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Abstract 

The Protein Data Bank (PDB) contains a massive amount of experimental electron density (ED) data. 

Such data are traditionally used to determine atomic coordinates. We report for the first time the use of 

experimental ED in the PDB for modeling of noncovalent interactions (NCIs) for protein–ligand complexes. 

Our methodology is based on the reduced electron density gradient (RDG) theory describing 

intermolecular NCI by ED and its first derivative. We established a database named Experimental NCI 

Database (ExptNCI; http://ncidatabase.stonewise.cn/#/nci) containing ED saddle points, indicating 

~200,000 NCIs from over 12,000 protein–ligand complexes. The value of such data is demonstrated in a 

usage case of understanding amide–π interaction geometry in protein-ligand binding system by using the 

database to facilitate quantum mechanics-based potential energy landscape scan. In summary, the 

database provides details on experimentally observed NCIs for protein-ligand complexes, and can support 

future studies on rarely documented NCIs. The potential of fueling artificial intelligence algorithm 

development by using the database is also discussed. 

 

Introduction 

Noncovalent interactions (NCIs) govern protein–ligand interactions and are critical for understanding the 

determinants affecting ligand-binding affinity. To achieve a deep understanding of NCIs, many protein–

ligand interaction databases have been established in the last decade2-8. Two types of technologies are 

mainly applied to build such databases: 1. Structure-based data mining and 2. Quantum mechanical (QM) 

methods-powered computation. For the first type, protein–ligand complex structures in the Protein Data 

Bank (PDB) are used as the main source, and different indices, such as distance, angle, exposed surface, 

and line-of-sight statistics, are used to depict the possibility of NCI between a pair of atoms or two groups9-

11. For the second type, different levels of QM methods ranging from semiempirical to Coupled-cluster 

singles-doubles-and-triples wave function (CCSD(T)), are used to quantify the interaction energy of small 

model complexes6, 12. The two technologies together have contributed greatly to the development of rules 

for the recognition of classical NCIs, such as hydrogen bonds, halogen bonds, salt bridges, and π-π 

stacking. To further expand the ability to recognize and quantify the entire spectrum of NCIs in highly 

complicated polarization environments such as protein–ligand binding systems and protein–protein 

interaction systems, we need to address the gap in direct evidence of NCI between two proximal atoms 
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in macromolecule systems, caused by the limitation of applying quantum mechanics for large systems 

and by the uncertainty of atom positions in the structures in PDB: e.g., the absence of hydrogen atoms 

and errors induced during structure building.  

  A potential solution for this gap can be found in the field of materials research13 in studies applying the 

reduced electron density gradient (RDG) theory14 in analyzing experimental electron density (ED) derived 

from the X-ray diffraction of small molecular crystals15, 16. Stating the RDG theory in simple terms, NCI 

can be observed by pinpointing the ED saddle point, i.e. (3,-1) critical points, and further quantified by 

measuring ED deviation from a homogeneous electron distribution by using density and its first derivative 

(s = [1/(2(3π2)1/3)]|∇|/4/3). Some researchers have even proved that experimental ED can contribute to 

optimizing functions for density functional theory (DFT), given the fact that experimental ED is inherently 

time-averaged while DFT ED represents pure ground-state13.  

  Inspired by research on small molecule crystals13, 15, 16, we have developed a potentially path-breaking 

procedure to extract critical points from experimental ED for protein–ligand complexes deposited in the 

PDB. We processed over 12,000 protein–ligand complexes and extracted ~200,000 saddle points. These 

data were subject to noise reduction by varying the ED resolution and then consolidated into a database 

named ExptNCI (Experimental NCI Database), which is available through the link 

http://ncidatabase.stonewise.cn/#/nci. In addition to database construction, we also present a case of 

using such data for empirical NCI mining. ED saddle points indicating amide–π interactions are extracted 

and used to support the QM interaction energy landscape scan. The QM result is well aligned with the 

observed points: 85% of the observed points are covered by the region with energy lower than -1.44 

kcal/mol (semiempirical level). Besides the attractive interaction of NH/π, which is consistent with previous 

research17, we also found a -2.65 kcal/mol interaction (DFT level) between the edge of the aromatic ring 

and the amide plane when they interact in a perpendicular “edge-on” geometry.  

 

Results 

NCI Observed in Experimental ED of the Protein–Ligand complex 

X-ray diffraction (XRD) detects the electron distribution of the target molecule and generates an ED map. 

By searching for the ED saddle points, we can not only recognize classical NCI, such as hydrogen bonds, 

π stacking, and halogen bonds, but also find relatively rare NCI such as fluorine interacting with sulfur 

and methyl interacting with pyridine, as shown in Figure 1a-e. Additionally, because experimental ED 

Figure 1. Observing NCI in X-ray diffraction-derived electron 

density map (2Fo–Fc). Blue mesh indicates 2.5Å resolution. All the 

maps are sigma scaled and presented at specified counter level. 

Saddle points are indicated by red arrows. a) Hydrogen bond 

interaction (PDB: 1S38, map counter level 0.2 sigma); b) Interaction 

between methyl and aromatic ring (PDB: 1Q8T, map counter level 

0.2 sigma); c) interaction between F and methylthio (PDB: 2P4Y, 

map counter level 0 sigma); d) Weak π stacking revealed in low-

resolution electron density map (PDB: 3LDQ; blue mesh indicates 

2.5Å map countered at 1.0 sigma; sand yellow mesh indicates 3.5Å 

resolution map countered at 1.0 sigma); e) Sulfur involved NCI 

(PDB: 4I1R, map counter level 0.3 sigma); f) Observing NCI under 

dynamic context caused by the rotation of threonine side chain 

(PDB:1XKK, map counter level 0 sigma); 
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represents a time-averaged density, some dynamics of the NCI can also be observed (Fig. 1f and Fig. 2).  

Another benefit of using XRD ED for NCI detection is that we can emphasize the signals of weak NCI 

by checking them in low-resolution ED maps generated by only including XRDs at low resolution. The 

intensity of XRD decreases as the resolution increases, which results in a relatively high signal-to-noise 

ratio for low-resolution ED maps, which enables us to confirm NCIs by checking them in ED maps at 

different resolutions (Fig. 2). Doing so not only enables the identification of weak NCIs but also helps to 

distinguish false-positive NCIs.  

In addition to using saddle points as a general indicator for recognizing NCI, we also used RDG in 

experimental ED for a more comprehensive NCI descriptor. Both repulsive and attractive interactions can 

be identified and visualized, as shown in Figure 3. Specifically, a spike in the RDG vs. sign(2) plot 

indicates the presence of NCI (Fig. 3b), with the location of the spike on the negative side of the horizontal 

axis indicating attractive interaction and that on the positive side of the axis indicating repulsive 

interaction14. 

 

 

 

 

 

 

 

 

Figure 2. Emphasizing NCI signal in low-resolution ED 

maps. All the maps are sigma scaled and presented at 

counter level 0 sigma. Red cycles indicate the relatively 

weak NCIs which are emphasized in low-resolution ED 

maps. Hydrogen bonds in a dynamic environment are 

shown in panels a, b, and c, with 2fo-fc maps for PDB 1A28 

at 2.5Å, 3.0Å, and 3.5Å resolution, respectively. Red arrows 

indicate the rotation of the groups causing the dynamics. 

π stacking contacts are shown in panels d, e, and f, with 

2fo-fc maps for PDB 1Z6E at 1.8Å, 2.5Å, and 3.0Å 

resolution, respectively.  

Figure 3. Depicting NCI with RDG in experimental ED for protein–ligand complex (PDB: 2WNC). a) Saddle points detected in 2fo–

fc map (counter level 1.0 sigma). Three saddle points indicating three hydrogen bonds are respectively indicated by yellow, purple, 

and cyan arrows; b) Plots of RDG versus electron density multiplied by the sign of the second Hessian eigenvalue for NCIs 

indicated in panel (a). Because the  here is sigma scaled, to avoid negative value, all the   values used for calculating RDG and 

sign(2) have their value added by 3. Spikes indicating three hydrogen bonds are indicated by arrows. All the dots on the scatter 

plot are colored according to their positions in real space. In detail, the dots within 1 Å of the saddle points 1, 2, and 3 are colored 

in yellow, purple, and cyan, respectively. c) RDG-based NCI isosurface showing the ligand–pocket interaction. Regions inside the 

RDG isosurface at value of 0.2 (arbitrary unit) are indicated with dots, and the dots are colored based on sign(2) using the 

rainbow scheme, where blue is for large negative values indicating strong attractive interactions and red is for large positive 

values indicating repulsive interactions. 
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However, there is one limitation of using experimental ED for RDG analysis, which needs to be 

mentioned. Because of the lack of experimental measures on the forward-scattered reflection swamped 

by the transmitted beam, which is known as F000, the absolute value of ED is not available for 

macromolecule crystals. Therefore, the ED maps are contoured on a relative scale, and we had to use a 

sigma-scaled  for the calculation of RDG and sign(2). As a result, the plot in Figure 3b has different 

scales on the horizontal and vertical axes in arbitrary unit. But the shape of plot, spikes appearing in low-

density regions, indicates the occurrence of NCI. 

 ExptNCI Database Content 

The current version of ExptNCI contains a total of 215,397 saddle points extracted from the experimental 

ED of 12,598 ligand–pocket complex structures in the PDB with resolutions ranging from 2.5 to 4.5, 83% 

of which have a resolution greater than 2.5 Å. The ED topology information of the saddle points, such as 

sigma-scaled , RDG, 1, 2, 3, and Laplacian, as well as the structural information of atoms at both ends 

of the saddle points, such as residual name, element, and its hybridization in the Mol2/Sybyl atom format18, 

are included in the database (Table 1). We also included  at a low resolution (3.5 Å) at the position of 

saddle points in a 2.5-Å ED map, for the purpose of using it to distinguish noise from signals of weak NCI. 

As discussed in the first part of the results section, blurring the map by only including low-resolution data 

with a relatively high signal-to-noise ratio can emphasize weak NCI. Here, we filtered out false-positive 

saddle points in a 2.5-Å resolution ED map to check if such points have negative sigma  in a 3.5-Å 

resolution ED map.  

After filtering out the saddle points with weak intensity under either 2.5-Å resolution or 3.5-Å resolution, 

we had 95,532 saddle points left, which accounted for 51% of the originally labeled points (Fig. 4a). Among 

them, 32% were also recognized as NCI by rules embedded in the widely used software ODDT19, with 

hydrogen bonds accounting for the majority (Fig. 4b). For the 68% that were not recognized by ODDT, 

we made a rough classification based on the properties of the atoms at both ends of the saddle points, as 

shown in Figure 1c, in which polar interactions (hydrophilic–hydrophilic), aliphatic C…hydrophilic (N/O) 

interactions, and aromatic …hydrophilic (N/O) interactions accounted for the majority.  

Figure 4. Database construction and dataset profile. a) Database construction workflow; b) Distribution of 

interaction type for NCIs recognized by both ODDT and ED saddle points; c) Distribution of interaction type for 

NCIs recognized by ED saddle points but not ODDT 
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Table 1. List of fields in ExptNCI database 

Field Description 

Code PDB code 

LR_id Ligand Atom Index :: Pocket Atom Index (index start from 0) 

L_type Ligand Atom Type in Mol2/Sybyl type 

R_type Pocket Atom Type in Mol2/Sybyl type 

Type Pocket Atom Index :: Ligand Atom Index in sorted order 

LR_type Pocket Atom Index :: Ligand Atom Index 

is_ED_Based NCI is an ED saddle point-based NCI  

Is_ODDT_Rule_Based NCI is a rule-based NCI recognized by ODDT 

ED intensity (2.5A) , where  is sigma scaled ED intensity of the saddle point in 2fo-fc map at 2.5Å 

ED intensity modified 

(2.5A) 

 +3, where  is sigma scaled ED intensity of the saddle point in 2fo-fc map at 

2.5Å 

ED intensity (3.5A) 
, where  is sigma scaled ED intensity (in 3.5Å 2fo-fc map) at the position of 

2.5Å map saddle point 

Distance Distance between ligand atom and pocket atom 

Rule_type 
NCI type in rule-based NCI ( hbond, salt_bridge, halogen_bond, π_stacking, 

π_cation) 

is_backbone NCI occurs on protein backbone 

ResNum Residue number from PDB file 

ResAtomName Residue atom name in PDB file 

Resolution Highest resolution available in PDB 

CP_type  (3,-1) indicates saddle point; (3,+1)  indicates ring CP 

Lambda1 
three eigenvalues li of the electron-density Hessian (second derivative) matrix, 

such that (1<=2<=3).  
Lambda2 

Lambda3 

Laplacian ∇
2
=1+2+3 

RDG [1/(2(3π2)1/3)]|∇|/4/3 

sign(l2) r 
 when  2 is positive, indicating repulsive interaction; - when  2 is negative, 

indicating attractive interaction    

Group Pocket atom in Protein, Water or Hetatoms 

rec_atom_type Roche atom type (https://doi.org/10.1021/acs.jmedchem.9b01545) 

 

Usage Case：Depicting amide–π interactions in the ligand–protein binding system 

Amide–π interactions17 have been increasingly studied for their involvement in the binding of drug 

molecules to target proteins20-22. Most of the previous studies focused on how the plane of the arene ring 

interacts with the amide,17, 21-23 and therefore can be classified as focusing on face-on geometry, a 

configuration with an  around 0° in a coordinate system, as shown in figure 5a. To check whether such 

face-on geometry represents the majority of amide–π interactions in the protein–ligand binding system, 

we extracted 3,162 amide-π pairs from the ExptNCI database (details of the list provided in supplementary 

information). The amide–π pairs were extracted based on the fulfillment of the following requirements: 1. 

It must have ED saddle points between the aromatic carbon and any atom of the amide group; 2. The ED 

map must have a resolution better than 2.5 Å (examples shown in Fig. 5b). Those with saddle points 

between C=O and hetero atoms in the aromatic ring were excluded so that classical hydrogen bonds are 

not included in the analysis. By plotting the spatial distribution of the aromatic ring center relative to the 

carbon atom of the amide plane and coloring the distribution with a -related color scheme, it is interesting 

to see that most of the interactions had  values of around 90°, which indicates an edge-on geometry (Fig. 

5c). It is also interesting to note that face-on and edge-on interactions occur on two ellipsoids with different 

radii (Fig. 5d and 5e).  
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To further investigate the interaction geometry for amide–π, we identified the ellipsoids for face-on 

and edge-on geometry by fitting the aromatic center positions of the two types of geometry to the general 

equation of an ellipsoid (Fig. 5d and 5e). We then computed the GFN2-xTB level energy landscape based 

on the fitted ellipsoids by using a formamide–benzene model system (Fig. 5f, 5g, and 5h). For edge-on 

geometry (i.e., =90), the interaction is favored when benzene approaches the amide plane from the top 

of C=O perpendicularly (Fig. 5f and 5g), with a minimum interaction energy of -2.65 kcal/mol calculated 

using M06-2x/6-311+G(d,p). For face-on geometry (i.e., =0), the result of our energy landscape scan is 

consistent with previous studies17, showing a favored interaction of NH/π and a repulsive interaction of 

C=O/π, as shown in Figure 5h. The same approach was also applied to the amide group in a tripeptide to 

simulate the situation in the protein (Fig. 5i). The computed energy landscape enjoyed a decent match to 

the spatial distribution of the observed amide–π interactions extracted from ExptNCI, with 85% of the 

latter covered by the former region with energy lower than -1.44 kcal/mol.  

In summary, the use of observed ED saddle points for NCI description is demonstrated in this case 

through its support for an energy landscape scan. 

  

 

Discussion 

X-ray diffraction provides an experimental ED map that contains massive amounts of information. Partial 

information is effectively interpreted into atom coordinates and this information is entered in the PDB. 

However, in addition to atom coordinates, there is still plenty of information hidden in the experimental ED 

maps. For the first time, we extracted NCI signals from the ED maps and used it to establish the ExptNCI 

database.  

Figure 5. Using experimental ED data to support the profiling of amide–π interaction. a) Examples of amide–π 

interaction identified by ED saddle points. 2fo–fc map is countered at 0.3 sigma; b) Coordinate system of amide–

π interaction; c) Spatial distribution of aromatic ring center relative to the carbon atom of the amide plane. Green 

and yellow indicate edge-on and face-on geometry, respectively. Illustrations of edge-on and face-on are also 

provided; (d) and (e) are ellipsoids and parameters obtained by fitting edge-on and face-on positions, respectively, 

to the general equation of an ellipsoid; For (f), (g), and (h), top part represents the sampling scheme of formamide–

benzene conformation on the ellipsoids, with edge-on conformation sampled in two ways: perpendicular and 

parallel; middle part represents GFN2-xTB level energy landscape, with blue arrow pointing to a red star indicating 

global minimum; bottom part represents the conformation for global minimum on GFN2-xTB energy landscape 

and its M06-2x/6-311+G(d,p) energy calculated by GAMESS; i) Energy landscape scan for N-Acetyl Glycyl 

Glycinamide. The ellipsoid is with respect to the amide group indicated by the red cycle.  
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  When exploring the ExptNCI database, users should check the three following aspects if some seemingly 

unusual NCIs are found: 1. Check if the structure is correctly determined, which can be judged by checking 

whether there are positive or negative densities around the NCI region of interest in the Fo–Fc map; 2. 

Check if low resolution causes merging of saddle points. An ED map becomes less detailed when the 

resolution is low, and two proximal saddle points may merge into one in a low-resolution ED map. As 

shown in Figure 6, just because there is only one saddle point between C=O and C=O in a 2.7-Å resolution 

ED map, does not 

necessarily indicate the 

existence of NCI between 

the two sp2 oxygen atoms. 

In other words, the case in 

Figure 6 resulted from the 

merging of two saddle 

points standing for two 

individual classical 

hydrogen bonds; 3. Check 

if there are any dynamics 

that can make the 

interaction more 

reasonable, e.g., the flip of 

the side chain for Gln, Asn, 

and His.  

 

How can the data be further improved in terms of quantity and quality? We consider two directions: the 

first is to expand the scale of the database by extracting NCIs from the interface of protein–protein 

interactions (PPI). This may allow us to achieve a more detailed understanding of the interaction 

fingerprint and ultimately benefit peptide/protein design. The second direction is to improve the accuracy 

of the data by solving multi-crystal variance, which is a problem caused by the lack of absolute ED values 

for macromolecule crystals. Such a challenge could be tackled by converting the ED values from the 

sigma-scaled density to the number of electrons. Previous studies that were aimed at measuring the 

quality of structures in PDB by analyzing ED can serve as a good starting point 24, 25. 

Including the experimental ED saddle point intensity as NCI information can also be considered as a 

solution to support artificial intelligence-based protein–ligand binding prediction. Although experimental 

NCI is not always available as input—because most often, pocket–ligand complexes are generated by 

docking or molecular dynamics and, thus, lack experimental ED—we can build two machine learning 

models to first predict NCIs from a given protein–ligand complex structure, and then use the predicted 

NCIs to facilitate ligand binding affinity prediction. 

In addition to providing more data resources, describing NCI from the perspective of crystallography ED 

also inspired us to consider leveraging crystallography as a solution for molecular representation for 

machine learning models. To date, the majority of attempts by researchers to find molecular 

representations have been in real space, and many reports have been made using strings, molecular 

graphs, molecular matrices, potential fields, and atom density fields26. However, an ideal representation 

comprehensively reflecting physical and chemical information, friendly to mathematics, and supported 

with plenty of experimental data available for AI model training is still absent. By applying crystallography 

Figure 6. Merging saddle points in low-resolution ED maps (PDB: 6MA1). a) 

Experimental ED 2Fo–Fc map at 2.7-Å resolution shown at counter level of 1.4 

sigma. Two classical hydrogen bonds, indicated by orange dash line, exist in the 

cycled region, but only one saddle point is observed; b) GFN2-xTB calculated 

electron density, showing two saddle points at the same region. The map is 

countered at 0.03 e-/Å3. The empirical QM calculation is conducted using xtb1. 
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theory, we can further expand the attempt in reciprocal space (i.e., frequency domain) and take a big step 

forward to the realization of the ideal representation for molecules. To be more specific, we apply Fourier 

transformation (FT) on the atomic coordinates to transfer the information from real space to the frequency 

domain, and then we apply reverse FT on the frequency domain to bring back the information to real 

space as ED. By varying the resolution when conducting reverse FT in the frequency domain, we can 

obtain ED in real space with different levels of detail, emphasizing scaffold, atom, or even bond properties. 

Unlike graphs composed of vertices and edges, such representations fill the space in a continuously 

differentiable manner, which is favored by the CNN model. Unlike other 3D molecular representations, 

such representations are naturally associated with a large amount of testing data: the experimental ED 

deposited in the PDB. We have already tested such molecular representation on a 3D molecule 

generation model and have seen some promising results that will be reported later.  

In summary, there is a massive amount of information in the experimental ED maps deposited in the 

PDB. The usage of only part of that information has created our current understanding of protein structures. 

We hope that our work can shed some light on leveraging experimental ED maps to further understand 

NCI in the macromolecular system and on combining crystallography and AI from the perspective of 

providing reliable data sources and exploring better representation of molecules. 

 

Methods 

Database construction  

1. Experimental ED map processing and critical point labeling  

All coordinates and map coefficients were obtained from PDB-REDO27. ED maps covering ligands and 

pocket residues within 5 Å of the ligands were synthesized at multiple resolutions using Phenix28. The 

maps were stored in the xplor format with a 0.15-Å grid interval. The critical points were labeled using the 

following procedure:  

1) Ligand/receptor atom pairs with a distance less than 5 Å were identified and the midpoint was set as 

the origin 

2) The RDG value of all the grids was calculated within 1 Å of the origin 

3) The gird point with local minimum RDG was found and marked as a saddle point candidate 

4) For all the saddle point candidates, the eigenvalue of the Hessian matrix was calculated and sorted 

such that 3> 2> 1. If the eigenvalues did not fulfill the criteria of 3> >2> 1, the candidate was 

discarded 

5) If there were two saddle point candidates less than 0.5 Å from each other, the one with relatively 

weaker intensity was discarded. 

2. Atom property annotation 

The topology of ligands from PDB entries was curated by RDKit with isosteric SMILES from RCSB 

Ligand-Expo, and other ligands with missing data were curated using OpenBabel. The Mol2/Sybyl atom 

types of pockets and ligands in the database were annotated using OpenBabel and PyBel packages, and 

the rule-based molecular interactions in the database were analyzed and classified using the ODDT 

software package (version 0.7). 

3. Web interface implementation 

The database website was developed with a Java backend. The ligand similarity search or 

substructure search in the database was developed using RDKit, and NCI information was stored and 

queried through MySQL. NGL.js was implemented to display the receptor–ligand complex and the ED 

map.  
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Amide–π interaction model 

      To avoid including O..N.ar hydrogen bonds, only amide–π systems with ED saddle points between 

C/N/O on the protein backbones and C.ar on ligands were subject to our analysis. To profile the spatial 

distribution of aromatic ring centers, all the amide groups of interest were superimposed and placed on 

the X-Y plane with a uniform orientation (Fig. 5b), and all the aromatic centers of the amide–π systems 

were plotted in the Z-positive sector, given that the amide plane is a mirror plane. 

Four parameters including angles α, β, γ, and distance d are defined as shown in Figure 5b to 

describe amide–π geometry, where the angle α is used to describe whether the π system is parallel 

(α=0 °±30° or 180 °±30°) or perpendicular (α=90±30°) to the amide plane, the angle γ is used to describe 

whether the aromatic ring center is facing toward the amide group in a “face-on” geometry (γ=0±30°), or 

showing its edge toward the amide group in an “edge-on” geometry (γ=90±30°). 

Ellipsoids for face-on and edge-on geometry were identified by fitting the aromatic center position 

for the two types of geometry to the general equation of an ellipsoid (Fig. 5d, 5e). Then the fitted ellipsoids 

are represented by grids with an interval of 0.1 Å along both X and Y axes. To scan the interaction energy 

landscape based on fitted ellipsoids for benzene and formamide systems, we first determined the zero-

point energy (-29.70 kcal/mol) by applying GFN2-xTB calculation on a benzene–formamide complex with 

distance of 50 Å between the two groups. Then, we placed benzene on the face-on grid in the pose where 

γ equals 0° to obtain a face-on geometry complex subset (Fig. 5h). For the edge-on geometry complex 

subset, when we placed a benzene group on the grid of edge-on ellipsoids, there were two types of poses 

that fulfilled the requirement of γ=90°. Therefore, we divided the edge-on geometry into perpendicular-

edge-on and parallel-edge-on subtypes. In detail, we used a plane defined by the Z axis and the vector 

connecting the amide carbon to the benzene center to distinguish the two subtypes: if the norm of benzene 

was in the above-defined plane, then it was a parallel-edge-on sub-type (Fig. 5f); if the norm of benzene 

was perpendicular to the above-defined plane, then it was a perpendicular-edge-on sub-type (Fig. 5g). 

The energy landscapes for the geometries of face-on, parallel-edge-on, and perpendicular-edge-on were 

synthesized by calculating GFN2-xTB energy and then subtracting the zero-point energy from it for the 

complexes on the corresponding grids. Complexes representing the global minimum of the three energy 

landscapes were also subject to the M06-2x/6-311+G(d,p) calculation using GAMESS to obtain the DFT 

level energy. The energy landscape scan for benzene interacting with amide groups in the context of 

tripeptide was conducted in a similar way using a GFN2-xTB-optimized N-acetyl glycyl glycinamide as a 

starting point. Because the optimized molecule is not subject to mirror symmetry, we scanned the entire 

ellipsoid and combined the upper and lower halves by overlapping the grids of the two parts and using 

the lower energy on the two overlapped grids as the final value to compose the energy landscape.  

 

Software for figures and tables 

The structure and ED figures were made using Pymol29. Statistical analysis was performed using 

Pandas30 and Numpy packages31. Scatter plots were constructed using Matplotlib32 and Inkscape33. 

 

Data availability 

http://ncidatabase.stonewise.cn/#/nci 

Code availability 

Available upon request. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.468575doi: bioRxiv preprint 

http://ncidatabase.stonewise.cn/#/nci
https://doi.org/10.1101/2022.01.24.468575
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author contributions 

B. H. conceived the idea. Y. Z. provided instructions for all experiments. W. Z. provided instructions on 

AI models. K. D. constructed the database and built the NCIScore model. S. Y. developed the saddle 

point labeling script and constructed the 3DCNN model for saddle point prediction. Z. L. supported the 

saddle point labeling and performed quantum mechanics calculations. S. J. implemented the web 

interface for the database. Y. Y. designed the web interface. 

 

Competing interests 

The authors declare no competing interests. 

 

Acknowledgment 

This work was supported by StoneWise. This work was also partially supported by the Beijing Municipal 

Science & Technology Commission project Z211100003521001. 

 

References 

1. Bannwarth, C.; Ehlert, S.; Grimme, S., GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-

Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J 

Chem Theory Comput 2019, 15, 1652-1671. 

2. Anand, P.; Nagarajan, D.; Mukherjee, S.; Chandra, N., PLIC: protein-ligand interaction clusters. Database (Oxford) 

2014, 2014, bau029. 

3. Angles, R.; Arenas-Salinas, M.; García, R.; Reyes-Suarez, J. A.; Pohl, E., GSP4PDB: a web tool to visualize, search and 

explore protein-ligand structural patterns. BMC Bioinformatics 2020, 21, 85. 

4. Gallina, A. M.; Bisignano, P.; Bergamino, M.; Bordo, D., PLI: a web-based tool for the comparison of protein-ligand 

interactions observed on PDB structures. Bioinformatics 2012, 29, 395-397. 

5. Inhester, T.; Rarey, M., Protein–ligand interaction databases: advanced tools to mine activity data and interactions on 

a structural level. 2014, 4, 562-575. 

6. Jurecka, P.; Sponer, J.; Cerný, J.; Hobza, P., Benchmark database of accurate (MP2 and CCSD(T) complete basis set 

limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Physical chemistry chemical 

physics : PCCP 2006, 8, 1985-93. 

7. Murakami, Y.; Omori, S.; Kinoshita, K., NLDB: a database for 3D protein-ligand interactions in enzymatic reactions. 

Journal of structural and functional genomics 2016, 17, 101-110. 

8. Rezac, J., Non-Covalent Interactions Atlas Benchmark Data Sets: Hydrogen Bonding. J Chem Theory Comput 2020, 

16, 2355-2368. 

9. Ferreira de Freitas, R.; Schapira, M., A systematic analysis of atomic protein-ligand interactions in the PDB. 

Medchemcomm 2017, 8, 1970-1981. 

10. Kuhn, B.; Gilberg, E.; Taylor, R.; Cole, J.; Korb, O., How Significant Are Unusual Protein-Ligand Interactions? Insights 

from Database Mining. J Med Chem 2019, 62, 10441-10455. 

11. Xu, Z.; Zhang, Q.; Shi, J.; Zhu, W., Underestimated Noncovalent Interactions in Protein Data Bank. J Chem Inf Model 

2019, 59, 3389-3399. 

12. Hobza, P., Calculations on noncovalent interactions and databases of benchmark interaction energies. Acc Chem 

Res 2012, 45, 663-72. 

13. Kasai, H.; Tolborg, K.; Sist, M.; Zhang, J.; Hathwar, V. R.; Filso, M. O.; Cenedese, S.; Sugimoto, K.; Overgaard, J.; Nishibori, 

E.; Iversen, B. B., X-ray electron density investigation of chemical bonding in van der Waals materials. Nat Mater 2018, 17, 

249-252. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.468575doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.468575
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Garcia, J.; Cohen, A. J.; Yang, W., Revealing noncovalent 

interactions. J Am Chem Soc 2010, 132, 6498-506. 

15. Saleh, G.; Gatti, C.; Lo Presti, L., Non-covalent interaction via the reduced density gradient: Independent atom model 

vs experimental multipolar electron densities. Computational and Theoretical Chemistry 2012, 998, 148–163. 

16. Saleh, G.; Gatti, C.; Lo Presti, L.; Contreras-Garcia, J., Revealing non-covalent interactions in molecular crystals 

through their experimental electron densities. Chemistry 2012, 18, 15523-36. 

17. Imai, Y. N.; Inoue, Y.; Nakanishi, I.; Kitaura, K., Amide-pi interactions between formamide and benzene. J Comput 

Chem 2009, 30, 2267-76. 

18. Clark, M.; Cramer III, R. D.; Van Opdenbosch, N., Validation of the general purpose tripos 5.2 force field. 1989, 10, 

982-1012. 

19. Wojcikowski, M.; Zielenkiewicz, P.; Siedlecki, P., Open Drug Discovery Toolkit (ODDT): a new open-source player in 

the drug discovery field. J Cheminform 2015, 7, 26. 

20. Krone, M. W.; Travis, C. R.; Lee, G. Y.; Eckvahl, H. J.; Houk, K. N.; Waters, M. L., More Than pi-pi-pi Stacking: 

Contribution of Amide-pi and CH-pi Interactions to Crotonyllysine Binding by the AF9 YEATS Domain. J Am Chem Soc 

2020, 142, 17048-17056. 

21. DeFrees, K.; Kemp, M. T.; ElHilali-Pollard, X.; Zhang, X.; Mohamed, A.; Chen, Y.; Renslo, A. R., An Empirical Study of 

Amide-Heteroarene pi-Stacking Interactions Using Reversible Inhibitors of a Bacterial Serine Hydrolase. Org Chem Front 

2019, 6, 1749-1756. 

22. Bootsma, A. N.; Wheeler, S. E., Stacking Interactions of Heterocyclic Drug Fragments with Protein Amide Backbones. 

ChemMedChem 2018, 13, 835-841. 

23. Harder, M.; Kuhn, B.; Diederich, F., Efficient stacking on protein amide fragments. ChemMedChem 2013, 8, 397-404. 

24. Lang, P. T.; Holton, J. M.; Fraser, J. S.; Alber, T., Protein structural ensembles are revealed by redefining X-ray electron 

density noise. Proc Natl Acad Sci U S A 2014, 111, 237-42. 

25. Yao, S.; Moseley, H. N. B., A chemical interpretation of protein electron density maps in the worldwide protein data 

bank. PLoS One 2020, 15, e0236894. 

26. Musil, F.; Grisafi, A.; Bartok, A. P.; Ortner, C.; Csanyi, G.; Ceriotti, M., Physics-Inspired Structural Representations for 

Molecules and Materials. Chem Rev 2021, 121, 9759-9815. 

27. Joosten, R. P.; Long, F.; Murshudov, G. N.; Perrakis, A., The PDB_REDO server for macromolecular structure model 

optimization. IUCrJ 2014, 1, 213-20. 

28. Liebschner, D.; Afonine, P. V.; Baker, M. L.; Bunkoczi, G.; Chen, V. B.; Croll, T. I.; Hintze, B.; Hung, L. W.; Jain, S.; McCoy, 

A. J.; Moriarty, N. W.; Oeffner, R. D.; Poon, B. K.; Prisant, M. G.; Read, R. J.; Richardson, J. S.; Richardson, D. C.; Sammito, M. 

D.; Sobolev, O. V.; Stockwell, D. H.; Terwilliger, T. C.; Urzhumtsev, A. G.; Videau, L. L.; Williams, C. J.; Adams, P. D., 

Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta 

Crystallogr D Struct Biol 2019, 75, 861-877. 

29. Schrodinger, LLC, In; 2015. 

30. McKinney, W., Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science 

Conference 2010, 51-56. 

31. Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, 

S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, M. H.; Brett, M.; Haldane, A.; del Río, J. F.; Wiebe, M.; Peterson, P.; 

Gérard-Marchant, P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.; Oliphant, T. E., Array programming 

with NumPy. Nature 2020, 585, 357-362. 

32. Hunter, J. D., Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering 2007, 9, 90-95. 

33. InkscapeProject, Inkscape 0.92.5. 2020. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.468575doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.468575
http://creativecommons.org/licenses/by-nc-nd/4.0/

