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Abstract 

Background: The gut microbiome is a crucial element that facilitates a host’s adaptation to a changing 

environment. Host-specificity often coincides with distinctions in gut microbes, suggesting a co-

evolution of the holobionts. However, it is unclear how gut microbiota shared by a common host ancestor 

would co-diversify with hosts and eventually become distinct among sister hosts. In this context, 

understanding the evolutionary pathway of gut microbiomes of the same host species could provide 

insight on how holobionts co-adapt along environmental gradients. Specifically, we ask which factor, 

nature or nurture, i.e., genetics or diets, contributes more to the shaping of gut microbiome, along with 

host diversification and range expansion. 

 

Results: We compared and analyzed the gut microbiomes of 99 Asian honeybees, Apis cerana, from 

genetically diverged populations covering 13 provinces across China. Bacterial composition varied 

significantly across populations at phylotype, sequence-discrete population (SDP), and strain levels, but 

with extensive overlaps, indicating the diversity of microbial community among A. cerana populations 

is driven by nestedness. Taken together, genetics exhibited tangential impacts, while pollen diets were 

significantly correlated with both the composition and function of gut microbiome. Core bacteria, 

Gilliamella and Lactobacillus Firm-5, showed antagonistic turnovers and contributed to the enrichment 

in carbohydrate transport and metabolism. By feeding and inoculation bioassays, we confirmed that the 

variations in pollen polysaccharide composition contributed to the trade-off of these core bacteria.  
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Conclusions: Progressive change, i.e., nestedness, is the foundation of gut microbiome evolution in the 

Asian honeybee. Such a transition during the co-diversification of gut microbiomes is shaped primarily 

by environmental factors, diets in general, pollen polysaccharide in particular. 

 

Key words: gut microbiota, co-adaptation, population variation, pollen, nectar, adaptation
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Background 

The gut microbiome often serves as a critical component in host’s adaptation to a 

changing environment [1]. Phylogenetically distant hosts consuming distinct diets have 

typically diverged for a long evolutionary time. Thus, it is not surprising that these hosts 

are revealed with abrupt differentiation in gut microbiomes, such as in broad mammal 

lineages [2].  Increasing evidence also indicates that the gut microbiomes of closely 

related host species, such as honeybees (Apis spp.), are also often host-specific [3]. 

Such a characteristic association and the fact that host-specific symbionts could often 

increase the overall fitness of the host, are considered as strong evidence for holobiont 

co-evolution [4].  

From an evolutionary point of view, such beneficial symbionts could reach the 

most advantage through vertical transmission across host generations. In this regard, 

diverse transmission mechanisms have been reported in varied hosts, mostly involving 

eggs or special structures hosting symbionts as the vessel, e.g., bacteriocytes in aphids 

[5]. Especially, animals with parental care behaviors or sociality are often proofed as 

highly efficient in transferring crucial microbes to their offspring, e.g., humans [6], 

primates [7], birds [8], social bees [9], termites [10]. In such cases, gut microbiomes 

are considered inheritable within species. In the meantime, microbes currently specific 

to each of the closely related host species have likely derived from common ancestors 

that were already symbiotic to the common ancestor of the extant hosts [3]. However, 

it remains unclear how gut microbiota shared by a common host ancestor would co-

diversify with hosts and eventually become distinct among extant sister hosts. As both 

host genetics and environment could have affected the evolution of gut microbiomes 

[11,12], it remains a challenge to understand the roles of nature and nurture in shaping 

gut microbiomes in a study system that involves distantly related hosts. In this context, 

natural populations of the same host species provide a proper system to investigate how 

the holobionts co-adapt and change along environmental gradients to elucidate the 

evolutionary pathway of the symbiotic bacteria. 

In particular, for widespread species found in a large geographic range, 

environmental heterogeneity is expected to influence their gut microbiota [13,14]. This 

is because geographic location of animal populations is linked with varied host genetics, 

local vegetation, and environmental microbe sources. Unfortunately, most relevant 

studies focusing on intraspecific variation of symbionts only compared gut microbes in 
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a few distinct populations or at a fine spatial scale [15–17]. Studies of large geographic 

scale were mainly conducted in humans, which is subject to confounding factors related 

to civilization, e.g., lifestyles, hygiene, antibiotics usage, travel [18–21]. In this regard, 

we know little about how gut microbiota naturally evolve under environmental 

heterogeneity on large geographic scales. 

Honeybees (Apis spp.) may serve as an ideal model to understand the evolutionary 

dynamics between host and gut microbiota, in a natural setting. In particular, both the 

western (A. mellifera) and Asian honeybees (A. cerana) are widely distributed across 

tropical and temperate climates, each with endemic populations adapted to local 

habitats as the result of evolutionary processes [22,23]. Studies based on A. mellifera 

have established the framework for honeybee gut microbiota, revealing their essential 

role in honeybee biology, such as facilitating pollen digestion [24,25], host 

development [26] and pathogen resistance [27,28]. Varied honeybee species share 

much of the core microbes at the phylotype level, but possess host-specific microbial 

communities [3,29], showing distinct strain diversities among hosts [30]. These core 

microbes have probably become part of the symbiont system in the common ancestor 

of all extent corbiculate bees (honeybees, bumble bees, stingless bees, and orchid bees) 

[3]. However, little is known about how these gut symbionts have evolved within their 

hosts and eventually become distinct across honeybees, while remaining essential for 

the survival of each holobiont in its local habitat.  

Compared to the highly managed A. mellifera, the Asian honeybee A. cerana 

remain mostly semi-feral across its natural range, including much of the Eastern, 

Southern, and Southeastern Asia [31]. Our recent work on the evolution of mainland A. 

cerana revealed that multiple peripheral subspecies had radiated from a common 

central ancestral population and adapted independently to the changing floras in diverse 

habitats [23]. In this system, both host genetics and changing floras could have served 

as determining factors for the formation of local honeybee gut profiles. Here, we aim 

to understand the landscape of gut microbial diversity and function across geographic 

populations of A. cerana. In particular, we query whether host genetics or diets have 

contributed more prominently to the formation of gut microbiomes in natural honeybee 

populations. 
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Results 

Bacterial composition significantly varied across Asian honeybee populations at 

multiple levels 

A total of 99 nurse bees from 36 hives, representing 15 geographic populations 

covering 13 provinces across China were analyzed (Fig. 1a). For each population, ≥5 

gut samples were sequenced from at least two hives to represent the diversity of each 

population (Table S1). SNPs derived from honeybee reads were used to construct a 

neighbor-joining tree (Fig. 1b), which confirmed the geographic origin of the sampled 

populations. This result was consistent with the reported genetic structure and 

geographic distribution of A. cerana populations [23], thereby excluding the possibility 

of colony translocation.  

Bacterial reads were then de novo assembled and aligned against the GenBank nr 

database to recover the phylotype composition for individual nurse bees. In congruence 

with previous studies [3,30], the core gut microbiota in A. cerana included six groups 

of bacteria, i.e. Gilliamella and Snodgrassella from Proteobacteria, Bifidobacterium 

from Actinobacteria, Lactobacillus Firm-4 and Firm-5 from Firmicutes, and Apibacter 

from Bacteroidetes (Fig. 1c). This result was further confirmed by the reference-based 

method (Figs. S1, S2), which employed a customized database containing 307 public 

and 83 newly sequenced bee gut bacterial genomes (Table S2). However, apparent 

variations in phylotype composition were observed among individual bees (Fig. 1c), 

and the composition of core-microbes appeared to be less stable than in A. mellifera 

[29,32,33]. 

Both Shannon index (Fig. 1d, Kruskal-Wallis, P = 0.0022) and phylotype 

diversity (ANOSIM, r = 0.29, P = 0.001) showed noticeable differences across 

populations of A. cerana. Nine of the fifteen investigated populations could be defined 

by featured bacteria in the LEfSe analysis [34], which showed significantly higher 

relative abundances in the focal population than all remaining populations (Fig. 1e).  

The distinct gut variation across host populations was also reflected at finer 

taxonomic scales. Among all six core phylotypes in A. cerana, Gilliamella contained 

the most diverse host-specific sequence-discrete populations (SDPs) (Fig. 1f-h, Figs. 

S3-S6), which were defined as strains sharing a genome-wide average nucleotide 

identity (gANI) > 95% within each phylotype. Our results revealed varied presence and 

abundance in SDPs of core phylotypes among gut samples (Fig. 1i-k, Fig. S7), whereas 
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Gilliamella showed significant SDP differences among geographical populations (Fig. 

S8, ANOSIM r = 0.14, P = 0.001). We also identified genome sites showing single 

nucleotide variation (SNV) for major SDPs in each sample, to detect gut variations at 

the strain level (Fig. S9). The results demonstrated significant variations in SNV 

composition across populations (Fig. S10). Thus, the gut bacterial composition of Asian 

honeybees varied significantly across geography at phylotype, SDP and strain levels.  

 

Progressive changes in honeybee microbial community were mainly determined 

by diets, not host genetics 

Gut compositions showed extensive overlaps among populations, forming 

continuous groups in PCoA analyses (Fig. 2a), indicating progressive changes in 

microbial community structure among natural honeybee populations. Interestingly, a 

continuous variable contributing to the separation along the first principal coordinate 

axis (PCoA) reflected antagonistic dynamics in abundances of Gilliamella and 

Lactobacillus Firm-5 (Fig. 2b). Among all six core phylotypes, the relative abundance 

of Gilliamella (Spearman’s rho = -0.85, P = 2.14e-28) and Lactobacillus Firm-5 

(Spearman’s rho = 0.79, P = 4.47e-22) showed the most significant correlation with the 

PCoA1 value.  

To detect the impact of host genetics on gut microbiota, we estimated the 

heritability of the relative abundance of core bacteria at both phylotype and SDP levels. 

The heritability was overall low. Among the core phylotypes, Gilliamella abundance 

showed the highest heritability (Fig. S12), while that of Snodgrassella was not obvious. 

The abundances of about one third SDPs were not heritable. The GWAS analysis did 

not detect any apparent site variation that had determined bacterial composition, as no 

genomic region of A. cerana was found significantly associated with the bacterial 

abundance (with threshold as P < 2e-8) at either the phylotype or SDP level. These 

results indicated that gut microbial diversity at the geographic population level is not 

likely driven by host genetics, as measured by single-site nucleotide variations. 

To examine the effect of diet on the gut microbiome, we first extracted pollen 

reads from the metagenome data and identified flower composition for each gut sample 

(details in Materials and Methods). Honeybee populations from different regions 

showed significant variation in pollen diet at the family level (ANOSIM, r = 0.59, P = 

0.001, Fig. 2c, Table S3). Such a diet shift was further confirmed by pollen variation in 
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honey samples extracted from five of the representative populations (SC_AB, SC_GB, 

SX_QL, QH_GD, JL_DH), where pollen composition again showed significant 

differences at the family level (ANOSIM, r = 0.35, P = 0.007, Fig. S11, Table S4). 

Most importantly, the Jaccard distances of the gut bacterial phylotype and the pollen 

composition were significantly correlated (mantel test, r = 0.098, P = 0.002, Fig. 2d). 

Among the core phylotypes, the abundances of Gilliamella showed significant 

correlation with the Shannon index of pollen composition in the gut (Spearman’s rho = 

-0.23, P = 0.020). Therefore, compared with host genetics, pollen diet showed 

predominant correlation with the composition of honeybee gut microbiome. 

 

KEGG Orthology (KO) function was correlated with diets and characterized in 

carbohydrate metabolism and transport  

To understand whether gut microbes in A. cerana showed idiosyncratic regional 

traits on the function level, we de novo assembled the metagenomes and annotated 

genes for each of the 99 gut samples. As with bacterial compositions, the number of 

gene clusters per gut varied significantly among populations (Kruskal-Wallis test, P= 

6.2e-4) (Fig. 3a). The gene cluster number in different individuals was significantly 

correlated with the Shannon index of gut bacteria (Pearson’s r = 0.64, P = 8.28e-13), 

suggesting that bacterial diversity is the basis for gene varieties among individual bees. 

We also quantified the rate of novel gene accumulation for each population. The results 

demonstrated distinct differences in gene diversity among populations (Fig. 3b).  

We assigned predicted gene clusters from all metagenome data to the KEGG 

database to reveal the diversity of functions among populations. A total of 1,965 

functional orthologs (KOs) shared among all populations were enriched in genetic 

information processing, as well as signaling and cellular processes (Fig. S13). The KO 

category compositions (Fig. 3c) also showed extensive overlap, and were distinctively 

differentiated among populations (ANOSIM, r = 0.33, P = 0.001, Fig. S14). The LEfSe 

analyses showed that 11 of the 15 geographic populations had noticeably enriched KO 

categories (Fig. S15), which showed significantly higher relative abundances in the 

focal population than all remaining populations. The top significant population-

enriched KOs (P < 1e-5) mainly included functions in metabolism and membrane 

transport (Fig. S14). Furthermore, the Jaccard distances of the gut bacterial KO 

composition and pollen diversity at the family level showed significant correlation 
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(mantel test, r = 0.12, P = 0.001, Fig. 3d), indicating that not only bacterial composition 

but also their functions were associated with diets. 

At the KO term level, we identified 83 KO terms showing inter-population 

differences (Table S5), in which they were significantly more abundant in only one of 

the geographic populations. Interestingly, 37 of 83 of the enriched KO terms were 

transporter pathway genes (all belonging to ko02000) (Fig. 4a), whereas the pathway 

was also enriched in some local populations (e.g., SC_AB and YN_ML, Fig. 4b). Most 

featured transporters were related to carbohydrates (Fig. 4c) and six of the enriched KO 

terms belonged to the glycoside hydrolase (GH) family (Table S5), in concert with the 

fact that polysaccharides are one of the major nutritional components derived from 

pollen. Therefore, the population-enriched gut microbe KOs were mainly associated 

with carbohydrate metabolism and transport, and were significantly correlated to pollen 

composition in a given local environment. 

 

PTS, ABC transporters and GHs contributed by Gilliamella, Lactobacillus Firm-

5 and Bifidobacterium were hotspot genes involved in local adaptation 

In congruence with the finding that carbohydrate metabolism and transport play 

important roles in adapting to local diets, key genes of such pathways, such as 

phosphotransferase system (PTS) transporters and ATP binding cassette (ABC), were 

often characterized in distinct honeybee populations. For instance, a total of 17 PTS 

and 16 ABC transporters were identified from the 37 enriched transporter pathway 

genes (Table S5). All featured PTS genes were only found in the SC_AB population, 

while the featured ABC transporters were present in several populations (XZ_BM, 

SC_AB and YN_ML). PTS serves as one of the major mechanisms in carbohydrate 

uptake, particularly for hexoses and disaccharides. In SC_AB, the 17 featured PTS 

genes included some that are specific for ascorbate, beta-glucoside, cellobiose, 

fructoselysine/glucoselysine, galactitol, mannose, and sucrose (Table S5). The mapping 

of relevant gene clusters against the bacterial nr database suggested that these featured 

PTS genes were mainly contributed by Gilliamella and Lactobacillus Firm-5 (Table 

S6). The dominant role of these two bacteria in coding PTS genes was further confirmed 

by analyses of 81 individually sequenced and annotated genomes, where Gilliamella 

and Lactobacillus Firm-5 were the major phylotypes encoding PTS genes (Table S7). 

At the SDP level, Lactobacillus Firm-5 had a higher copy number of PTS transporters 
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for cellobiose, fructoselysine/glucoselysine and galactitol than Gilliamella (Fig. 5a). 

Many of these PTS transporters were found in the featured genes in the SC_AB 

population, which was dominated by Lactobacillus. Thus, the enrichment of featured 

PTS genes could at least be partially explained by the elevated abundance of the 

contributing bacteria in local populations (Fig. 1e).  

The featured ABC transporters included transporters for amino acids, iron and 

carbohydrates (Table S5). Besides Gilliamella and Lactobacillus Firm-5, 

Bifidobacterium also contributed unique ABC transporters (Table S6). For example, 

the Bifidobacterium-unique transporters for raffinose/stachyose/melibiose (msmE, 

msmF and msmG) (genome annotation results in Table S7) were featured in the 

YN_ML population, in which Bifidobacterium was also the featured phylotype (Fig. 

1e). The elevated Bifidobacterium and its unique ABC transporters characterized in 

YN_ML might be attributed to the presence of raffinose and stachyose in specific pollen 

or nectar, which are toxic to the honeybees [35].  

At a finer taxonomic scale, 14 of the 17 featured PTS genes had significant 

population-distinct SNV sites coded by SDP from Lactobacillus Firm-5, and 9 of the 

16 ABC transporters harbored significant population-distinct SNV sites coded by SDPs 

from Lactobacillus Firm-5 and Apibacter (Table S8). One featured gene ulaC 

(ascorbate PTS system EIIA or EIIAB component, K02821), coded by SDP from 

Lactobacillus Firm-5, showed significant population-distinct copy number variations 

(CNVs) (Table S9). Thus, the variations in functional genes seemed to have been 

caused by changes in the featured bacterial composition at both phylotype and strain 

levels.  

Besides PTS and ABC genes, six GH genes were featured in A. cerana 

populations (from GH1, GH3, GH29, GH36, GH43 and GH78 family), and were 

mainly contributed by Gilliamella, Lactobacillus and Bifidobacterium (Fig. 5b, Table 

S10). To construct the profile for major gene families involved in glycoside breakdown, 

we used dbCAN2[36] to annotate all GH and polysaccharide lyase (PL) genes. We 

discovered that the GH/PL profiles varied across populations (Fig. S16). Additionally, 

non-core bacterium also encoded for novel GH genes. For instance, Dysgonomonas 

contributed unique GH gene families in A. cerana, including GH57, GH92, GH133 and 

GH144 (Table S10). This non-core bacterium was featured in the HN_QZ population 

(Fig. 1e), likely due to its contribution of unique GH gene sets. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.23.477436doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477436
http://creativecommons.org/licenses/by-nc-nd/4.0/


Some of the six featured GH genes were positioned together with featured PTS 

or ABC transporters on the genome. Together, these genes formed CAZyme gene 

clusters (CGCs), performing sequential functions in polysaccharide degradation and 

transportation. For example, in Lactobacillus Firm-5, the featured 6-phospho-beta-

glucosidase (bglA) from the GH1 family, PTS system genes for beta-glucoside and 

cellobiose were usually clustered and formed CGCs (Fig. 5c), and all these genes were 

enriched in the SC_AB population. In Bifidobacterium, the 

raffinose/stachyose/melibiose transport system msmEFG, and alpha-galactosidase 

from the GH36 family involved in raffinose/melibiose degradation were usually located 

together (Fig. 5d). These genes were all featured in the YN_ML population, which had 

Bifidobacterium as the featured phylotype.  

 

Feeding experiment verified the contribution of pollen polysaccharide 

composition to the trade-off of Gilliamella and Lactobacillus Firm-5 

Our investigation on A. cerana guts from its natural range revealed antagonistic 

abundance between the two core-bacteria Gilliamella and Lactobacillus Firm-5 across 

geographic populations (Fig. 2b). As both lineage and function diversities of honeybee 

gut bacteria were strongly correlated to pollen diets (Figs. 2d, 3d), we speculate that 

characteristic traits in local food resources may have led to bacterial community shifts 

observed at the grand scale. To test this hypothesis, we conducted feeding experiments 

to verify whether functional adaptations observed in metagenomes can lead to adaptive 

advantages in bacterial competition.  

As the main structural components of the pollen wall, pectin and cellulose were 

chosen as representative nutritional contents to examine the impacts of food on the 

abundance variation between Gilliamella and Lactobacillus Firm-5 in co-feeding 

experiments. In the main gut microbe phylotypes in honeybee, only Gilliamella are able 

to degrade the polygalacturonic acid (PGA), the backbone of pectin [3]. On the other 

hand, cellobiose (the key metabolite of cellulose) related PTS genes (Table S5) and 

metabolic pathway (ko00500, starch and sucrose metabolism) were highly enriched in 

the SC_AB population, as revealed by the metagenome data. The newly assembled 

Lactobacillus Firm-5 genome also showed elevated copy numbers in cellobiose PTS 

(Fig. 5a). As such, we anticipated that local food with higher proportion of pectin would 
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increase the fitness of Gilliamella, and food with higher proportion of cellulose would 

favor Lactobacillus Firm-5 in the community. 

We fed A. cerana workers that were colonized with equal abundance of 

Gilliamella and Lactobacillus Firm-5, with cellobiose, pectin and cellulose mixture 

with different concentrations (1:10 and 10:1 respectively) and examined corresponding 

changes in bacterial composition after four days. Interestingly, the absolute abundance 

of Lactobacillus Firm-5 was always higher than Gilliamella in the control group, which 

was only fed with sucrose (Fig. 5e-g), indicating a predominant role of Lactobacillus 

over Gilliamella in the given condition. The absence of pollen in food, and the absence 

of sucrose PTS genes in the strain we used (belonging to Gillia_Acer_2 SDP, Fig. 5a) 

might explain the low abundance of Gilliamella in the control group.  

After feeding cellobiose, the absolute abundance of both Gilliamella and 

Lactobacillus Firm-5 significantly increased relative to the control group (Fig. 5e-f), 

which was in accordance with the presence of cellobiose PTS genes in both phylotypes 

(Fig. 5a). As expected, Gilliamella and Lactobacillus Firm-5 showed different 

responses to the mixed food with varied concentrations of pectin and cellulose. The 

absolute abundance of Gilliamella did not show significant variation after feeding food 

of pectin:cellulose (1:10), but the abundance of Lactobacillus Firm-5 significantly 

increased (Fig. 5e-f). On the other hand, the absolute abundance of Gilliamella showed 

significant increase after feeding food of pectin:cellulose (10:1), but the abundance of 

Lactobacillus Firm-5 did not vary significantly (Fig. 5e-f). The varied proportion of 

pectin and cellulose impacted the antagonistics of Gilliamella and Lactobacillus Firm-

5. These results suggested that diet, pollen polysaccharide in particular, was the main 

driver in shaping gut bacterial composition and functions in A. cerana.  

 

Discussion 

Progressive change is the basis of gut microbiome evolution under local diet shift 

In this study, we carried out comprehensive investigations on the gut microbiomes 

of the widespread Asian honeybee A. cerana at the population level. While many 

studies have contributed to our knowledge of the honeybee gut microbiota, little is 

understood about how this essential symbiont system is affected by changing 

environments and how it evolves with the host. In agreement with previous studies on 

both A. mellifera [33] and A. cerana [29], our results revealed variations in gut microbes 
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among A. cerana individuals, even among those from the same hive. This individual 

distinction is expected, as worker bees obtain their gut microbiomes through social 

interactions [37], which is essentially a procedure of random subsampling from the 

bacterial pool maintained by cohabiting workers.  

More importantly, our study revealed significant variations in gut microbiota 

across geographic populations of A. cerana. Our recent work on the evolution of 

mainland A. cerana revealed that selective pressures imposed by diverse habitats, 

especially those of the changing floras, led to convergent adaptation of the honeybee, 

where genes associated with sucrose sensitivity and foraging labor division had been 

repeatedly selected [23]. Here we showed that both microbial composition and function 

of the honeybee gut microbiota were highly dynamic throughout the studied natural 

range, along local adaptation of the honeybee hosts. Such an intra-species transition in 

gut microbiome reflects the evolutionary consequence of collective adaptation of both 

the honeybee and its symbiont.  

In contrast to the abrupt distinction between A. mellifera and A. cerana, the gut 

microbiome of honeybee populations showed progressive change within host species 

(Fig. S17). Similarly, the gut microbiota community from 18 different human 

populations across geography also showed extensive overlap [38], implying a common 

trend for hosts exhibiting a continuous and wide-range distribution. Interestingly, 

changes in gut microbiome at the population level were closely correlated to the trade-

off among core bacteria, both in honeybee and human. In our study, the two core 

bacteria Gilliamella and Lactobacillus Firm-5 showed antagonistic trends in occurrence 

in phylotype turnover across A. cerana populations. In the human guts, the trade-off of 

Prevotellaceae and Bacteroidaceae contributed to the first PC in PCoA of gut 

microbiota from different human populations in response to modernization [38]. The 

Russian population showed a different Bacteroidetes/Firmicutes ratio compared to the 

Western population [39].  

 

Factors shaping the gut microbiome: nature or nurture? 

In humans, genome-wide association analysis identified some host factors in 

shaping microbiome [40–42]. However, in most cases, the lifestyle (e.g., foraging, 

traditional rural farming and urban industrialized life) over-dominates genetics [19]. 

Statistical analysis also demonstrated that environment dominated over host genetics in 
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shaping human gut microbiota [43]. Similarly, the overwhelming role of nurture was 

also revealed in the Zucker rat, where age and local environment outweighed genetics 

in determining gut microbiome [44].  

Among various environmental factors, the role of diet in human gut microbiome 

had been repeatedly addressed [45,46]. However, in natural human populations, diet 

seemed to have been frequently accompanied by other confounding factors related to 

lifestyles, such as culture, hygiene, and parasitic load. The complexity of human diet 

also made it difficult to identify precise dietary components and mechanisms that have 

modulated the gut microbiome. The honeybees, on the other hand, consume relatively 

simple but consistent food, i.e., pollen and honey, yet with variations in specific 

nutritional compositions. In this sense, the honeybees may serve as a better model to 

study how changes in nutrients would affect gut microbiota in a natural setting. 

In our study, pollen analyses based on gut contents allowed us to establish strong 

associations between diet diversity and the Asian honeybee gut profiles, on both 

composition and function levels, while host genetics only exhibited tangential impacts. 

Diet with pollen was known to increase gut bacterial loads in Western honeybee [47]. 

Here, our feeding and inoculation assays further showed that pollen polysaccharide 

determined the abundance of the two core bacteria, Gilliamella and Lactobacillus Firm-

5. The role of core-bacteria in local adaptations was reinforced by evidence showing 

their dominant contributions in genes related to pollen and nectar digestions. In 

particular, the PTS and ABC transporters, genes involved in the transportation of 

multiple types of polysaccharides, were primarily encoded by these two core bacteria, 

representing the most enriched transporters among all bacterial genes featured in local 

populations. We address that both PTS and ABC transporters were also highlighted in 

human populations from distant geographic regions. For example, the Russian 

population showed enriched PTS transporters compared to the Western population [39]. 

And the ABC transporters also showed enrichment in the rural population within Russia 

[39].  

Unexpectedly, non-core bacteria sometimes became abundant in local honeybee 

populations. For instance, Dysgonomonas was typically low in abundance among A. 

cerana individuals, as reported in both A. nigrocincta [48] and A. mellifera [49]. But 

this bacterium contributed a series of unique GH genes in FJ_FZ and HN_QZ 

populations, thereby becoming abundant in the corresponding gut microbiome. This 
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observation suggested that local food resources might trigger bacterial species turnover 

when non-core bacteria became more suited to new diets, which, again, highlighting 

the significance of diet on the gut profile.  

 

Population heterogeneity needs to be considered for the evolution and adaptation 

of honeybee microbiomes 

A recent study suggested that both lineage and function diversities of the gut 

microbes were significantly lower in A. cerana when compared with A. mellifera [30]. 

However, as this conclusion was drawn based on two A. mellifera colonies from 

Switzerland, two colonies of both A. mellifera and A. cerana from two sites of Japan, 

it is difficult to anticipate whether such a distinct pattern could be generalized when 

population gradients of both honeybee species are taken into consideration. Although 

the present study was not designed for comprehensive analyses of inter-species 

comparisons, our results provided insights on how intra-species variations in gut 

microbiota might affect interpretations of differences between honeybee species.  

Although the per-bee gene diversity was generally lower in A. cerana microbiota 

than A. mellifera, individual bees of several A. cerana populations (e.g., TW_JL, 

SX_QL) showed high levels of inter-individual variations (Fig. S18a). In addition, the 

divergence of the accumulated gene diversity between the two species was much less 

significant than previously suggested. The Japanese populations representing A. cerana 

in the earlier study [10] were one of the least variable populations among all A. cerana 

populations investigated in this study (Fig. S18b). Given the large variations observed 

among A. cerana populations, it is unknown whether a similar difference might also be 

common within A. mellifera and how that might influence the distinctions between 

these two widely distributed honeybee species. Additionally, other confounding factors 

should also be taken into consideration to gain a comprehensive understanding of 

honeybee gut microbiomes. In particular, the evolutionary pathways and phylogenetic 

relationships of focal populations, the specifics in honeybee management (such as 

colony merging and artificial diet additions) and other human interventions, may all 

have significant impacts on the honeybee gut profile. As the gut symbiont profile is a 

signature of natural adaptation of the holobiont to specific habitats, it would seem that 

comparisons between microbiomes of intra- and inter-host honeybee species should 

always be placed in a context of specific environments. 
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A host-gut model that may help both honeybees and ourselves  

As major agricultural pollinators, honeybees had experienced unprecedented 

global threats, such as the Colony Collapse Disorder [50], where corresponding 

changes in gut microbiomes were also noted [51]. Our study showed that the less-

domesticated A. cerana had dynamic gut profiles corresponding to local diets. In this 

regard, regional floral diversity could serve as a key in maintaining characteristic 

repertoires of honeybee gut microbes, which is tremendously important for the 

honeybee health as a whole. Therefore, a sustaining plant community containing 

diverse endemic flower species should be considered as a key part of a honeybee 

conservation plan. On the other hand, the fitness of gut microbiomes of the honeybee 

populations may play an unforeseen role in the survival of colonies, during honeybee 

introduction, hybridization and especially translocation.  

From a demographic perspective, understanding the honeybee gut system could 

also benefit human health. The honeybees passed their gut microbes through 

generations via social interactions, in a way that is very similar to the way humans do. 

Furthermore, the honeybee diet is confined to pollen and nectar, but diverse in 

nutritional combinations, providing an excellent opportunity for understanding dietary 

impacts on the formation of the gut symbiont system. Lastly, the divergence time 

among extant populations of A. cerana is relatively short, at ca. 100 ka [23], which is 

similar to that of the modern human populations [52–54]. Taken together, our analyses 

on gut microbiomes of A. cerana on the population level indicate that the honeybee is 

an ideal model to understand geographical variation of animal gut microbiota and the 

effect of diet on radiating populations. 

 

Conclusions 

By sequencing the gut metagenomes and the genomes of isolated strains, we 

constructed the gut microbial profiles for A. cerana on both diversity and function 

levels. As the first attempt to characterize geographic dynamics of gut microbiota for 

natural honeybee populations, this study revealed that compositional and functional 

variations were common among geographic populations of A. cerana, both of which 

were significantly correlated to pollen composition recovered from gut metagenomes. 

The population variation in gut bacterial composition was closely correlated to 
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Gilliamella and Lactobacillus Firm-5, which mainly contributed to population-featured 

functions in carbohydrate transport and metabolism. Our results uncovered the 

important roles of natural diet variation in shaping the gut microbiome in A. cerana. 

The results also add new insights into the progressive change of the gut microbe in a 

radiating species.  

 

Methods 

Sample collection 

Nurse bees of A. cerana were obtained from inside the hives at 15 sites from 13 

provinces of China (Hainan, Yunnan, Taiwan, Fujian, Jiangxi, Hunan, Tibet, Sichuan, 

Shannxi, Gansu, Qinghai, Hebei, and Jilin), between April 2017 and January 2019. Our 

sampling covers the main natural distribution range of A. cerana in China, from 19.2°-

43.5°N, 95.7°-128.7°E, and from drastically different altitudes (12-3,325 m, Table S1). 

The guts (including the midgut and hindgut) were dissected from the abdomen and 

stored in 100% ethanol or directly frozen at -80 °C. To preserve live gut bacteria for 

strain isolation, a subset of guts was suspended in 100 μl of 25% glycerol (v/v, dissolved 

in PBS buffer), homogenized, and then frozen at -80 °C.  

 

Isolation, cultivation and identification of gut microbe strains 

The gut homogenates were plated on different cultivation media respectively for 

various honeybee gut bacteria following Engel et al. [55], including heart infusion agar 

(HIA) with 5% (v/v) de-fibrinated sheep blood, Columbia agar with 5% (v/v) de-

fibrinated sheep blood, De Man, Rogosa and Sharpe (MRS) agar, and trypticase-

phytone-yeast (TPY) agar supplemented with 1% mupirocin. The plates were incubated 

at 35 °C in 5% CO2 or anaerobic atmosphere.  

When bacterial colonies became visible on the plates, they were identified by 

sequences of their 16S rRNA gene. The isolates were picked and dissolved with H2O, 

then boiled at 100 °C for 1 min, which was used directly as DNA template in PCR. 

PCR amplicons were generated using the universal 16S primers 27F (5’-

AGAGTTTGATCCTGGCTCAG-3’) and 1492R (5’-GGTTACCTTGTTACGACTT-

3’) with 25 cycles of amplification (94 °C for 30 s, 60 °C for 40 s and 72 °C for 60 s) 

after an initial incubation for 1 min at 95 °C. Amplicons were sequenced using Sanger 

sequencing and identified using blastn against annotated sequences in GenBank.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.23.477436doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477436
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

DNA extraction for genome and metagenome sequencing 

The gut DNA was extracted following Kwong et al. [3]. Briefly, the crushed gut 

was suspended in a capped tube with 728 μl of CTAB buffer, 20 μl of proteinase K, 

500 μl of 0.1-mm Zirconia beads (BioSpec), 2 μl of 2-Mercaptoethanol and 2 μl of 

RNase A cocktail. The mixtures were bead-beaten for 2 min for 3 times. After digested 

overnight at 50 °C, the mixtures were added with 750 μl of phenol/chloroform/isoamyl 

alcohol (25:24:1, pH 8.0) and centrifuged to obtain the aqueous layer. After being 

precipitated at -20 °C, spun at 4 °C and washed with -20 °C ethanol, the DNA pellets 

were dried at 50 °C and then re-suspended in 50 μl of nuclease-free H2O. Final DNA 

samples were stored at -20 °C. 

Genomic DNA of honeybee gut bacterial isolates was also extracted using the 

phenol-chloroform protocol. The bacterial cells were re-suspended in 500 μl of lysis 

buffer [50 mM Tris-HCl (pH 8.0), 200 mM NaCl, 20 mM EDTA, nuclease-free H2O, 

2% SDS, proteinase K (20 mg/ml)], then added with 500 μl of CTAB extraction buffer 

[50 mM Tris-HCl (pH 8.0), 20 mM EDTA, 1.4 M NaCl, 2% CTAB, 1% PVP 40000, 

nuclease-free H2O; pre-heated at 56 °C]. The mixtures were incubated for 30 min at 

65 °C before the addition of 500 μl of phenol/chloroform/isoamyl alcohol (25:24:1, pH 

8.0). Then the mixture was centrifuged at 14,000 g at room temperature (RT) for 5 min. 

The aqueous layer was transferred to a new tube, added with 5 μl of RNase (100 mg/ml), 

and incubated at RT for 20 min and added with 600 μl of chloroform: isoamyl alcohol 

(24:1). After spinning at 14,000 g at RT for 5 min, the aqueous layer was transferred to 

a new tube and added with 5 μl of ammonium acetate (final concentration 0.75 M), 1 

μl glycogen solution (20 mg/ml) and 1 ml of cold 100% ethanol. DNA was precipitated 

at -20 °C for 30 min. Precipitations were spun at 14,000 g at 4 °C for 15 min, and the 

supernatant was decanted. DNA pellets were washed with 80% and 70% ethanol pre-

cooled at -20 °C respectively and spun for an additional 10 min at 4 °C. The supernatant 

was discarded and the DNA pellet was air dried. The pellet was re-suspended in 50 μl 

nuclease-free H2O, and kept at 4 °C overnight before stored at -20 °C.  

 

Genome and metagenome sequencing 

A total of 99 honeybee gut samples were used for metagenome sequencing (Table S1). 

And 83 isolated core bacterial strains obtained from A. cerana were also sequenced 
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(Table S2). DNA samples were paired-end sequenced at BGI-Shenzhen using the 

BGISEQ-500 platform (200-400 bp insert size; 100 bp read length; paired-ended [PE]) 

and at Novogen using the Illumina Hiseq X Ten platform (350 bp insert size; 150 bp 

read length; PE). One Gilliamella strain (B3022) was sequenced on the PacBio RS II 

platform at NextOmics.  

 

Bacterial genome assembly and annotation 

Low quality reads from the Illumina Hiseq X Ten platform were filtered out using 

fastp [56] (version 0.13.1, -q 20 -u 10) before subsequent analyses. For isolated 

bacterial strains, clean data were assembled using SOAPdenovo [57] (version 2.04, -K 

51 -m 91 –R for PE 150 reads; -K 31 -m 63 –R for PE 100 reads), SOAPdenovo-Trans 

[58] (version 1.02, -K 81 -d 5 -t 1 -e 5 for PE 150 reads; -K 61 -d 5 -t 1 -e 5 for PE 100 

reads), and SPAdes [59] (version 3.13.0, -k 33,55,77,85) based on contigs assembled 

by SOAPdenovo (only for PE 150 reads) or SOAPdenovo-Trans. The assembly with 

the longest N50 was retained for each strain as the draft genome. Then clean reads were 

mapped to the assembled scaftigs using minimap 2-2.9 [60] and the bam files were 

generated by samtools [61] (version 1.8). Genome assemblies were processed by 

BamDeal (https://github.com/BGI-shenzhen/BamDeal, version 0.19) to calculate and 

visualize the sequencing coverage and GC content of the assembled scaftigs. Scaftigs 

with aberrant depths and GC contents were then removed from the draft genome. Next, 

the remaining scaftigs were filtered taxonomically. Scaftigs assigned to eukaryote by 

Kraken2 [62] using the standard reference database were removed, and the ones aligned 

to a wrong phylum by blastn (megablast with e < 0.001) were further removed. The 

remaining genome assemblies were used as bacterial genome references. The 

Giliamella strain (B3022) sequenced on the PacBio RS II platform was assembled using 

a hierarchical genome assembly method (HGAP2.3.0) [63].  

 The protein coding regions of bacterial genomes were predicted using Prokka 

version 1.13 [64]. The KEGG orthologous groups (KOs) annotation was carried out 

using KofamKOALA [65] based on profile HMM and adaptive score threshold with 

default parameters. Programs KEGG Pathway and Brite Hierarchy were used to screen 

the annotation results. Finally, dbCAN2 version 2.0.11 [36] was applied to annotate 

CAZymes and CGCs using embedded tools HMMER, DIAMOND and Hotpep with 

default parameters.  
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Genetic variation of A. cerana hosts 

Metagenomes were filtered by fastp (-q 20 -u 10) [56]. Clean reads were then 

mapped to the A. cerana reference genome (ACSNU-2.0, GCF_001442555.1) [66] 

using the BWA-MEM algorithm (v 0.7.17-r1188) [67], with default settings and an 

additional “-M” parameter to reach compatibility with Picard. Read duplicates were 

marked using Picard MarkDuplicates 2.18.9 (http://broadinstitute.github.io/picard/). 

GATK HaplotypeCaller in the GVCF mode [68] (v4.0.4) was used to call variants for 

each sample. All of the per-sample GVCFs were joined using GenotypeGVCFs. Then 

the final variant file retained SNPs that met all of the following criteria: 1) average 

depth > 5× and < 40×; 2) quality score (QUAL) > 20; 3) average genotype quality (GQ) > 

20; 4) minor allele frequency (MAF) > 0.05; 5) proportion of missing genotypes < 50%; 

6) bi-allelic SNP sites.  

The identity by state (IBS) distance matrices were performed and constructed with 

the filtered SNPs using functions “snpgdsIBS” in the R package SNPRelate [69]. A 

neighbor-joining tree was reconstructed based on the IBS distance matrix using the 

function “nj” in the R package Ape [70]. Node support values were obtained after 1,000 

bootstrap replicates. 

 

Reference-based metagenome composition analyses  

Shotgun reads generated from whole honeybee gut were firstly mapped against the 

A. cerana genome (ACSNU-2.0, GCF_001442555.1) using BWA aln (version 0.7.16a-

r1181, -n 1) [67] to identify host reads, which were subsequently excluded. For 

taxonomic assignments of bacterial sequences, we used Kraken2 [62] and Bracken 

version 2.0 [71] to profile bacterial phylotype composition and used MIDAS [72] to 

profile strain composition for metagenomic samples. The reference database contained 

390 bacterial genomes, including 307 published genomes and 83 newly-sequenced A. 

cerana-derived strains from this study (Table S2). The majority of the reference strains 

belonged to six core phylotypes (Gilliamella, Snodgrassella, Bifidobacterium, 

Lactobacillus Firm-4, Lactobacillus Firm-5, Apibacter) of honeybee gut bacteria. The 

analyses of public gut metagenome data of A. cerana from Japan [30] and A. mellifera 

[30,33] followed the same pipeline.  
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Identification and profiling of SDP  

We defined SDPs for each core gut bacterium (Gilliamella, Snodgrassella, 

Bifidobacterium, Lactobacillus Firm-4, Lactobacillus Firm-5, Apibacter) using a 95% 

gANI threshold [73]. Pairwise average nucleotide identities were calculated using the 

pyani Python3 module (https://github.com/widdowquinn/pyani). To generate the 

whole-genome tree for each core bacterium, we used Roary version 3.12.0 [74] with 

the parameter -blastp 75 to obtain core single-copy genes shared among all strains. The 

alignments of nucleotide sequences were concatenated, from which a maximum-

likelihood tree was inferred using FastTree version 2.1.10 [75] with a generalized time-

reversible (GTR) model and then visualized using iTOL [76].  

We used the ‘run_midas.py species’ script of MIDAS [72] with default parameters 

to estimate SDP relative abundances in each sample. The script ‘merge_midas.py 

species’ with the option ‘--sample_depth 10.0’ was used to merge SDP abundance files 

across samples. The SDPs with a relative abundance less than 1% were filtered out. 

 

Detection of SNV and CNV across populations 

 CheckM version 1.0.86 [77] was used to estimate the completeness and 

contamination of genomes. The genome with the highest completeness and lowest 

contamination was selected as the reference sequence for each SDP. The metagenomic 

reads were mapped against reference genomes and the SNVs were quantified along the 

entire genome using MIDAS [72] and the script ‘run_midas.py snps’ with default 

parameters. For each SDP, the script ‘merge_midas.py snps’ pooled data across 

multiple samples with options ‘--snp_type bi --site_depth 5 --site_prev 0.05 –

sample_depth 5.0 –fract_cov 0.4 –allele_freq 0.01’ to obtain the minor allele (second 

most common) frequency file. Thus, bi-allelic SNVs prevalent in more than 5% of 

profiled samples were predicted and rare SNVs with abnormally high read depth were 

excluded. The matrix files of SNVs remaining polymorphic were obtained after 

filtering steps. 

We used the ‘run_midas.py genes’ script in MIDAS [72] to map metagenomic 

reads to pangenomes of each SDP and quantified gene copy numbers with default 

parameters. Then we merged results from pangenome profiling across samples with the 

option ‘--sample_depth 5.0’ from the ‘merge_midas.py genes’ module. The gene 

coverage was normalized by the coverage of a set of 15 universal marker genes to obtain 
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the estimated copy number for genes of each SDP. The coverage of each KO term was 

obtained by summing up all genes annotated as the same KO for each SDP. P values 

were calculated using the Kruskal-Wallis one-way analysis across populations with the 

‘compare_means’ function in the R package ‘ggpubr’. KO copy number variation and 

SNV of each SDP were detected as highly variable when an adjusted P value < 0.05. 

 

De novo assembly of metagenomes 

The metagenome was also de novo assembled using MEGAHIT [78] (version 1.1.2, 

-m 0.6 --k-list 31,51,71 --no-mercy) for each gut sample. Assemblies longer than 500 

bp were blasted against the NCBI nr database using DIAMOND [79] (version 

0.9.22.123, blastx -f 102 -k 1 -e 1e-3) and were assigned to fungi, bacteria, archaea, 

virus or plants (Viridiplantae). Only assemblies assigned as bacteria were retained for 

further analyses. 

A customized bacterial genome database was constructed to enable taxonomic 

assignments for the bacterial assemblies. The database included all bacterial genomes 

available on NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/) up to Jan 

2019 (167,172 genomes) , 83 genome assemblies of newly sequenced A. cerena gut 

bacteria (Table S2) and 14 Apibacter genomes from A. cerana [80]. Taxonomical 

assignments were conducted using blastn and an e-value of 1e-5. The assemblies were 

assigned to the genus of the best hit, while those without any hits were defined as 

unassigned bacteria.  

For each metagenome sample, all clean reads were mapped against bacterial 

assemblies using SOAPaligner [81] (version 2.21, -M 4 -l 30 -r 1 -v 6 -m 200). The 

results were summarized using the soap.coverage script (version 2.7.7, 

http://soap.genomics.org.cn/down/soap.coverage.tar.gz). Only assemblies with ≥ 90% 

coverage were considered as true bacteria. Shannon index and Bray-Curtis dissimilarity 

were calculated using the vegan R package [82]. The analyses of public gut 

metagenome data of A. cerana from Japan [30] and A. mellifera [33] followed the same 

pipeline.  

 

Gene prediction and functional annotation for metagenomes 

Gene prediction was conducted using MetaGeneMark [83] (GeneMark.hmm 

version 3.38) with the de novo metagenome assemblies, and those longer than 100 bp 
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were clustered using CD-HIT [84] (version 4.7, -c 0.95 -G 0 -g 1 -aS 0.9 -M 0) to obtain 

a non-redundant gene catalog for A. cerana metagenomes. For each individual 

metagenome sample, clean data were aligned onto the non-redundant gene catalog 

using SOAPaligner [81] (version 2.21, -M 4 -l 30 -r 1 -v 6 -m 200). And the gene 

abundance was calculated using the soap.coverage script (version 2.7.7, 

http://soap.genomics.org.cn/down/soap.coverage.tar.gz). For each sample, only 

assemblies of ≥ 90% coverage were retained for further annotation. The analyses of 

public gut metagenome data of A. cerana from Japan [30] and A. mellifera [33] 

followed the same pipeline.  

Functional annotation of gene catalog was performed by GhostKOALA [85] using 

the genus_prokaryotes KEGG GENES database and KofamKOALA [65] with an e-

value threshold of 0.001. Genes were firstly assigned with KO ID predicted by 

KofamKOALA, and the remaining unassigned genes were then annotated using 

GhostKOALA. KOs were mapped onto KEGG pathways using the KEGG Mapper 

online (https://www.kegg.jp/kegg/tool/map_pathway2.html).  

The abundances of KOs and pathways were calculated as the sum of the 

abundances of all genes annotated to them using custom scripts. Population 

dissimilarities (Bray–Curtis distance) of KO function among the 15 bee populations 

were tested by the ANOSIM test included in the vegan package [82] with 999 

permutations. Linear discriminant analysis (LDA) was performed using LEfSe [34] 

with default parameters to identify KO biomarkers in different populations. Function 

enrichment of featured KOs was estimated by one-sided Fisher’s Exact Test using the 

stats R package at both module and pathway levels.  

For each featured KO, the abundances for all bacterial species encoding the KO-

related genes were listed for all of the 99 samples. In each population, the median 

abundance was used as the abundance of bacterial species encoding the respective KO. 

Then the contributions by different bacterial species to the corresponding KO were 

estimated. If the KO term was identified in > 50% individual bee guts of the same 

population, the KO was considered to be present in the population. To compare gene 

numbers among different populations, we standardized metagenome data by randomly 

extracting 400 Mb bacterium-derived data from each gut sample, which were mapped 

to the gene assemblies. The assemblies were retained only if the coverage ≥ 90%.  
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GH and PL genes were functionally assigned with the dbCAN2 database [36]. In 

each population, the median abundance was used as the abundance of bacterial species 

encoding respective GH/PL gene clusters. Then the contributions by different bacterial 

species to the corresponding GH/PL gene clusters were estimated. 

 

Diet profiling of gut and honey metagenomes 

A customized chloroplast genome database was firstly constructed for flowering plants 

(4,161 from NCBI and 271 newly sequenced ones generated by our group) for 

KrakenUniq version 0.5.5 [86]. For gut metagenome data, we filtered out reads mapped 

to the A. cerana genome or to the de novo bacterial assemblies, and used the remaining 

reads for pollen diet profiling. The remaining reads were first aligned to the customized 

chloroplast genomes with KrakenUniq [86] with default parameters. Those mapped 

reads were aligned to nt database with blastn with e-value setting as 1e-5, and the best 

alignment were retained. Then the reads from the alignments with similarity > 95% and 

query coverage > 90% to reference sequences from plants were kept, and used to 

estimate the pollen abundance at the family level. The families with a relative 

abundance less than 1% were filtered out. 

The geographical variation in pollen composition was also conducted with 

metagenome data from honey samples collected from five representative regions of this 

study (SC_AB, SC_GB, SX_QL, QH_GD, JL_DH, Table S11) [87]. For each sample, 

pollen pellets were centrifuged from diluted honey at 12,000 rpm for 15 min, and used 

for DNA extraction following Soares et al [88]. DNA samples were sequenced using 

Illumina HiSeq X Ten platform (350 bp insert size; 150 PE). Reads were assembled 

with MitoZ assembly module [89], with a K-mer size of 31 bp, a minimum edge depth 

of 3 and a minimum output length of 500 bp. The assemblies were aligned to the nt 

database with blastn and the best alignment was retained. Then the assemblies with 

similarity > 95% and query coverage > 90% to reference plant sequences were retained. 

Clean reads were then aligned to these assemblies using Minimap2 [60], and the 

mapped reads were used to estimate the pollen abundance at the family level with 

SamBamba [90]. The families with a relative abundance less than 1% were filtered out. 

The gut bacterial phylotype and KO composition from de novo assembly and 

annotation were used in the correlation analysis with pollen composition at the family 

level.  
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Heritability of bacterial diversity 

The rank-based inverse normal transformation of the relative abundance with reference-

based method was used in the heritability analysis. The heritability was defined as the 

Percentage of Variance Explained (PVE) and estimated with Genome-wide Ecient 

Mixed Model Association (GEMMA, v0.94) [91]. To control the effects of individual 

relatedness, population structure and diet variation, we regressed the transformed gut 

bacteria abundance with the first three PCs from the PCA of the host genotypic data, 

and the pollen Shannon index from the gut. Then PVE estimation was performed with 

the residuals using GEMMA (with relatedness matrices and the HE regression 

algorithm). A phylotype or SDP was considered heritable if the PVE measurements did 

not show overlaps with zero. 

 

The association between host genetic variation and bacterial diversity 

The rank-based inverse normal transformation of the relative abundance of core gut 

bacteria was used in the Genome-Wide Association Studies (GWAS) analysis. We used 

the Linear Mixed Model in rMVP v1.0.0 [92]. In the GWAS analysis, the kinship 

between individuals, the first three PCs in host PCA, and the diet (Shannon index of 

pollen family composition) were used for correction. We used the ‘EMMA’ method to 

analyze variance components in rMVP. The statistical significance level was set to P < 

5×10-8 for the GWAS association. 

 

The effects of diet on the abundance of Gilliamella and Lactobacillus Firm-5 

A Gilliamella strain (B2889, belonging to the SDP Gillia_Acer_2) were cultivated with 

HIA, and a Lactobacillus Firm-5 strain (B4010) were cultivated with MRS with 0.02 

g/ml D-frutcose (aladdin F108331) and 0.001 g/ml L-cysteine (aladdin C108238). The 

microbiota-free A. cerana workers were obtained following Zhang et al. [80]. Pupae in 

late stage were removed from brood frames and incubated in sterile plastic bins at 35 °C. 

Both bacterial strains of OD600=1 were mixed at equal volumes, and then mixed with 50% 

(v/v) sterilized sucrose syrup, which were fed to newly emerged microbiota-free 

honeybees. After three days, cellobiose (Shanghai Yuanye Bio-Technology Co., Ltd 

S11030, final concentration 5 mg/mL) and solutions with different proportions of pectin 

(Sigma, P9135) and cellulose (Megazyme, P-CMC4M) (1:10, 10:1, final mixed 
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concentration 5.5 mg/mL) mixed with sterilized 50% sucrose syrup were fed to 

honeybees, respectively.  Honeybees fed with only 50% sucrose syrup were used as 

control. After feeding for four days, DNA were extracted from bee guts and used for 

the qPCR assay.  

 

qPCR assay 

We conducted real-time qPCR experiments to determine bacterial loads for both 

Gilliamella and Lactobacillus Firm-5 after the feeding experiments. 16S-F-Gillia (5’-

TGAGTGCTTGCACTTGATGACG-3’) and 16S-R-Gilla (5’-

ATATGGGTTCATCAAATGGCGCA-3’) primers were used for Gilliamella 16S 

rRNA gene amplification. 16S-F-Firm5 (5’-GCAACCTGCCCTWTAGCTTG-3’) and 

16S-R-Firm5 (5’-GCCCATCCTKTAGTGACAGC-3’) primers [93] were used for 

Lactobacillus Firm-5 16S rRNA gene amplification. Actin-AC-F (5’-

ATGCCAACACTGTCCTTTCT-3’) and Actin-AC-R (5’-

GACCCACCAATCCATACGGA-3’) primers were used to amplified actin gene of the 

host A. cerana [94], which was used to normalize the bacterial amplicons [93]. The 16S 

target sequences were cloned into vector pEASY-T1 (Transgen) and the Actin target 

sequence was cloned into pCE2 TA/Blunt-Zero Vector (Vazyme), then confirmed by 

Sanger sequencing. The copy number of the plasmid was calculated, serially diluted 

and used as the standard. qPCR was performed using the ChamQ Universal SYBR 

qPCR Master Mix (Vazyme) and QuantStudio 1 (Thermo Fisher) in a standard 96-well 

block (20-μL reactions; incubation at 95 °C for 3 min, 40 cycles of denaturation at 95 °C 

for 10 s, annealing/extension at 60 °C for 20 s). The data were analyzed using the 

QuantStudio Design & Analysis Software v1.5.1 (Thermo Fisher) and Excel 

(Microsoft). P values were calculated using the Mann-Whitney test. 
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Figures 

 
 

Fig. 1 Bacterial composition of gut microbiota in geographic populations of A. 

cerana. (a) Sampling sites of 15 A. cerana geographic populations. (b) Neighbor-

joining tree reflecting the honeybee population structure, based on genome-wide SNPs . 

Bacterial relative abundance (c) and Shannon index (d) based on gut metagenomes of 

different populations. Phylotypes with at least 5% abundance in any sample or 0.5% 

abundance in more than 6 samples were shown, otherwise included in “Others”. 

Lactobacillus: Lactobacillus that were not assigned to any known groups. (e) Featured 
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gut microbe phylotypes in each geographic population revealed by LEfSe analyses. The 

size of the bubbles represents LDA score. Phylogenetic relationships of SDPs within 

Gilliamella (f), Snodgrassella (g) and Bifidobacterium (h). Maximal-likelihood 

phylograms, reconstructed using core genes present in all strains of the corresponding 

phylotype. The SDP compositions of Gilliamella (i), Snodgrassella (j) and 

Bifidobacterium (k) in gut samples, with those of abundances < 1% excluded. 

Horizontal bars under panels c and i-k indicate population origins of the guts, with 

colors corresponding to those in a and b.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.23.477436doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477436
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Fig. 2 Gilliamella and Lactobacillus Firm-5 showed antagonistic trends in 

compositional turnover of honeybee gut microbiomes. (a) Overall variation of gut 

microbial community at the phylotype level, revealed by Bray-Curtis dissimilarity 

PCoA (bottom panel). Boxplots (top panel) indicate the distribution of each population 

along the first principal coordinate axis (PCoA1). Boxplot center values represent the 
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median and error bars represent the SD. Colors correspond to the population origin of 

the gut samples. (b) Relative abundances of core bacterial phylotypes along PCoA1. (c) 

The pollen composition at the family level varied in gut metagenomes from populations 

of A. cerana. (d) The Jaccard distances of the gut bacterial phylotype and the pollen 

composition at the family level were significantly correlated.  
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Fig. 3 Significant variations in gene cluster and functional annotation among 

populations. (a) Gene cluster numbers per gut sample, based on 400 Mb bacteria-

mapped reads. (b) Accumulation curves for gene clusters of each population of A. 

cerana, based on 400 Mb bacteria-mapped reads. (c) Relative abundance of KEGG 

annotations in each gut sample, based on all bacterium-mapped reads in metagenomes. 

(d) The Jaccard distances of the gut bacterial KO composition and the pollen 

composition at the family level were significantly correlated. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.23.477436doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477436
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Fig. 4 Locally featured KOs were enriched in carbohydrate transporters. (a) 

Featured KOs in geographic populations were enriched in transporters. (b) Featured 

KEGG pathways in gut microbiota from A. cerana populations. The size of the bubbles 

represents KO numbers. (c) Transporters in featured KOs were mainly specialized for 

carbohydrates. The size of the bubbles represents the LDA score. The codes marked 

next to each bubble indicate the main contributing bacteria species, where only those 

with > 10% contribution were listed: A: Apibacter; B: Bifidobacterium; D: 

Dysgonomonas; G: Gilliamella; L: Lactobacillus that is not assigned to any known 

groups; L5: Lactobacillus Firm-5; S: Snodgrassella.  
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Fig. 5 Main bacterial phylotypes coding for PTS and GHs. (a) Gene copy numbers 

in population-featured PTS pathways identified in all SDPs. Numbers in parentheses 

represent SDP strain numbers. Genes were annotated from the genomes of newly 

isolated microbial strains from A. cerana guts. (b) Featured GHs were coded by 

different bacterial phylotypes from metagenome of 15 geographic populations of A. 

cerana. (c) PTS transporters (celA/celB/celC/bglF), 6-phospho-beta-glucosidase (bglA) 

from the GH1 family were often found located together in genomes, which were 

represented here by Lactobacillus Firm-5 SDP. (d) ABC transporters 

(msmE/msmF/msmG), alpha-galactosidase from the GH36 family, and alpha-
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glucosidase from the GH13_31 family were often found located together in genomes, 

which were represented here by two Bifidobacterium SDPs. The change the absolute 

abundance of Gilliamella (e), Lactobacillus Firm-5 (f) and the percentage of 

Gilliamella and Lactobacillus Firm-5 (g) after feeding cellobiose and mixtures of pectin 

and cellulose with different concentrations. PTS: phosphotransferase system; GH: 

glycoside hydrolase. ABC: ATP binding cassette. ns: not significantly different, * P < 

0.05, ** P < 0.01, *** P < 0.001.  
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