateral frontal cortex. Gene-level quantification is conducted by 
RSEM (Li and Dewey, 2011). More details about the sample information and data generation 
can be found in (Bennett et al., 2012a, 2012b). For each sample, we normalized the raw counts 
by dividing by the total library size (i.e., summing up the count of each gene) of the sample 
followed by taking the logarithm transformation. To avoid zeros for the logarithm, we added 0.5 
as the pseudo-count before normalizing the counts. This transformed data set was used for 
testing the differential co-expression with APOE.  
 
We downloaded the 48-sample snRNA-seq raw count data set (Mathys et al., 2019) in 
ROSMAP from synapse. After the quality control, this data set contains 70,634 cells and 17,926 
genes in the human frontal cortex. For each of the neural cell types, we generated a pseudo-
bulk count matrix by aggregating all cells of that cell type belonging to the same sample. We 
adopted the cell-type annotation provided in (Mathys et al., 2019). This leads to a count matrix 
containing 17,926 genes and 48 samples for each cell type. We normalized the aggregated 
counts by dividing by the total library size of each sample, which were then used for the 
differential co-expression analysis.  

Data and code availability 
This manuscript was prepared using limited access datasets obtained through Synapse 
(https://www.synapse.org/#!Synapse:syn3219045; 
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https://www.synapse.org/#!Synapse:syn18485175). The program used to analyze the simulated 
data and the gene expression data can be found in the dicosar R package at 
https://github.com/lhe17/dicosar.  

Results  

DICOSAR has similar performance to permutation in controlling 
type I errors   
We evaluated the performance of DICOSAR in controlling type I error rate under various 
settings. For comparison, we included the pooled residual permutation, the Delta method, the 
improved Delta method and the bootstrap method, which are described in detail in the Methods 
section. We also included a simplified version of DICOSAR using the approximation �8� instead 
of �6� to assess how much improvement can be achieved by using the higher-order 
approximation for the distribution of the signed root of the likelihood ratio statistic. In the 
scenario where the two variables are generated from a linear transformation of independent 
normal variables (i.e., a bivariate normal distribution), all methods control the type I errors well 
at the significance level of 5% under the largest sample size (i.e., 400 subjects per group) (Fig. 
1A), which is not surprising because the assumption of normality holds under a large sample 
size. The correlation strength between the two variables seems to have little impact on the 
empirical type I error rate. Whereas both DICOSAR and the permutation control the type I errors 
under all these settings, we start to see noticeable inflation of the type I errors from the Delta 
method when the sample size per group drops to 100. The empirical type I error rate of the 
Delta method is above 10% under 25 samples per group. The improved Delta method performs 
much better than the Delta method under this setting and is comparable to the bootstrap 
method, but still shows inflation of the type I errors to some extent when the sample size is 25. 
By comparing DICOSAR and its simplified version, we find that the higher-order approximation 
for the likelihood ratio statistic �8� has a strong improvement and enables DICOSAR to have 
almost identical performance of the pooled residual permutation.  
 
Next, we investigated the performance when the two variables are generated from a linear 
transformation of independent variables from non-normal distributions. Variables from non-
normal distributions are ubiquitous in real data analysis of e.g., gene expression. Here, we 
considered heavy-tailed distributions, bimodal distributions, and skewed distributions. We 
observe a similar overall pattern except for the improved Delta method when the variables are 
generated from a heavy-tailed t-distribution with six degrees of freedom (d.f.) (Fig. S1A). The 
improved Delta method fails to control the type I errors when the PCC is large. Among the other 
methods, we observe slightly higher inflation of type I errors across most scenarios for the Delta 
method and the bootstrap method than that in the normal case. We then considered a bimodal 
distribution generated from a mixture of two normal distributions (See the Methods section for 
more detail). Again, the improved Delta method fails to achieve the expected type I error rate in 
the cases with a moderate to high correlation, even when the sample size is large (Fig. S1B). 
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Most of these methods show deflation of the type I errors under the small sample sizes when 
the PCC is very high. Interestingly, the bootstrap method works very well for this mixture 
distribution and shows almost the same performance as DICOSAR and the permutation method. 
The situation becomes slightly different when we consider a gamma distribution with the shape 
and rate parameters equal to one, which has both skewness and excessive kurtosis. The worst 
case occurs to very high correlation strength (PCC=0.8), in which neither DICOSAR nor the 
permutation method can control the type I error rate accurately under a small sample size (<50) 
although they still work properly under the larger sample sizes (Fig. 1B). The other methods 
show substantially inflated type I error rate even under the largest sample size.  
 
The consistency of the p-values between DICOSAR and the permutation method is clearly 
shown in Fig. 1C, where the 5000 p-values in each sample size and method under the gamma 
distribution with PCC=0.8 are plotted. The points are tightly aligned along the diagonal line, and 
more consistency is observed under larger sample sizes. In contrast, the Delta method has a 
clear bias towards smaller values than those from the permutation method, particularly for those 
small p-values and under small sample sizes (Fig. 1C). Surprisingly, although the improved 
Delta method has no evident directional bias, the accuracy is very low. For example, as shown 
in (Fig. 1C), the difference between the improved Delta method and the permutation can 
be >0.3 for many p-values. These results suggest that DICOSAR shares almost the same 
performance as the permutation method in all these scenarios, including a sample size as small 
as 25 per group, demonstrating the remarkable accuracy by using the multivariate saddlepoint 
approximation and the higher-order approximation for the signed root of the likelihood ratio 
statistic and thus the robustness against the violation of the normality assumption. On the other 
hand, the control of type I error rate becomes tough if the data have skewness, heavy tails, a 
high PCC and small sample size concurrently. 
 
We further examined the accuracy of DICOSAR for approximating the null distribution in the 
extreme tails (i.e., more significant p-values). The accuracy in the extreme tails is of primary 
interest in large-scale applications because resampling methods are computationally intensive 
for estimating significant p-values. Specifically, we investigated the performance of controlling 
the type I errors at the significance level of 0.1%. The results in Fig. S2 show that DICOSAR 
controls the type I error rate below its theoretical value of 0.1%. DICOSAR is more conservative 
than the permutation, particularly when the sample size is small. However, DICOSAR achieves 
better control of the type I error rate than the permutation under the setting of PCC=0.8, in 
which the permutation shows substantially inflated type I errors under the gamma distribution 
and the t-distribution.          

Evaluation of empirical statistical power for detecting differential 
correlation   
Given the robust performance of DICOSAR in controlling the type I errors, we then assess the 
empirical statistical power for detecting differential correlations. We considered various settings 
including sample sizes ranging from 25 to 400 samples per group, and different PCCs (small, 
medium, large). We first investigated a situation in which both variables were generated from 
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bivariate normal distributions. We observe that the empirical power heavily depends on the 
PCCs in the two groups. If the two PCCs are large, 100 samples per group can achieve ~80% 
power for detecting a difference of 0.2 between the correlations (PCC=0.8 vs. 0.6) (Fig. 2A). In 
contrast, when the PCCs in both groups are small or moderate, ~400 samples per group are 
needed to achieve >80% power for detecting such a difference (Fig. 2A). In the context of gene 
co-expression analysis, this observation suggests that much fewer samples are needed to 
detect differential correlations for highly co-expressed genes than uncorrelated genes, which is 
desirable because highly co-expressed genes in a network or pathway are often of major 
interest. Nevertheless, for detecting a very small difference (0.05) of correlations, it still requires 
a very large number of samples (>400) even in the case of high PCCs. We then examined a 
situation in which the two variables were from a linear transformation of independent gamma-
distributed variables. The empirical power in this situation is comparable to that in the case of 
normal distribution when the PCCs in the two groups are small or moderate. However, the 
power is substantially reduced when the PCCs are large, compared to the bivariate normal 
distributions (Fig. 2B). 

Global test for multiple differential correlations   
We next examined the empirical type I error rate of the global test for multiple differential 
correlations. We focused on an application to test the equality of two 4 � 4 correlation matrices 
by combining the evidence from all 4�4 � 1�/2 single elements in the correlation matrices using 
statistic (9). We considered various sample sizes per group, ranging from 25 to 200, and 4=10 
and 50 to cover both low-dimensional and high-dimensional data. In each of these scenarios, 
we evaluated three correlation patterns, including (i) a mutual independence structure, (ii) an 
autoregressive correlation structure in which the correlation decays exponentially with the lag, 
(iii) a correlation matrix in which every pair of two variables share the same PCC. In the third 
pattern, we considered the PCC being 0.3 and 0.6 for moderate and high correlations, 
respectively. The simulated data were generated from a multivariate normal distribution. The 
empirical type I error rate was evaluated at the significance level of 5% and estimated from 
1000 random replicates. Fig. 3 shows that the type I error rate was controlled below its 
theoretical threshold in most scenarios. We observe a deflation of type I errors when the sample 
size is small (≤50). The higher dimension of the correlation matrices also led to more 
conservative p-values. We observe that statistic (9) deviates the standard Cauchy distribution 
when the correlations in the matrices are strong (Fig. S3) although the tail probability is little 
affected (Fig. 3). Overall, these results indicate that the global test can control the type I error 
rate but might suffer from some power loss under a small sample size. 

Detecting differential co-expression using DICOSAR   
To investigate the performance of DICOSAR in real data analysis, we applied DICOSAR to 
differential co-expression analysis of bulk RNA-seq and snRNA-seq data in the human frontal 
cortex. We focus on identifying genes that show differential co-expression with APOE between 
control and AD groups because APOE is the top risk factor of AD and expresses abundantly in 
multiple neural cell types. We used the PCC of normalized expression to measure the co-
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expression between two genes, and therefore detecting differential co-expression amounts to 
testing the equality of the PCCs between the two groups. In the first analysis, we tested the 
equality of correlations between the normalized expression of APOE and that of each of the 
23,535 genes in a bulk RNA-seq data set comprising 482 samples in ROSMAP. The top gene 
SERPINA5 had a p-value of 7.9E-05. Fig. 4B shows that more genes had a larger co-
expression with APOE in the AD group. Genes whose expression are highly correlated with 
APOE  generally showed less differential co-expression between the groups (i.e., most light 
blue points in the plot are concentrated in the middle in Fig. 4B). We found no significant 
differential co-expressed genes after the multiple testing correction based on either 5% 
familywise error rate using Bonferroni correction or 5% false discovery rate using the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995). However, the upward trend in the lower 
part of the p-value distribution suggests that a large number of genes may be differentially co-
expressed with APOE between the two groups (Fig. 4A). The lack of significant findings can 
result from the limited sample size because a large sample size is required for a decent 
statistical power as shown in our simulation study (Fig. 2). The p-values from DICOSAR are 
highly consistent (PCC=0.998) with those from the pooled residual permutation performed on 
the same data set (Fig. 4C).  
 
In the second analysis, we performed a similar differential co-expression analysis for 16,572 
genes (after removing very low-expression genes) in astrocytes for APOE using a snRNA-seq 
data set in ROSMAP comprising 48 samples. We observed a flat p-value distribution and a 
marked dip at the lower end of the distribution of the p-values (Fig. 4D). This is consistent with 
the deflation of empirical type I error rate observed under the small sample size of 25 in the 
simulation study, leading to a lack of power to detect very significant differential correlations. 
The p-values between DICOSAR and the pooled residual permutation are still consistent 
(PCC=0.991) (Fig. 4E) but to a lesser degree that that seen in the bulk data. This is probably 
due to the much smaller sample size and the fact that the snRNA-seq data set is sparser than 
the bulk data set and the distribution of most genes has larger skewness.   

DICOSAR is computationally efficient    
After demonstrating its robust statistical performance, we finally evaluated the computational 
efficiency of DICOSAR. We compared DICOSAR with the pooled residual permutation methods, 
with 500 and 5000 replicates, respectively. We benchmarked their computational time for testing 
the equality of the PCCs between two groups of a sample size ranging from 25 to 800. The 
computational time of DICOSAR for a single test for equal PCCs is comparable to that of the 
permutation with 500 replicates and is ~10-fold faster than that of permutation with 5000 
replicates (Fig. 5). The computational burden of DICOSAR increases at the same rate as the 
permutation with the increasing sample size.   

Discussion 
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In this work, we developed DICOSAR, a robust method for a two-sample test for the equality of 
PCCs. The major advantages of the proposed method include its accuracy under a small 
sample size, its robustness against the violation of the normality assumption upon the tested 
variables and its computational efficiency in large-scale studies since it does not depend on a 
resampling method. Our simulation study demonstrates that DICOSAR is comparable to the 
permutation and controls the type I error rate substantially better than the Delta method and the 
separate bootstrap method. This is not surprising that the Delta method performs the worst 
among these methods because it assumes that both the summary statistics and the test statistic 
follow normal distributions, and such an assumption does not hold if the sample size is small 
and either variable is not from a normal distribution. In contrast, the separate bootstrap method 
only assumes that the test statistic follows a normal distribution, which is less restrictive than the 
Delta method. Nevertheless, under a small sample size, the z-transformation does not follow a 
normal distribution generally, and this is the reason for the better performance of DICOSAR 
than the separate bootstrap. The simulation results also suggest that, compared to the simple 
approximation (8), the improvement of the higher-order approximation (6) is impressive 
particularly for small sample sizes.  
 
The co-expression analyses of APOE using the bulk RNA-seq data does not identify a 
significant gene although we did observe a deviation of the p-value distribution from the null 
distribution. One reason can be that the tests are correlated rather than independent. Because 
the expression levels of many genes, e.g., cell-type marker genes, are strongly correlated with 
each other at the bulk tissue level, the actual number of tests are much lower and thus the 
general Bonferroni correction or the Benjamini-Hochberg procedure (Benjamini and Hochberg, 
1995) might be too conservative. Another reason is that this sample size is probably not enough 
to achieve more significant p-values because of its limited statistical power. As shown in the 
simulation study, detecting differential correlation requires a large sample size to achieve a 
decent statistical power. Another approach for detecting differential co-expression is to use a 
regression model, e.g., NEBULA (He et al., 2021), with an interaction term between the 
expression and the group. Nevertheless, an interaction model often requires a large sample size 
as well.  
 
The algorithm of DICOSAR can be expanded in multiple ways to handle more complicated 
situations. In the current work, we only consider a two-sample test in DICOSAR. An extension to 
a multi-sample test is possible by modifying the test statistic to aggregate the evidence from 

more than two groups. For example, the sum of squared differences ∑ ;��� � ���<�
�'�  can be such 

a statistic. In addition, the pooled residual bootstrap is adopted in DICOSAR as the distribution 
approximated by the multivariate saddlepoint method. As aforementioned, despite being able to 
better control the type I error rate and borrow information from both groups, this strategy 
assumes that the two groups share higher moments or at least the joint fourth moments 
asymptotically. This is because the variance of the estimate of the second moments 
asymptotically depends on the fourth moments as shown in (Zhang and Boos, 1992, 1993). The 
simulation results show that a deviation of this assumption can lead to some inflation of type I 
error rate. This means that a rejection can result from either the heterogeneity of the correlation 
matrices or higher moments of the distributions between the two groups. If the rejection due to 
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the latter is a major concern, a separate residual bootstrap scheme proposed in (Yang and 
DeGruttola, 2012; Zhang and Boos, 1993) can be used, which relax the assumption of the 
shared fourth moments. Extension of DICOSAR to this separate bootstrap scheme is 
straightforward by applying the saddlepoint approximation to the conditional distribution of the 
transformed residuals in each group separately.  
 
In summary, DICOSAR is an accurate and robust statistical method for detecting differential 
correlation and provides a fast alternative to the permutation method. It can also be used for 
testing differential correlation matrices. DICOSAR provides an analytical approach to facilitate 
such analyses at a large scale.  
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Figures 
 
Figure 1: Performance of DICOSAR in controlling the false positive rate for testing the equality 
of PCCs between two groups. (A) & (B) Empirical type I error rate of six methods at the 
significance level of 5%. The data are generated from (A) a bivariate normal distribution (B) a 
linear transformation of independent gamma-distributed variables. Delta: the Delta method; 
iDelta: the improved Delta method; Boot: the bootstrap method; Perm: the pooled residual 
permutation; DICOSAR (simplified): a simplified version of DICOSAR using the approximation 
(8) instead of (6). N: sample size of each group. (C) Comparison of the p-values estimated by 
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the pooled residual permutation with those estimated by DICOSAR, the Delta method, and the 
improved Delta method.  

 
 
Figure 2. Empirical statistical power of DICOSAR for detecting differential correlation. The data 
are generated from (A) a bivariate normal distribution (B) a linear transformation of independent nt 
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gamma-distributed variables. N: sample size of each group. Difference: the difference of PCCs 
between the two groups. One group has the PCC shown on the top of the panel, and the other 
has this PCC minus the difference.   

 
Figure 3. Performance of DICOSAR in controlling the type I error rate for testing the equality of 
two correlation matrices. Empirical type I error rate is evaluated at the significance level of 5%. 
The data are generated from a multivariate normal distribution. Dimension (K): the dimension of 
the correlation matrices. ρ: the value of the off-diagonal elements of the correlation matrices. 
 

 

of 
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Figure 4. Performance of DICOSAR in the real data differential co-expression analysis. (A)-(C): 
(A) The p-value distribution, (B) the difference of the PCCs between the AD and control groups 
(PCC in AD – PCC in control) versus the minus logarithm of the p-values, and (C) a comparison 
of the p-values estimated by the pooled residual permutation with those estimated by DICOSAR 
from the differential co-expression analysis of APOE with the 482-sample bulk RNA-seq data in 
ROSMAP. Abs (Ave PCC): the absolute value of the average PCC of the two groups. (D) & (E): 
(A) The p-value distribution and (B) a comparison of the p-values estimated by the pooled 
residual permutation with those estimated by DICOSAR from the differential co-expression 
analysis of APOE with the 48-sample snRNA-seq RNA-seq data in ROSMAP. 
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Figure 5. The computational time of DICOSAR for a single test for the equality of the PCCs of a 
pair of variables between two groups and its comparison with that of the permutation methods. 
The benchmark is computed based on the average computational time across 20 randomly 
generated data sets. Perm (500) & Perm (5000): the pooled residual permutation method with 
500 and 5000 replicates, respectively.  
 

 
 

Supplementary figures 
 
Figure S1: Empirical type I error rate of six methods at the significance level of 5% for testing 
the equality of PCCs between two groups. The data are generated from a linear transformation 
of independent variables from (A) a Student's t-distribution with 6 d.f. and (B) a mixture of two 
normal distributions. Delta: the Delta method; iDelta: the improved Delta method; Boot: the 
bootstrap method; Perm: the pooled residual permutation; DICOSAR (simplified): a simplified 
version of DICOSAR using the approximation (8) instead of (6).  
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Figure S2: Empirical type I error rate of six methods at the significance level of 0.1% for testing 
the equality of PCCs between two groups. The data are generated from a linear transformation 
of independent variables from (A) a standard normal distribution, (B) a gamma distribution with 
the shape and rate equal to 1, (C) a Student's t-distribution with 6 d.f. and (D) a mixture of two 
normal distributions. Delta: the Delta method; iDelta: the improved Delta method; Boot: the 
bootstrap method; Perm: the pooled residual permutation; DICOSAR (simplified): a simplified 
version of DICOSAR using the approximation (8) instead of (6).  
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Figure S3. Distribution of p-values from the global test for the equality of two correlation 
matrices of different structures using the CCT. In each of the structures, 1000 p-values are 
computed under the null hypothesis. The dimension of the correlation matrices is 10.  
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