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Abstract

Empirical assays of fitness landscapes suggest that they may be rugged, that is having multiple fit-

ness peaks. Such fitness landscapes, those that have multiple peaks, necessarily have special local

structures, called reciprocal sign epistasis (Poelwijk et al. (2011)). Here, we investigate the quanti-

tative relationship between the number of fitness peaks and the number of reciprocal sign epistatic

interactions. Previously it has been shown (Poelwijk et al. (2011)) that pairwise reciprocal sign epista-

sis is the necessary but not sufficient condition for the existence of multiple peaks. Applying discrete

Morse theory, which to our knowledge has never been used in this context, we extend this result by

giving the minimal number of reciprocal sign epistatic interactions required to create a given number

of peaks.
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1 Introduction

The fitness landscape is the relationship between genotypes and their fitness. Availability of high

throughput methods and next generation sequencing started to experimentally characterize aspects

of different fitness landscapes. Due to the enormity of the underlying genotype space (Wright (1932);

Maynard Smith (1970)), the experimental approaches are limited to assaying fitness of: (a) closely
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related genotypes (Sarkisyan et al. (2016); Melamed et al. (2013); Romero and Arnold (2009);

de Visser and Krug (2014)); or (b), very restricted genotype spaces such as the interaction of a

small number of protein sites (Wittmann, Yue and Arnold (2021); Kuo et al. (2020); Pokusaeva et al.

(2019)). Nevertheless, the number of assayed genotypes in a single landscape is becoming larger in

recent studies (Russ et al. (2020); Bryant et al. (2021)) and it appears that the experimental charac-

terization of a sufficiently large fitness landscape with multiple fitness peaks may be attainable within

the next decade. Therefore, there is a need for development of computational methods (Wittmann,

Yue and Arnold (2021); Alley et al. (2019); Bryant et al. (2021); Russ et al. (2020); Biswas et al.

(2021)) and theory (Zhou and McCandlish (2020)) that can improve the description of experimental

fitness landscape datasets, such as obtaining an estimate of the number of isolated peaks. Here,

we use Morse theory to calculate the minimal number of reciprocal epistatic interactions for a given

number of peaks on a landscape.

Epistasis is the interaction of allele states of the genotype, which shapes the fitness landscape.

When the impact of allele states on fitness is independent of each other, there is no epistasis and the

resulting fitness landscape is smooth and has a single peak. Epistasis can lead to a more rugged

fitness landscape and decrease the number of paths of high fitness between genotypes. Epistasis

that makes the impact of an allele state on fitness stronger or weaker is called magnitude epistasis.

On the other hand, epistasis that causes the contribution of an allele state on fitness to change its

sign (e.g., a beneficial mutation becomes deleterious) is called sign epistasis (Weinreich, Watson

and Chao (2005)). When the two allele states at different loci change the sign of their respective

contribution to fitness then this interaction is called reciprocal sign epistasis. In a simple example

of this principle, in a two loci two allele model, there are four genotypes, 00, 01, 01 and 11. The

following landscape is shaped by sign epistasis when genotypes 00, 01, 10 and 11 have fitnesses of

1,-1,1 and 1, respectively. Reciprocal sign epistasis is present when the fitnessses of 00, 01, 10 and

11 genotypes are 1,-1,-1 and 1, respectively.

Of course, the effect of an allele state can depend on more than just one other locus, or site, in the

genome. When allele states in different loci impact each other then the epistasis is higher-order.

Higher-order epistasis if found frequently in the characterized fitness landscapes (Weinreich et al.

(2013)), and it is clear that it has important evolutionary consequences (Kondrashov and Kondrashov

(2001); Canale et al. (2018); Fragata et al. (2019); de Visser and Krug (2014)). However, models that

allow studying such epistasis are at an early stage of their development (Crona, Krug and Srivastava

(2021); Crona, Greene and Barlow (2013); Crona (2020)).

The evolutionary consequences of epistasis may be especially important when it leads to multiple

local peaks. In that case, a population can get stuck on a suboptimal peak, decreasing the ability of

evolution to find an optimal solution.

Using a combinatorial argument, Poelwijk et al. (2011) showed the following qualitative property:

reciprocal sign epistasis is necessary for the existence of multiple peaks. Using Morse theory, we

approach a more quantitative description of this relationship. This work might be the first formal use
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of Morse theory to study fitness landscapes.

2 Outline of the method

Morse theory studies the properties of some discrete structures (such as graphs) and special func-

tions defined on them. In particular, the strong Morse inequality relates the number of critical points

with the Betti numbers of the underlying structure. In our case, we approximate the genotypes space

structure as a graph where vertices are binary sequences (genotypes) and edges connect those

genotypes within one-mutation distances. To apply Morse theory to our question of interest, we also

consider edges between those vertices that are separated by reciprocal sign epistasis. The Morse

function assigns a number to the vertices and all of their edges. On the vertices, the Morse function

value is the corresponding genotype’s fitness, while on edges the value is tailored for applicability of

Morse theory.

Because we model genotypes as binary sequences the sequence space is a hypercube. Also, we

consider only fitness landscape with no strictly neutral mutation, i.e. all direct neighbours of a vertex

have slightly different fitness values.

The strong Morse inequality allows us to quantify the necessary condition for the existence of multiple

peaks.

Theorem 1 (Strong Morse inequality). Consider mi the number of critical points of the order i, and

bi the ith Betti number of the graph. Then, for all i ≥ 1,

i∑
n=0

(−1)i−nmn ≥
i∑

n=0

(−1)i−nbn .

In particular, we will make use of the case i = 1, i.e

m1 −m0 ≥ b1 − b0 .

The main insight is, we define the graph and the Morse function in such a way that m0 are peaks, m1

are reciprocal sign epistatic interactions, and b0 = 1. Finally, by definition of Betti numbers, b1 ≥ 0.

Using the Theorem 1 for i = 1, we show the following result.

Theorem 2 (Quantification of epistatic interactions).

# reciprocal sign epistatic interactions ≥ # peaks − 1 .
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3 Formal proof

The combinatorial argument used in Poelwijk et al. (2011) shows that between any two peaks there

must be a path connecting them. The minimum fitness along this path is part of a reciprocal sign

epistatic interaction. Our result is intuitively explained by induction over the number of peaks as

follows. The base case is when there are only two peaks, which is already explored in Poelwijk et al.

(2011). Now, consider a fitness landscape and introduce the third peak. This new peak must be

connected to all previous peaks through some reciprocal sign epistatic interaction, and the question

is if a new peak introduces another such interaction.

The paths connecting the new peak to the old ones may use already existing epistatic interactions,

but we show that introducing this new peak must imply the creation of a new reciprocal sign epistatic

interaction. To make this last step in the proof formal, we use discrete Morse theory.

Figure 1: Proof by drawing

We introduce all the necessary concepts before explaining the proof step by step.
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3.1 Necessary definitions (gentle version)

In this section we introduce the two terms used in Theorem 1: critical points and betti numbers. Since

we work only on (undirected) graphs, the general definitions are simplified to the following.

Definition 3.1 (Betti numbers). Let G = (V,E) be a graph. The zero-th Betti number (b0) is the

number of connected components in G. The first Betti number (b1) equals |E| + b0 − |V |, usually

called cyclomatic number.

Remark 3.1 (Betti numbers in connected graphs). Let G = (V,E) be a connected graph. Then,

b0 = 1 and b1 = |E|+ 1− |V |. Since G is connected, |E| ≥ |V | − 1, therefore b1 ≥ 0.

Definition 3.2 (Critical). Let G = (V,E) be a graph and f : V ∪ E → R a function. We say that a

vertex v ∈ V is critical if, for all edges e containing v we have that f(e) > f(v).

We say that an edge e = {u, v} ∈ E is critical if f(e) > max{f(u), f(v)}.

We denote m0 the number of critical vertices and m1 the number of critical edges.

3.2 Necessary definitions (option 2)

closed_cell

cell_structure

cell_complex

strict_equivalence

discrete_morse_function

CW_complex

regular_cell_complex

weak_topology

betti_numberregular

critical_point

m_n

Figure 2: Definitions dependency

The following standard definitions were taken from Forman (1998); Lundell (1969) and are a formal

repetition of the simplified version we presented before.

Definition 3.3 (Closed cell). Consider some space M and the set En := [0, 1]n ⊆ n. If there is

an homeomorphism ϕ : En → σn ⊂ M , we say that σn is a n-dimensional closed cell and ϕ a
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characteristic map for the cell σ.

Let τ and σ be two closed cells. We write τ > σ if σ ∈ ∂τ .

Definition 3.4 (Cell structure). Let M be a set. A cell structure on M is a pair (M,Φ), where

Φ = {ϕ}ϕ∈Φ is a collection of maps of closed cells into X satisfying the following conditions.

1. Injective interior. For all ϕ ∈ Φ, if En = dom(ϕ), then ϕ is injective in En \ ∂En, where ∂ is the

boundary operator.

2. Partition of M . The set {ϕ(En \ ∂En) : ϕ ∈ Φ, En = dom(ϕ)} partition M .

3. Boundaries are lower dimensional cells. For all ϕ ∈ Φ, if En = dom(ϕ), then ϕ(∂En) ∈
{ψ(Ek \ ∂Ek) : ψ ∈ Φ, Ek = dom(ϕ), k ≤ n− 1}.

Definition 3.5 (Strict equivalence). We say that two cell structures (M,Φ) and (M,Φ′) are strictly

equivalent if there is a one-to-one correspondence between Φ and Φ′ such that a characteristic

function with domain En corresponds to a characteristic function with domain En, and corresponding

functions differ only by a reparametrization of their domain.

Definition 3.6 (Cell complex). Let M be a set. A cell complex on M is an equivalence class of cell

structures (M,Φ) under the equivalence relation of strict equivalence. A cell complex on M will be

denoted by a pair (M,K), where K = KΦ for some representative cell structure (X,Φ). The set K

is called the set of (closed) cells of (X,K).

Moreover, we will abuse the notation and write K = {σ : σ ∈ Φ}, the set of all cells.

In particular, every graph G = (V,E) can be seen as a cell complex where all the edges are closed

cells of dimension one, and all vertices are closed cells of dimension zero.

Definition 3.7 (Regular). Let (X,S) be a cell complex. A cell σn, face of τn+1 whose characteristic

map is ψ, is called regular if

1. ψ : ψ−1(σn)→ σn is an homeomorphism.

2. ψ−1(σn) = [0, 1]n.

We say that a cell complex is regular if all cells that are faces of other cells are regular.

In particular, every graph is a regular cell complex.

Definition 3.8 (Discrete Morse). Let (M,K) be a cell complex. Consider a function f : K → R

which assigns a value to each cell. We say that f is a discrete Morse function if it satisfies the

following conditions. For all σn ∈ K,

1. If σn is an irregular face of τn+1, then f(τ) > f(σ). Moreover,

|{τn+1 > σn : f(τn+1) ≤ f(σn)}| ≤ 1 .
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2. If νn−1 is an irregular face of σn, then f(σ) > f(ν). Moreover,

|{νn−1 < σn : f(σn) ≤ f(νn−1)}| ≤ 1 .

3. f is injective.

Note that the previous point is not formally necessary, but we describe it here for convenience.

Definition 3.9 (Critical). Let (M,K) be a cell complex and f : K → R a discrete Morse function.

We say that σ = σn ∈ K is critical if

|{τn+1 > σn : f(τn+1) ≤ f(σn)}| = 0

|{νn−1 < σn : f(σn) ≤ f(νn−1)}| = 0 .

Moreover, we say that σn is a critical cell of index n.

Example 1 (Regularity and minima). If (M,K) is a regular cell complex, then for all discrete Morse

functions we have that its minimum must occur on a vertex, which must be a critical point of index 0.

This follows from the following observation: if n ≥ 1, then every σn, n-dimensional cell, has at least

two (n− 1)-dimensional faces.

Definition 3.10 (mn). Let (M,K) be a cell complex and f : K → R be a discrete Morse function.

We denote mn for the number of critical points of index n of f .

Consider a cell complex (M,K). To define Betti numbers and then state Morse inequalities, we

need to equip M with a topology. We can do so using the weak topology with respect to K, which is

defined as follows.

Definition 3.11 (Weak topology w.r. K). Let (M,K) be a cell complex. Consider the following

procedure.

1. Give each cell σ ∈ K the quotient topology with respect to its characteristic function ϕ.

2. Give M the weak topology with respect to the subsets σ ∈ K, i.e., a set A ⊂ M is closed if

and only if for all σ ∈ K we have that A ∩ σ is closed in σ.

The resulting topology on M is called the weak topology with respect to K.

Let us now define special cell complexes which also have a topology.

Definition 3.12 (CW complex). Let (M,K) be a cell complex, where M is also a M Hausdorff

space. We say that (M,K) is a CW complex if the following conditions hold.

1. M has the weak topology with respect to K.

2. K is finite.
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Naturally, we can always go from a finite regular cell complex to a CW complex by giving to M the

weak topology with respect to K. With this, we can consider regular cell complexes as topological

spaces and so define its Betti numbers as follows.

Definition 3.13 (Betti number). Let (M,K) be a regular cell complex and F a field. Define the n-th

Betti number with coefficients in F as

bn := dimHn(M,F ) .

Example 2 (b0). The first Betti number b0 represents the number of connected components in M . In

particular, if M is connected, then b0 = 1.

3.3 Proof

Proof of Theorem 2. Our proof consists in the following steps:

1. Definition of a regular cell complex.

2. Connectedness of the cell complex.

3. Definition of a discrete Morse function.

4. Application of Morse inequality.

Definition of a regular cell complex. Consider a graph G = (V,E). Let V := {0, 1}d. Let set

of edges E := E1 ∪ E2 by defined in two steps: E1 and E2 has edges involving only sequences

at humming distance one and two respectively. The set E1 contains only edges that connects a

sequence with its fittest mutation, if it exists. Formally,

E1 := {{u, v} : d(u, v) = 1,W (u) < W (v) = max{W (v′) : d(u, v′) = 1}} .

In the other hand, E2 contains edges that connect the two highest points of a reciprocal sign epista-

sis. Formally,

E2 := {{u, v} : d(u, v) = 2,∀y ∈ V d(u, y) = 1∧d(v, y) = 1⇒W (y) < W (u)∧W (y) < W (v)} .

We can easily see that the graph G is a finite regular cell complex by considering K := V ∪ E, i.e.

the cells are both vertices and edges.

Connectedness of the cell complex. We now prove that G is connected, and therefore b0 = 1.

First note that any vertex is connected to a peak. Indeed, from any vertex, by following the path of
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fittest mutations, we can go to a peak by edges in E1. Therefore, we only need to prove that all peaks

are connected.

By contradiction, assume that there areK1, . . . ,Kr connected components ofG. In each component

there might be multiple peaks. Let us come back to the usual sequence graph GS = ({0, 1}d, Ed1
),

where Ed1
contains all edges connecting sequences at humming distance one. Consider the path

P1 that connects two peaks in different components and has the highest minimum value, i.e.,

P1 ∈ argmax
P path in GS

{min{W (v) : v ∈ P} : ∃i 6= j,∃v1 ∈ Ki, v2 ∈ Kj peaks st v1
P←→ v2} .

Without loss of generality, assume that P1 connects v1 ∈ K1 and v2 ∈ K2. Denote vm by the vertex

in P1 that achieves the minimum fitness and divide in the following way: P1 = P 1
1 vmP

2
1 . Note that

we can assume that all vertices in P 1
1 are in K1, i.e. V (P 1

1 ) ⊆ K1. Indeed, if it was not the case,

consider v′ ∈ P 1
1 ∩ Kc

1 . Since v′ 6∈ K1, by following the fittest mutation, it is connected to a peak

v′2 which is not in K1. Consider a new path P ′1 that goes from v1 to v′ and then to v′2. Note that

the minimum fitness value in P ′1 is higher than the one in P1 and P ′1 also connects two different

connected components, which is a contradiction. Therefore, V (P 1
1 ) ⊆ K1. Similarly, we get that

V (P 2
1 ) ⊆ K2.

Denote u1
m ∈ K1 the vertex in K1 ∩ P 1

1 closest to vm, similarly denote u2
m the vertex in K2 ∩ P 2

1

closest to vm. First notice that {u1
m, u

2
m} ∈ E2, i.e. there a reciprocal sign epistasis between vertices

with high fitness. Indeed, if this were not the case, we could connect them through another mutation

that does not involve vm and create a path P ′1 with a higher minimum value, which is a contradiction.

Since u1
m ∈ K1, we can follow the fittest mutation path until a peak u1 ∈ K1 and similarly for u2

m to

a peak u2 ∈ K2. Consider the path Q1 = Q1
1vmQ

2
1, where u1

Q1
1←→ u1

m and u2
Q2

1←→ u2
m. Note that, by

definition of E1, we have that Q1
1, Q

2
1 ⊆ E1. Then, the vertex u1 ∈ K1 and u2 ∈ K2 are connected

by Q1
1Q

2
1, using the edge {u1

m, u
2
m} ∈ E2 to fill the gap. But this is a contradiction because K1 and

K2 were two different connected components. Therefore, G is connected.

Definition of a discrete Morse function. Consider the function f : K → R given by the following.

• For all v ∈ V ,

f(v) = −W (v) .

• For all e = u, v ∈ E1,

f(e) =
f(u) + f(v)

2
.

• For all e = u, v ∈ E2,

f(e) = C ,

where C > max{−W (v) : v ∈ V }.
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Notice that, since the fitness landscape has no strictly neutral mutations, we can perturb f to get an

injective function where the relationship between adjacent cells is preserved. Then, f is a discrete

Morse function.

Application of Morse inequality. By Theorem 1, we have that

m1 −m0 ≥ b1 − b0 .

Since M is connected, we have that b0 = 1. By definition of Betti numbers, and since M is con-

nected, b1 ≥ 0 (see Remark 3.1). The number of critical vertices is m0 and the number of critical

edges is m1. By construction, the only critical vertices are peaks and the only critical edges are

those in E2, i.e. edges that represent reciprocal sign epistasis. Therefore,

# reciprocal sign epistatic interactions ≥ # peaks − 1 .

4 Discussion

We have shown that the multipeaked fitness landscape necessarily has no fewer pairwise recipro-

cal sign epistatic interactions than the number of fitness peaks minus one. This extends the result

of Poelwijk et al. (2011) stating that the reciprocal sign epistasis is a necessary condition for mul-

tiple peaks. Additionally, our study showcases the application of discrete Morse theory to fitness

landscapes.

As discussed in Poelwijk et al. (2011), reciprocal sign epistasis is not a sufficient condition for multiple

peaks. Similarly, we do not show how to estimate the number of peaks from the number of epistatic

interactions.

A sufficient condition for multiple peaks in terms of local interactions was given in a later work (Crona,

Greene and Barlow (2013)): reciprocal sign epistasis leads to multiple peaks if there is no sign

epistasis in any other pair of loci.

The complication of deducing the global properties of fitness landscapes from the local properties of

epistasis between specific sites arises due to the multidimensionality of the fitness landscape: local

peaks formed by a pairwise epistatic interaction can be bypassed through a different dimension.

Therefore, the condition formulated in terms of the pairwise epistatic interaction cannot be sufficient.

One needs to know the full fitness landscape: to deduce that the fitness landscape has multiple

peaks, one has to know that there is no sign epistasis in any other pairwise interaction (Crona,

Greene and Barlow (2013)).
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For a quantitative result converse to ours, we anticipate that higher-order epistatic interactions have

to be considered, which leads to the requirement of full information about the fitness landscape.

We expect that this result can be obtained with a suitable definition of the higher-order epistasis.

Such a result could be useful, for example, to study the empirical fitness landscapes if the number

of mutations under consideration is small enough to make an almost complete description of the

landscape feasible.
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