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Abstract: 

Visual systems are thought to have adapted to the statistical properties of natural scenes. However, 

the extent to which visual neurons respond selectively to natural images, and the stage at which 

that selectivity emerges remains unclear. To address these questions, we recorded the visual 

activity of neurons in macaque V1 using high-density electrode arrays (Neuropixels), and 

compared neuronal responses to images presented at three levels of naturalness. We found that 

within 60 ms of stimulus onset, neurons in all cortical layers, including input layers 4C alpha and 

beta, responded more vigorously to natural images than to statistically matched naturalistic texture 

and noise images. The result remained when residual variations in the local image statistics were 

factored out. V1 neurons also showed high population and lifetime sparseness for natural images. 

Across the population of V1 neurons, sensitivity to natural images exceeded the sensitivity to other 

image categories. The results reveal a rapid and pervasive preference for natural images is present 

at the earliest stages of cortical processing. 
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Introduction 

Neurons in the visual system are believed to have adapted to the statistical properties of the natural 

environment 1,2. Along the visual hierarchy, neurons in the primary visual cortex (V1) represent 

information about local edge elements such as their local orientation and spatial scale 3–6. This 

representation of local edge elements has long been thought to be subsequently combined to 

construct corners, junctions, and more extensive contours, eventually leading to shapes, forms, and 

objects in later stages along the ventral stream 7–10. Along this presumptive visual hierarchy, it is 

still unclear at which processing stage visual neurons become sensitive to the structure of natural 

images. 

 A fruitful approach to studying natural images processing has been to compare responses 

to synthetic images matched on various summary statistics to those of natural images 11–14. One of 

these synthetic image types comprises images that match the power spectrum of corresponding 

natural images, spectrum-matched noise images (SMNIs). These images preserve a low-level 

summary statistic of natural images – the power spectrum. A second type of synthetic image, 

naturalistic texture images (NTIs), additionally maintains several pair-wise correlations among the 

outputs of V1-like filters 15, capturing mid-level structure present in natural images. This latter 

approach was first used to study neuronal responses at the late stages of visual processing in 

macaque cortex where it was found that single neurons in V4 and IT show higher sensitivity to 

natural images than naturalistic textures 12,13,16.  Later work in V1 and V2 found that single V1 

neurons are insensitive to the pair-wise correlation structure present in NTIs, and that sensitivity 

to this mid-level structure first emerges in V2 11,14,17. A study in human visual cortex compared 

BOLD responses to SMNIs, NTIs, and natural images and found an orderly progression where 

selectivity to natural images emerged first in areas anterior to V3, such as V4, while selectivity to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.23.477422doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477422


 4 

natural textures emerged in V2 17,18, consistent with the single-neuron data in macaque. A 

parsimonious conclusion from the human study above is that selectivity to natural images is not 

present in V1.  

However, other studies using natural images have shown that V1 neurons exhibit high 

selectivity and response sparseness for natural images in primates, rodents and ferrets 19–23, 

including when compared to SMNIs 19–21. As different image sets, species and response metrics 

(e.g., mean firing rates vs spike count correlations) have been used in prior studies, the 

compatibility of these two lines of research remains unclear, and the selectivity of V1 neurons to 

natural images thus remains unresolved. Here we recorded the responses of approximately 622 V1 

neurons across the layers using high-density electrode arrays that were evoked by a large set of 

images containing three levels of naturalness: 300 natural images, 300 NTIs, and 300 SMNIs 

(Methods). We observed that V1 neurons responded more vigorously to natural images than to 

naturalistic texture and noise images within 60ms of stimulus onset. The result remained when 

variations in local image statistics were controlled by generalized linear regression models. This 

sensitivity to naturalistic images was robustly observed throughout all cortical layers, including 

neurons in input granular layer 4C alpha and beta. Moreover, on the population level, V1 neurons 

showed high population and lifetime sparseness, and were less synchronized with the overall 

population activity when responding to natural images, suggesting a more efficient coding 

strategy. Furthermore, neuronal ensembles exhibited higher discriminability for natural images. 

The results reveal a rapid and pervasive preference for natural images is present at the earliest 

processing stages of visual cortex. 
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Results 

We recorded the activity of single neurons in area V1 in 2 anesthetized monkeys using high-density, 

multi-contact Neuropixel probes (version 3A; IMEC Inc, Belgium) (Fig. 1a and b). In total, the 

activity of 622 isolated single neurons was recorded across the layers of V1 in 4 penetrations.  

 
 

Figure 1. Experimental setup and an example session. (a) An example recording session. 

Current source density analysis was used to identify cortical layers (left); thin lines indicate the 

borders of different cortical layers. Spike waveform voltage traces across cortical depth (middle). 

Average neuronal responses simultaneously recorded across layers to all images in one experiment 

session (right). (b) Visual receptive fields (RFs) reconstructed across layers in one example 

recording session. Different colors indicate RFs reconstructed in the identified laminar 

compartments. (c) Illustration of the stimulus presentation. Each image was presented for 200 ms 

followed by a 250-ms gray background. (d) Example natural images (left), naturalistic texture 

images (middle), and spectrum-matched noise images (right). 

 

For each recording, we estimated the borders of laminar compartments by combining the 

histological data with current-source density (CSD) measurements (Methods) (Fig. 1a). To assess 
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the sensitivity of V1 neurons to image naturalness, we compared neuronal responses to three sets 

of images that varied in their higher-order statistics, specifically natural images, naturalistic texture 

images (NTIs), and spectrum-matched noise images (SMNIs) (Methods) (Fig. 1c and d and 

Supplementary Fig. 1).  

 

V1 neurons respond more vigorously to natural images 

We first compared the magnitude of V1 responses to different levels of image naturalness. We 

found that V1 neurons responded more vigorously to natural images compared to synthetic images 

(Fig. 2a). First, we measured the entire neuronal response (40 - 200 ms from image onset) and 

calculated a modulation index to quantify response differences between different image types 

(Methods). Consistent with previous studies 11,14, we found no significant difference between the 

magnitude of responses to NTIs and to SMNIs ( 𝑀𝐼̅̅ ̅̅
𝑁𝑇𝐼_𝑆𝑀𝑁𝐼 =  1.47 ×  10−3, 𝑝 = 0.67, paired 

t-test). However, the neuronal responses to natural images were consistently larger than those to 

NTIs ( 𝑀𝐼̅̅ ̅̅
𝑁𝑎𝑡𝑢𝑟𝑎𝑙_𝑁𝑇𝐼 = 0.04 , 𝑝 < 10−31, t-test) and to SMNIs ( 𝑀𝐼̅̅ ̅̅

𝑁𝑎𝑡𝑢𝑟𝑎𝑙_𝑆𝑀𝑁𝐼 = 0.05 , 𝑝 <

10−42, paired t-test). The differences in response to natural images amounted to an ~11% increase 

above responses to synthetic images. This effect was reliably observed in both monkeys 

(Supplementary Fig. 2). Similar results were observed when we further divided neuronal responses 

into early (40 – 100ms) and late (100 – 200ms) response epochs.  There was no significant 

difference between the magnitude of responses to the two synthetic images in either the early 

( 𝑀𝐼̅̅ ̅̅
𝑁𝑇𝐼_𝑆𝑀𝑁𝐼 = 5.94 × 10−5 , 𝑝 = 0.99 , paired t-test) or late epochs ( 𝑀𝐼̅̅ ̅̅

𝑁𝑇𝐼_𝑆𝑀𝑁𝐼 = 4.31 ×

 10−3 , 𝑝 = 0.31, paired t-test). In contrast, natural image responses were greater than those of 

synthetic images in both the early ( 𝑀𝐼̅̅ ̅̅
𝑁𝑎𝑡𝑢𝑟𝑎𝑙_𝑁𝑇𝐼 = 0.05 , 𝑝 < 10−26 ;  𝑀𝐼̅̅ ̅̅

𝑁𝑎𝑡𝑢𝑟𝑎𝑙_𝑆𝑀𝑁𝐼 =

0.05 , 𝑝 <  10−30 , paired t-test) and late epochs  (  𝑀𝐼̅̅ ̅̅
𝑁𝑎𝑡𝑢𝑟𝑎𝑙_𝑁𝑇𝐼 = 0.04, 𝑝 <
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 10−19; 𝑀𝐼̅̅ ̅̅
𝑁𝑎𝑡𝑢𝑟𝑎𝑙_𝑆𝑀𝑁𝐼 = 0.04 , 𝑝 <  10−30, paired t-test) (Fig. 2b and c). We further examined 

the variance of neuronal responses to different levels of naturalness by calculating modulation 

indices for the Fano factor of neuronal responses. In contrast to the firing rate, we observed no 

significant differences in Fano factor between the image conditions (Fig. 2c). Thus, natural images 

elicited larger responses throughout early and late epochs, but responses exhibited similar 

variability. 

 

 

Figure 2. Neurons respond more vigorously to natural images than to synthetic images. (a) 

Mean responses of all simultaneously recorded neurons to different image categories: natural 

images (pink), NTIs (purple), and SMNIs (green). The thickness of lines indicates s.e.m.. across 

images within one category. Thick lines at the bottom indicate the time period when responses 

significantly differ (natural images vs NTIs: purple; natural images vs SMNIs: tiffany). The shaded 

areas indicate the early (gray), late (blue) and all (gray and blue) time epochs. (b) Histograms of 

modulation indices. The modulation index was computed separately for comparison between NTIs 

and SMNIs (left), natural images and NTIs (middle), and natural images and SMNI (right). (c) Bar 

plots summarize the firing rate modulation index (FR Modulation) and Fano factor modulation 

index (FF Modulation) during different response epochs. Asterisks denote significant differences 

between different conditions ( ∗∗∗∗p < 10−4).  
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A generalized linear model (GLM) control for local contrasts 

Although V1 neurons appeared to be selective for natural images, residual low-level factors might 

have contributed to the observed response differences. Specifically, we considered that differences 

in local RMS contrast and band-limited contrast (Fig. 3a) could potentially be a source of the 

enhanced responses to natural images. Although the three image sets are identical in several global 

image statistics, small differences in RMS contrast between natural and synthetic images (Fig. 3b) 

and in band-limited contrast between natural and the NTIs (Fig. 3c) may nonetheless persist.  

To control for the contribution of these residual image statistic differences, we developed 

a GLM that modeled the activity of individual neurons based on the variables that could affect 

activity, namely band-limited contrast, local RMS contrast, and image category (Methods). When 

 

 
 

Figure 3. Controlling the effects of local contrasts. (a) An example natural image, its local RMS 

contrast (middle) and band-limited contrast (right). (b) Differences of average RMS contrast 

between natural images and NTIs (left), and between natural and SMNIs (right). (c) Differences 

of average band-limited contrast between natural images and NTIs. (d) Bar plot summarizes the 

GLM coefficients for comparisons to NTIs and SMNIs during different time epochs. Asterisks 

denote significant differences between the natural image condition and the NTI and SMNI 

conditions (∗p < 0.05, ∗∗p < 10−2, ∗∗∗p < 10−3, and ∗∗∗∗p < 10−4). Error bars denote the s.e.m.. 
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RMS and band-limited contrasts were controlled for, we found that responses to natural images 

still differed from those to synthetic ones. GLM coefficients for image categories were 

significantly negative for both SMTIs and NTIs ( �̅�𝑁𝑇𝐼 = −0.09, 𝑝 < 10−59; �̅�𝑆𝑀𝑁𝐼 = −0.10,

𝑝 < 10−75, t-test) indicating larger responses to natural images. In addition, there were small, but 

significant, differences between the NTI and SMNI coefficients (�̅�𝑁𝑇𝐼 = −0.09,  �̅�𝑆𝑀𝑁𝐼 = −0.10,

𝑝 < 10−3, paired t-test) indicating that the preference for natural images was larger for the SMNIs. 

Similar results were observed for both early (40 – 100ms) (�̅�𝑁𝑇𝐼 = −0.12, 𝑝 < 10−51; �̅�𝑆𝑀𝑁𝐼 =

−0.14, 𝑝 < 10−53 , t-test) and late response epochs (100 – 200ms) ( �̅�𝑁𝑇𝐼 = −0.07, 𝑝 <

10−30; �̅�𝑆𝑀𝑁𝐼 = −0.08, 𝑝 < 10−49 , , t-test) (Fig. 3d and c). Moreover, the early responses 

exhibited a greater preference for natural images than the later ones (NTI: �̅�𝑒𝑎𝑟𝑙𝑦 =

−0.12,  �̅�𝑙𝑎𝑡𝑒 = −0.07, 𝑝 < 10−15; SMNI: �̅�𝑒𝑎𝑟𝑙𝑦 = −0.14,  �̅�𝑙𝑎𝑡𝑒 = −0.08, 𝑝 < 10−12 , paired 

t-test) suggesting that the natural image selectivity is present at the earliest stages of processing 

within V1.  

 

 Selectivity to natural images throughout cortical layers 

To further explore the possible origins of the preference for natural images, we next examined the 

spatiotemporal pattern of sensitivity to natural images across different cortical layers. We 

considered that if the sensitivity to naturalness in V1 originates from feedback from later visual 

cortical stages, e.g., V2, then we should observe stronger and earlier developing sensitivity within 

supragranular and infragranular layers, with weaker and slower developing sensitivity within 

granular layer 4C 14,24,25. Using the simultaneously recorded activity, we compared the sensitivity 

to natural images for neurons distributed across laminar compartments (Fig. 4a). We found that 

selectivity to natural images was present across all layer compartments in V1. Neurons in all 
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cortical layers, including input layer 4C, responded more vigorously to natural images than to 

synthetic ones. We calculated the GLM coefficients for neurons in each laminar compartment in 

both early and late epochs (Fig. 4b). GLM coefficients revealed a significant preference for natural 

images across all layers when compared to NTIs in both early and late epochs (early: �̅�5,6 =

−0.11, 𝑝 < 10−8; �̅�4𝐶 = −0.12, 𝑝 < 10−39;  �̅�4𝐴.𝐵 = −0.08, 𝑝 < 10−8; �̅�2,3 = −0.11, 𝑝 <

10−16;  late: �̅�5,6 = −0.08, 𝑝 < 10−4; �̅�4𝐶 = −0.09, 𝑝 < 10−22;  �̅�4𝐴.𝐵 = −0.02, 𝑝 <

0.05; �̅�2,3 = −0.11, 𝑝 < 10−12, t-test), and  when compared to SMNIs (early: �̅�5,6 = −0.11,

𝑝 < 10−9; �̅�4𝐶 = −0.11, 𝑝 < 10−37;  �̅�4𝐴.𝐵 = −0.12, 𝑝 < 10−12; �̅�2,3 = −0.12, 𝑝 < 10−19 ; 

late: �̅�5,6 = −0.08, 𝑝 < 10−5; �̅�4𝐶 = −0.08, 𝑝 < 10−22;  �̅�4𝐴.𝐵 = −0.06, 𝑝 < 10−8; �̅�2,3 =

−0.11, 𝑝 < 10−13, t-test). In addition, neurons recorded within the white matter showed a similar 

effect (early: �̅�𝑁𝑇𝐼 = 0.08, 𝑝 < 10−4 ; �̅�𝑁𝑇𝐼 = 0.10, 𝑝 < 10−5 ; late:  �̅�𝑁𝑇𝐼 = 0.06, 𝑝 < 10−3 ; 

�̅�𝑁𝑇𝐼 = 0.10, 𝑝 < 10−5, t-test).  To examine the time course of sensitivity across layers, we 

calculated GLM coefficients across the full response time window (Methods). These coefficients 

revealed significant sensitivity within ~60 ms of stimulus onset across layers for both NTIs and 

SMNI (Fig. 4c). Moreover, the largest proportion of neurons with an earlier onset times resided in 

Layers 4A/B and 4C, a difference that was greater than that of Layer 2-3 for both NTIs (Layer 

4A/B: 𝑝 = 0.08; Layer 4C: 𝑝 = 0.03, K-S test) and SMNIs (Layer 4A/B: 𝑝 < 10-5; Layer 4C: 𝑝 < 

10-3, K-S test) (Fig. 4d). We further subdivided Layer 4C into L4C𝛼 and L4C𝛽 to examine the 

difference between the 2 input sublaminae (Methods) and found that a similar pattern of similar 

pattern of sensitivity was observed in both L4C𝛼 and L4C𝛽 (Supplementary Fig. 3).  Thus, the 

preference for natural images emerged early in V1 and to a greater extent within input layers. 

In addition, we examined the time course of GLM coefficients for local contrast 

modulation and band-limited contrast. As we discretized the band-limited contrast into sectors  
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Figure 4. Sensitivity to natural images across cortical layers. (a) Average neuronal responses 

simultaneously recorded across layers for Natural images (left), NTIs (middle), and SMNIs (right) 

in a representative recording session. (b) Bar plots summarize the GLM coefficients for 

comparisons of natural image responses to NTIs and SMNIs across cortical layers. (c) Average 

GLM coefficients for comparisons to NTI images (left) and SMNI images (right) as a function of 

time, separated by different cortical layers. Shading around the lines indicates the s.e.m. of GLM 

coefficients across neurons. (d) Percentage of Neurons with significant GLM coefficients for 

comparisons to NTI images (left) and SMNI images (right), separated by different cortical 

layers. (e) Average GLM coefficients for local contrast (left) and orientation (right) as a function 

of time, separated by different cortical layers. (f) Percentage of Neurons with significant GLM 

coefficients for local contrast (left) and orientation (right). 
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based on orientations (Methods), sensitivity to band-limited contrast represents orientation 

sensitivity. Given that we expect that contrast and orientation sensitivity in V1 are not driven by a 

feedback modulation from higher visual areas, we could compare the time course of contrast and 

orientation sensitivity to that of sensitivity to image naturalness. Both local contrast and orientation 

sensitivity showed similar temporal profiles (Fig. 4e and f). Specifically, the coefficients revealed 

significant sensitivity within 50-60 ms of stimulus onset across layers for both contrast and 

orientation. In addition, Layer 4A/B showed an earlier sensitivity to local contrast and orientation 

than both Layer 2-3 (local contrast: 𝑝  < 10-2; orientation: 𝑝  < 10-4, K-S test) and Layer 5-6 (local 

contrast: 𝑝  = 0.05; orientation: 𝑝  = 0.04, K-S test). Moreover, the input Layer 4C also showed an 

earlier sensitivity to local contrast and orientation than Layer 2-3 (local contrast: 𝑝  < 10-2; 

orientation: 𝑝 < 10-2, K-S test) and but not Layer 5-6 (local contrast: 𝑝  = 0.07; orientation: 𝑝  = 

0.06, K-S test). Thus, as with contrast and orientation, natural image selectivity emerges earliest 

within the input layers of V1. 

 

Sparse coding of natural images 

After quantifying natural image selectivity for individual neurons in V1, we examined the response 

to forms of response sparseness: lifetime sparseness and population sparseness 26. Lifetime 

sparseness quantifies how sparsely a single neuron responds to different images 27. Consistent with 

previous studies in cats 28,29, rodents 21,30, ferrets 31,32 and primates 22,23,33, we observed that single 

neurons in V1 respond more selectively to natural images compared to synthetic images. For a 

given number of images, significantly more response variance is explained by natural images than 

by synthetic images (Fig. 5a and Supplementary Fig. 4a). Fewer images are needed to capture 80% 

of the response variance with natural images than with synthetic images ( 𝑝𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑣𝑠 𝑁𝑇𝐼𝑠 <
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10−95; 𝑝𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑣𝑠 𝑆𝑃𝑁𝐼𝑠 < 10−107, paired t-test) (Methods). This result indicates that V1 neurons 

tend to respond individually to a more specific set of natural images than they do to synthetic 

images.  

 

 
 

Figure 5. Sparseness and population synchrony. (a) Lifetime sparseness: Differences in 

cumulative variance explained by different numbers of images. Scatter plots compare the number 

of images needed to capture 80% of the response variance for natural images and synthetic images. 

Left, comparison between natural images and NTI. Right, comparison between natural images and 

SMNI. The gray lines represent the difference in cumulative variance when the labels for different 

image sets were shuffled (N = 1000). The thickness of lines indicates s.e.m.. (b) Population 

sparseness: Differences in cumulative variance explained by different numbers of neurons. Scatter 

plots compare the number of neurons needed to capture 80% of the response variance for natural 

images and synthetic images. Left, comparison between natural images and NTI. Same 

conventions as (a). (c). A representative spike time cross-correlation between a single neuron and 

the population response for natural images (Nature, red), synthetic texture images (NTI, purple), 

and spectrally matched noise images (SMNI, green).  (d). The bar graph shows the average peak 

magnitude of cross-correlogram for different image categories. Asterisks denote significant 

differences between different conditions (∗∗∗∗, p < 10−4). Error bars denote the s.e.m. 

 

Next, we examined the population sensitivity to different levels of naturalness. Previous 

studies in cats 29, rodents 21,30, ferrets 32, and primates 22 have shown that, within a population, only 
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a small subset of the V1 neurons within the recorded actively encode a given natural image. These 

results shows that V1 neurons respond sparsely to natural images and thus show population 

sparseness. In this study, we quantified the population sparseness of the V1 neurons in our high-

density recordings by computing the cumulative variance as a function of the number of neurons. 

We observed that, for a given number of neurons, significantly more response variance is 

explained with natural images than with synthetic images (Fig. 5b and Supplementary Fig. 4a). 

Consequently, we observed that fewer neurons are needed to capture 80% of the total variance of 

the recorded neurons ( 𝑝𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑣𝑠 𝑁𝑇𝐼𝑠 < 10−127; 𝑝𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑣𝑠 𝑆𝑃𝑁𝐼𝑠 <  10−80 , paired t-test) 

(Methods) (Fig. 5b and Supplementary Fig. 4b). This result suggests that fewer neurons are driven 

by a given stimulus in the natural image set than a stimulus in the synthetic image sets.  

 We also asked whether the population sparseness of natural image responses extends to a 

finer temporal domain. Specifically, we tested whether different image sets exhibited different 

patterns of population synchrony. To measure population synchrony, we computed the ‘coupling’, 

the spike time correlation between individual V1 neurons and the simultaneously measured 

population activity within the column 34. To control for differences in the magnitude of responses 

to different image categories, we mean-matched the neuronal response across image conditions. 

We further used a jittered correlation method to compute spike-count correlations between 

individual neuronal responses and population responses (Methods).  Although the time lag of 

population coupling was similar across image types (Supplementary Fig. 5a), we found that the 

strength of the population coupling was inversely related to the level of naturalness (Fig. 5c and 

Supplementary Fig. 5b). Thus, in this finer temporal domain, our result shows that individual V1 

neurons were less synchronized with the local neuronal population when responding to natural 
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images, (Fig. 5d) (Natual vs NTI: 𝑝 < 10-22; Natural vs SMNI: 𝑝 < 10-34; NTI vs SMNI: 𝑝 < 10-4, 

paired t-test).  

 

Robust population representation of natural images 

Next, we tested whether the differential responses to image naturalness resulted in greater 

discriminability among natural images. We computed discriminability indices (𝑑′) from the 

evoked responses of all the neurons to all image pairs within each image set 35,36. Discriminability 

is related to the Fisher information that the population ensemble provides about stimulus identity 

35–37.  To enable us to determine 𝑑′ accurately and reduce the noise of the measurement, we 

 

Figure 6. Population representations of different image sets. (a). Population discriminability 

matrix for two pairs of images in different image sets. The brown dots show a representative image 

pair in the natural image set (left) and its corresponding image pair in the NTI set (middle) and 

SMNI set (right).  (b). Population discriminability (d’) for between Natural images and NTIs (left) 

and between Natural images and SMNIs. (c). Image decoding performance for different image 

categories as a function of population size. The thickness of lines indicates s.e.m.. 
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performed a dimensionality reduction by using PCA on the averaged firing rates for each image, 

within image category. We then identified and retained only ten population vector dimensions in 

which the image-responses were highly distinguishable. This analysis was done separately for 

neuronal responses to the different image categories. For each image category,  𝑑′ was sorted so 

that the largest 𝑑′was plotted in the top-left quadrant and the smallest 𝑑′was plotted in the bottom-

right quadrant (Fig. 6a). In this reduced dimension representation, the population code for natural 

images had the largest mean 𝑑′  (𝑑′
𝑛𝑎𝑡𝑢𝑟𝑎𝑙

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 5.19). Therefore, the representations of natural 

images had the highest discriminability between all image pairs compared to those of synthetic 

images (Fig. 6b). Like the results observed in the first ten PCs, the population code for natural 

images has the largest mean 𝑑′ across all first ten PC dimensions (Supplementary Fig. 6). In 

addition, there was a small but significant difference between NTIs and SMNIs (𝑑′
𝑁𝑇𝐼

̅̅ ̅̅ ̅̅ ̅ = 4.64, 

𝑑′
𝑆𝑀𝑁𝐼

̅̅ ̅̅ ̅̅ ̅̅ ̅ = 4.60, p < 10−2, paired t-test). 

 We further tested the fidelity of population coding for the different sets of images using 

image classifiers. We found that a simple nearest-neighbor decoder, trained on half of the trials 

and tested on the other (Methods), was able to identify the stimulus within the image set with up 

to 17% classification accuracy, compared to a chance level of 0.3%. We then assessed the decoding 

performance as a function of the number of neurons. Across different population sizes, classifiers 

consistently exhibited the highest performance for natural images and lowest for SMNIs (Fig. 6c). 

In addition, we observed that, for the natural image condition, the decoding accuracy did not 

saturate at a population size of 600. This is consistent with a population sparse coding strategy in 

which fewer neurons are driven by a given stimulus in the natural image set than a stimulus in the 

other image sets. Therefore, performance would further improve with an even larger number of 

neurons.  
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Discussion 

We found that single V1 neurons responded more vigorously to natural images than to naturalistic 

textures and spectrum-matched noise images. This sensitivity to natural images was observed 

throughout all cortical layers in V1, including neurons in input granular layers 4C alpha and beta. 

In addition, V1 neurons also showed high lifetime and population sparseness for natural images 

and population synchrony. Lastly, for population coding, the neuronal population exhibited higher 

discriminability for natural images. Taken together, our results demonstrate a rapid and pervasive 

sensitivity to natural images is present at the earliest stages of cortical processing. Below, we 

discuss the significance and limitations of our observations in three different aspects. 

 

Relationship to previous studies 

Our results integrate two lines of work on natural image representation in V1 in the same 

experiments. On the one hand, consistent with previous studies on natural texture images 14,17,18, 

our results show that single V1 neurons does not show significant selectivity to naturalistic textures. 

Specifically, V1 neurons do not show response differences between naturalistic textures and 

spectrum-matched noise images even with a large population of simultaneously recorded V1 

neurons. In addition, the results expand on this previous observation by showing that V1 neurons 

are not only insensitive to naturalistic textures generated from natural texture images 14,17,18, but 

also to those generated from natural images. However, it would be presumptuous to conclude that 

V1 neurons are insensitive to any natural image statistics based on their insensitivity to natural 

textures. Perhaps, in agreement with other studies that compare neuronal responses to natural and 

SMNIs 19–23, our results show that V1 neurons indeed exhibit a robust preference for natural images 

to SMNIs. In addition, our results reveal a pervasive coding preference for natural images 
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compared to NTIs, both in terms of the involvement of neurons across layers and in terms of the 

response magnitude. Our experiment integrates two lines of experimental paradigms by testing all 

three sets of images with different naturalness levels using large scale neuronal recordings in the 

same animals and by quantifying the neuronal response toward different image sets with the same 

metrics. Our results support both results and show that V1 neurons are sensitive to the high order 

image statistics that differ between natural images and NTIs, however, are insensitive the mid-

level image statistics that differ between the NTIs and SMNIs.  

 

Computational benefits of sparseness  

A sparse coding strategy refers to the encoding of sensory information using only a small number 

of active neurons at any point in time 26, and it comes in two forms 27: lifetime sparseness and 

population sparseness. Lifetime sparseness describes the activity of a single neuron over time, and 

population sparseness describes the activity of a population of neurons for a given time window. 

Previous theoretical, computational, and experimental studies suggested at least four reasons 

supporting sparse representations as a model of sensory signaling. First, they are useful for storing 

patterns in memory as they can avoid cross-talk 38, and facilitate learning associations in neural 

networks using local learning rules 39. Second, they form neural representations with higher 

degrees of specificity, making the structure in natural sensory input explicit 40. Third, they produce 

a simple flattened representation of the otherwise curved manifold structure of data, and 

consequently it is easier to read out at subsequent levels of processing 41,42. Fourth, they are energy 

efficient 43,44. A ubiquitous property of primary sensory cortical areas is that they overrepresent 

their sensory inputs many times over compared to their thalamic input. Experimental evidence for 

sparse coding has been found in several different sensory cortices, including visual cortex 21–
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23,28,30,31, auditory cortex 45,46, olfactory cortex 47,48, the primary somatosensory cortex 49,50, and 

others. Theoretical studies suggest that V1 neurons are at least 200 times more abundant than their 

thalamic input. As a result, V1 neurons could be highly specialized in their feature selectivity and 

thus highly sparse in their population responses 51,52. Consistent with these studies, our results 

demonstrate for a given number of images, significantly more response variance was explained by 

natural images than synthetic images, which suggests a higher lifetime sparseness in the coding of 

natural images by V1 neurons. In addition, for a given number of neurons, significantly more 

response variance was explained with natural images than with synthetic images, which suggests 

population sparseness. Moreover, on a finer time scale, V1 neurons were less synchronized with 

the overall population, which may be consistent with greater sparseness in V1 responses to natural 

images. Lastly, our results also show that natural images were reliably represented despite the fact 

that the encoding of natural images utilized a relatively small number of highly active neurons at 

any point in time.  

 

Origins of early sensitivity to natural images 

We observed a short latency sensitivity to natural images among V1 neurons; sensitivity emerged 

within 60 ms. The short latency preference for natural images could perhaps arise de novo within 

the earliest stages of V1 processing. Alternatively, V1 neurons might inherit a natural image bias 

from the retina or dLGN. Previous work demonstrates that retinal ganglion cells are biased toward 

the coding of contrast decrements, as opposed to increments, reflecting a dark bias in the pixel 

distribution of natural images 53. Similarly, V1 neurons have non-uniformities in their 

representation of cardinal orientations in ferret and cat 54,54,55, which matches a known 

characteristic of natural images 56. We hypothesize that the sensitivity that we observed in V1 may 
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result from the adaptation to the high order statistical features of the natural visual environment. 

Future research will be needed to address what specific high order statistical features within natural 

images drive the neuronal coding preference toward natural images in V1. 

In addition, previous studies show that natural images can be reconstructed by the 

population activity of dLGN neurons 57,58 and retinal ganglion cells 59–62. Specifically, two recent 

studies suggested that natural image statistics can be used as a prior to improve image estimates in 

reconstruction methods using retinal neurons 60,61, similar to what has been found in visual cortex 

63. Nevertheless, it is still unknown if neurons in the primate retina or dLGN show stronger 

response to natural images compared to low- and mid-level image statistics matched synthetic 

images. Future work will be needed to establish the source of the natural image selectivity we 

observed in V1.  
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Methods  

Subjects 

All experimental procedures were in accordance with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals, the Society for Neuroscience Guidelines and Policies, 

and Stanford University Animal Care and Use Committee policies. Anesthetized recordings were 

conducted in two adult male macaques (13kg and 8kg). The number of animals used is typical for 

primate neurophysiological experiments. In order to allow for neurophysiological recordings, both 

monkeys were surgically prepared with head restraint recording chambers 

under isoflurane anesthesia. Analgesics were used to minimize discomfort. After recovery, 

anesthetized recordings were subsequently conducted.  

 

Visual stimulation generation and presentation 

We used a large set of images that varied in their higher-order statistics. These images included 

300 natural images (NA) (CIFAR-10), 300 naturalistic texture images (NTIs), and 300 spectrum-

matched noise images (SMNIs). For each natural image, the corresponding synthetic natural 

texture image was generated by an iterative optimization procedure that matched the texture 

structure in the original natural images15,18. The spectral matched noise image was generated by 

randomizing the phase, but matching the two-dimensional (2D) power spectrum. As a result, 

images in each triplet were identical in their mean luminance, pixel standard deviations, and root 

mean square (RMS) contrasts (Supplementary Fig. 1).  

Visual stimuli were presented on a LCD monitor NEC-4010 (Dimensions= 88.5 (H)* 49.7 

(V) cm, pixels=1360 * 768, frame rate= 60 Hz) positioned 114 cm from the monkey. Each image 

was 2 dva × 2 dva and was presented ten times in a pseudorandom order at the population RF 
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location. In each trial, an image was presented was presented for 0.2s, followed by an 0.25 sec 

equal luminance blank screen inter-trial interval. Neuronal responses were measured during 9000 

trials, with 10 trials per image, during each recording.  

 

Electrophysiological recordings 

Prior to each recording session, treatment with dexamethasone phosphate (2 mg per 24 h) was 

instituted for 24 hours to reduce cerebral edema. After administration of ketamine HCl (10 mg per 

kilogram body weight, intramuscularly), monkeys were ventilated with 0.5% isoflurane in a 1:1 

mixture of N2O and O2 to maintain general anesthesia. Electrocardiogram, respiratory rate, body 

temperature, blood oxygenation, end-tidal CO2, urine output and inspired/expired concentrations 

of anesthetic gases were monitored continuously. Normal saline was given intravenously at a 

variable rate to maintain adequate urine output. After a cycloplegic agent was administered, the 

eyes were focused with contact lenses on a CRT monitor. Vecuronium bromide (60 μg/kg/h) was 

infused to prevent eye movements. 

With the anesthetized monkey in the stereotaxic frame, an occipital craniotomy was 

performed over the opercular surface of V1. The dura was reflected to expose a small (~3 mm2) 

patch of cortex. Next, a region relatively devoid of large surface vessels was selected for 

implantation, and the Neuropixels probe was inserted with the aid of a surgical microscope. Given 

the width of the probe (70 um x 20 um), insertion of it into the cortex sometimes required multiple 

attempts if it flexed upon contacting the pia. The junction of the probe tip and the pia could be 

visualized via the (Zeiss) surgical scope and the relaxation of pia dimpling was used to indicate 

penetration, after which the probe was lowered at least 3-4 mm.  Prior to probe insertion, it was 
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dipped in a solution of the DiI derivative FM1-43FX (Molecular Probes, Inc) for subsequent 

histological visualization of the electrode track. 

Each probe consisted of 986 contacts distributed across 10 mm, of which 384 contacts 

could be simultaneously selected for recording. Probes were inserted into the lateral operculum of 

V1 at angles nearly perpendicular to the cortical surface under the aid of a surgical microscope. 

Given the length of the probe (1 cm), and the complete distribution of electrode contacts 

throughout its length, recordings could be made either in the opercular surface cortex (M1) or 

within the underlying calcarine sulcus (M2), by selecting a subset of contiguous set of active 

contacts (n = 384) from the total number (n=986). Of the total, 622 neurons (52%) (M1: 470 

neurons, session 1: 280, session 2: 190; M2: 152 neurons, session 3: 83, session 4: 69) were 

visually responsive throughout the recording session. Receptive fields (RFs) from online multi-

unit activity were localized on the display using at least one eye. Recordings were made at 2 sites 

in one hemisphere of each monkey. At the end of the experiment, monkeys were euthanized with 

pentobarbital (150 mg kg−1) and perfused with normal saline followed by 1 liter of 1% (wt/vol) 

paraformaldehyde in 0.1 M phosphate buffer, pH 7.4.   

 

Receptive field mapping  

We mapped the location and size of receptive fields (RFs) by pseudorandomly presenting black 

and white squares within a 10 by 10 probe grid extending 4 by 4 dva. In each recording session, 

we placed the probe grid to cover the area where we expected most of the RFs, presenting the 

probe sqaures in random order for 200 ms each. To map the receptive fields of individual neurons, 

we averaged the activity of a neuron from 30 ms to 150ms after stimulus onset across all repetitions 

for each location. The receptive fields are defined as the locations where the neuronal response to 
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the stimulus was significantly larger than baseline activity (permutation test, n = 1000, corrected 

by cluster-based correction for multiple comparisons64). Neuronal receptive fields (RFs) spanned 

eccentricities between ~4 and 6° degree of visual angle (dva) (M1) and ~ 5-7° dva (M2) in the 

lower visual field; images were positioned on the average RF location. 

 

Layer assignment  

The laminar location of our recording sites was estimated based on a combination of functional 

analysis and histology results. For each recording, we first performed a current source density 

(CSD) analysis on the stimulus-triggered average of local field potentials (LFP). LFP signals 

recorded from each 4 neighboring channels were averaged and realigned to the onset of visual 

stimulus. CSD was estimated as the second-order derivatives of signals along the probe axis using 

the common five-point formula 65. The result was then smoothed across space (σ = 120 µm) to 

reduce the artifact caused by varying electrode impedance.  

We located the lower boundary of the major sink (the reversal points of sink and source) 

as the border between layer 4C and layer 5/6. Based on this anchor point, we assigned other laminar 

compartment borders using the histological estimates. Cortical layers were divided into four 

comparably sized laminar compartments, specifically layers 2/3, 4A/B, 4C, and 5/6 (Mean depth: 

650μm, 311μm, 281μm, 489μm, respectively). Layer4C was further divided into two 2 input 

sublaminae. The top half of Layer 4C was assigned as Layer 4C alpha and the bottom half was 

assigned as Layer 4C beta. 

 

Image statistics 

The room-mean square (rms) contrast is defined as below66.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.23.477422doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477422


 25 

𝑟𝑚𝑠 =  ට
1

𝑁𝑀
σ σ (

𝑥𝑖𝑗− �̅�

�̅�
)2𝑀

𝑗=1
𝑁
𝑖=1     (1) 

Luminances 𝑥𝑖𝑗 (ሾ0,255ሿ) refer to the i-th  j-th element of the image of size N by M. �̅�  is the 

average luminance of the image. We also adopted this equation to estimate the local RMS contrast 

within the sub image of 0.5 dva by 0.5 dva region centered on each pixel of the image67. 

The band-limited Contrast66 was defined in the Fourier domain as: 

𝐶(𝑢, 𝑣) =  
2𝐴(𝑢,𝑣)

𝐷𝐶
      (2) 

where A(u,v) is the amplitude of the Fourier transform of the image, u and v are the horizontal and 

vertical spatial frequency coordinates, respectively, and DC is the zero-frequency component. 

 

Modulation Index 

We used modulation indices to quantify the response differences between the image types14,18: 

𝑀𝐼̅̅ ̅̅
𝑁𝑎𝑡𝑢𝑟𝑎𝑙_𝑁𝑇𝐼 =  

1

𝑁
σ

𝑅𝑁𝑎𝑡𝑢𝑟𝑎𝑙
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𝑁
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With 𝑅𝑁𝑎𝑡𝑢𝑟𝑎𝑙
𝑖  denote the mean neuronal response to 𝑖th natural image, [40, 200] ms, [40, 100] ms, 

and [100, 200] ms, relative to stimulus onset for the All, Early and Late periods respectively. N is 

the total number of images for each image categories. 

 

GLM encoding models 

Gaussian GLM models were used to identify the categorical effect of synthetic texture image and 

spectrum matched image while controlling the image statistic including local RMS contrast and 
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band-limited contrast. For each image 𝑗, we divided the local RMS contrast for each image into 

nine 0.67 dva by 0.67 dva patches and computed the mean RMS contrast for each patch 𝑖 𝑟𝑚𝑠𝑖 , 𝑖 ∈

ሾ1, 9ሿ . Similarly, we divided the band-limited contrast into four sections covering 45° and 

computed the mean contrast for each section i 𝑐𝑗 , 𝑗 ∈ ሾ1, 4ሿ.  The mean response of each neuron in 

30 ms to 200ms after image onset was first 𝑧-normalized and then modeled as: 

𝑟 =  𝛽0  + 𝛽𝑁𝑇𝐼 ⋅ 𝐼 𝑁𝑇𝐼 + 𝛽𝑆𝑀𝑁𝐼 ⋅ 𝐼𝑆𝑀𝑁𝐼 +  ∑ 𝛽𝑟𝑚𝑠
𝑖

9

𝑖=1

⋅ 𝑟𝑚𝑠𝑖 + ∑ 𝛽𝑐
𝑗

4

𝑗=1

⋅ 𝑐𝑗 +  𝜀, 𝜀 ∼ 𝒩(0, 𝜎2) 

(6) 

where 𝐼𝑁𝑇𝐼and 𝐼𝑆𝑀𝑁𝐼are dummy variables ( 0 or 1) for NT images and SMN images respectively, 

𝛽𝑟𝑚𝑠  are regression coefficient for local RMS contrast, 𝛽𝑐  are regression coefficient for band-

limited contrast, 𝜀 is a additive noise variable and 𝒩(0, 𝜎2) is a Gaussian distribution with mean 

0 and variance 𝜎2. We calculated the time course of GLM coefficient by computing the regression 

coefficents for each time bins. Spike times were converted to firing rate estimates by convolution 

with a causal 30 ms boxcar filter with an interval of 5 ms. 

We used the scikit-learn 0.24.1 library in Python to fit Poisson GLMs. Poisson GLMs 

(linear non-linear models) were also used in the analysis. The results are qualitatively similar to 

Gaussian GLM. We reported the results of the Gaussian GLM in the manuscript, as they are a 

more robust fit when calculating GLM coefficients across time bins from stimulus onset. 

 

Measurement of sparseness 

We focused on sensory responses by projecting out the dimensions corresponding to baseline 

activity before further analysis68. Specifically, the top 25 dimensions of ongoing activity were 

found by performing a PCA on the z-scored baseline neural activity recorded during 50ms to 0ms 
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before image presentation. To remove these baseline driven responses, the normalized stimulus 

driven activity (average neural activity during 40 ms to 200 ms after image representation) was 

first projected to these top 25 dimensions. This projected activity was then subtracted from the 

stimulus driven activity. 

We calculated the lifetime and population sparseness in two ways. Frist, the sparseness is 

calculated as the reduced kurtosis of the response distribution, which has previously been used in 

a number of theoretical and experimental studies23,40,69 

𝑆𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 =  
σ (𝑟𝑖−𝑟)̅̅ ̅4𝑁

𝑖=1

(𝑁−1)𝑠4 − 3     (7) 

For lifetime sparseness, 𝑟𝑖 is the response of a neuron to 𝑖th image within an image category, �̅� is 

the mean response of a neuron to all image stimulus within an image category, and N is the number 

of images for each image category. For population sparseness, 𝑟𝑖 is the response of 𝑖th neuron to a 

single image stimulus within an image category, �̅� is the mean response across the population of 

neurons to an image, and N is the number of neurons recorded. Population sparseness was then 

averaged across images and lifetime sparseness was averaged across neurons. 

 Second, to examine the sparseness using the whole distribution of the date. We calculated 

the response 𝑟𝑖,𝑗  of each neuron 𝑖 to each image 𝑗. For lifetime sparseness, we sorted the responses 

variance explained by each image from high to low. We then measured the sparseness by 

computing the cumulative variance as a function of number of images. We expected to observe 

higher variance explained by fewer images if the lifetime sparseness is high. To compare the 

number of images is needed to capture 80% of the total variance, we randomly sampled 250 images 

out of 300 images for 500 time. Each time we calculated the number of images are needed capture 

80% of the total variance and compared between different imaged categories.  Similarly, for 

population sparseness, we sorted the response variance explained by each neuron from high to low. 
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The sparseness is quantified as a function of number of neurons for population sparseness. We 

expected to observe higher variance explained by fewer neurons if the population sparseness is 

high. To compare the number of neurons needed to capture 80% of the total variance, we randomly 

sampled 500 neurons (out of 622) for 500 iterations. Each time we calculated the number of 

neurons needed capture 80% of the total variance and compared between different imaged 

categories.   

 

Cross correlation analysis  

We computed cross-correlations of spiking activity between each single neuron’s activity and 

population neuronal activity recorded simultaneously for each experimental session. Correlations 

were computed using a jitter correction method, which corrects for slow temporal correlations and 

for stimulus-locked correlations (44, 45). The jitter-corrected correlations were computed by 

subtracting the expected value of correlations produced from a resampled version of original spike 

trains, with spike-times randomly shuffled (jittered) within a specified temporal window (the jitter 

window). The correction term is the average over all possible resamples of the original spike trains, 

and is subtracted from the raw correlation. Empirical correlations were computed using small 

discrete time bins ∆t, and spikes were jittered within larger jitter bins T. The jittering technique 

preserves two marginals: the total spike count in each time bin ∆t summed across all trials (the 

peristimulus time histogram, PSTH), and the spike count within each jitter bin T on each trial (the 

instantaneous firing rate computed in bins T). For each spike on each trial, a new spike is chosen 

randomly from the set of all spikes within the same jitter bin on all of the trials. Jitter correction 

removes correlations on timescales greater than the jitter window T. Because it preserves the PSTH 

shape, jitter correction also removes correlations due to stimulus-locked firing rate modulation. 
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We computed cross-correlation for stimulus driven activity during 0 to 200ms after stimulus onset. 

Correlations was computed with ∆𝑡 = 5𝑚𝑠, using a jitter window of T = 50ms. For each neuron, 

the strength of the population coupling is defined as the peak magnitude of the cross-correlation 

and the time lag of the population coupling is defined as time lag of the peak. 

 

Computation of population 𝒅′ for neural responses to visual stimuli and Image decoder 

To estimate how much information the neural activity conveyed about the stimulus identity, we 

used the population d′, which characterizes how readily the distributions of the neural responses 

to the two different sensory stimuli can be distinguished 35. We computed the population d’ for 

each image pair within the 300 images for each image categories. A challenge was that calculation 

of population d’ in a large population vector space would have involved the estimation of an 𝑁 × 𝑁 

noise covariance matrix 36. Direct estimation of the covariance matrix would have been unreliable, 

because the number of neurons (622), was much larger than the number of trial (n=10). We 

therefore used PCA dimensionality reduction using the trail averaged data for each image within 

an image set to find the dimensions of the population vector space that preserve the data’s variation 

across different images. We projected the high dimensional ensemble neural response (N= 622) to 

a truncated set of dimensions 𝑁𝑟 ∈ ሾ1, 10ሿ identified by the PCA analysis and calculated the 

population d’ for each image pairs. 

(𝑑𝑁𝑟

′ )2 =  ∆𝝁𝑇Σ−1Δ𝝁      (8) 

Where Σ =  
1

2
 (Σ𝑖𝑚𝑎𝑔𝑒1 + Σ𝑖𝑚𝑎𝑔𝑒2)  is the noise covariance matrix average across two image 

stimulation conditions, Δ𝝁 =  𝝁𝑖𝑚𝑎𝑔𝑒1 − 𝝁𝑖𝑚𝑎𝑔𝑒2  is the vector difference between the mean 

ensemble neuronal responses to the two images. 
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To decode the stimulus identity from the neural responses, we built a simple nearest-

neighbor decoder based on correlation 68. We used the average response of the odd trials as the 

training set while using the average response of the even trials as the test set. We correlated the 

population responses for an individual stimulus in the test set with the population responses from 

all stimuli in the training set. The stimulus with the maximum correlation was then assigned as our 

prediction. We defined the decoding accuracy as the fraction of correctly labelled stimuli. 
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Figure S1. Comparison of global image statistics across different image sets. Left, 
mean luminance; Middle, pixel standard deviations; and Right, RMS contrast of three image sets. 
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Figure S2. Neuronal responses to different image categories for both monkeys. (Monkey 1: 

Left, Monkey 2: Right) (a) Time course of average normalized firing rate across all recorded 

neurons in V1 to images of natural image (pink), NTI (purple), and SMNI (green). The same 

conventions were used as in Fig. 2a. (b) Box plots summarize the modulation index for comparison 

between different image sets using the whole response epoch (all: 40 – 200ms). (c) Box plot 

summarizes the GLM coefficients for synthetic texture images (purple) and spectrally matched 

noise (green). **** denotes p < 10-4. 
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Figure S3. Comparison between sublaminae L4C𝜶 and L4C𝜷. (a) Average GLM coefficients 

for NTI images (left) and SMNI images (right) as a function of time, separated by different L4C 

sublaminae. The thickness of lines indicates the s.e.m. of GLM coefficients across neurons. The 

lines above indicate the time periods when the coefficients are significantly different from zero.  (b) 

Average GLM coefficients for local contrast (left) and orientation (right) as a function of time, 

separated by different sublaminae. Horizontal lines indicate the time periods when the coefficients 

are significantly different from zero (p < 0.05, corrected for multiple comparisons. 
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Figure S4. Lifetime and population sparseness. Lifetime and population sparseness was 

quantified in two ways: (a) Cumulative variance as a function of number images (left: Lifetime 

sparseness) and number of neurons (Right: population sparseness). (b) Reduced kurtosis of the 

response distribution (left: Lifetime sparseness; Right: Population sparseness). * denotes p < 0.05 

(paired t-test). 
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Figure S5. Population synchrony for different image categories. (a) Scatterplots compare the 

time lags of the population coupling. Left, comparison between natural images and NTIs; Middle, 

comparison between natural images and SMNIs; Right, comparison between NTIs and SMNIs. (b) 

Histograms compare peak magnitude of the population coupling. Left, comparison between natural 

images and NTIs; Middle, comparison between natural images and SMNIs; Right, comparison 

between NTIs and SMNIs. p values were computed using paired t-tests.  
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Figure S6. Differences of population 𝒅′ as a function of PC dimensions. Left, differences of 

population d’ between natural images and NTIs; Right, differences of population d’ between 

natural images and SMNIs.  
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