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Abstract 

Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide, 

and has poor prognosis. Pyroptosis, which is cell programmed necrosis mediated by 

gasdermin, participates in the progress of tumor. Recently, multiple omics analysis 

was applied frequently to provide comprehensive and more precise conclusions. 

However, Multi-omics analysis combining pyroptosis-related signatures in HCC and 

their corrections with prognosis remain unclear. Here, we identified 42 pyroptosis 

genes that were differentially expressed between HCC and normal hepatocellular 

tissues. According to these differentially expressed genes (DEGs), all HCC cases 

could be divided into two heterogenous subtypes. Then we evaluated the prognostic 

value of differential pyroptosis-related gene to construct a multigene model using The 

Cancer Genome Atlas (TCGA) cohort. A 22-gene model was built and classified HCC 

patients in the TCGA cohort into the low-risk and high-risk groups, by the least 

absolute shrinkage and selection operator (LASSO) Cox regression method. HCC 

patients belonged to the low-risk group had significantly higher survival possibilities 

than those belonged to high-risk group (p<0.001). Furthermore, the related genes and 

two groups were analyzed with multiple omics in different molecular layers. The 

pyroptosis-related gene model was validated with HCC patients form Gene 

Expression Omnibus (GEO) cohort, and the low-risk group in GEO showed increased 

overall survival (OS) time (P=0.018). The risk score was an independent factor for 

predicting the OS of HCC patients. In conclusion, pyroptosis-related genes in HCC 

are correlated with tumor immunity and could be used to predict the prognosis of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.24.477487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477487


HCC patients. 

Introduction 

  Hepatocellular carcinoma (HCC) results in >80% of primary liver cancers in the 

world. HCC also causes a heavy disease burden and is estimated to be the fourth most 

common cause of cancer-related death worldwide[1]. The main risk factors for HCC 

is the hepatitis B virus and hepatitis C virus infection[2]. Moreover, non-alcoholic 

steatohepatitis associated with metabolic syndrome is becoming a more frequent rick 

factor[3]. Currently, there are various treatment options, including surgical resection, 

chemotherapeutics, immunotherapies, new methods for delivery of drugs and use of 

combination therapy[4]. However, the adjusted incidence rates and death rates have 

continued to increase[5]. And non-invasive diagnosis is currently challenged by the 

require of molecular information that needs tissue or liquid biopsies[3]. Thus, it’s still 

urgent to find ideal combinations therapies or advanced detection methods for early 

stage of hepatocellular carcinoma.  

 

Multi-omics analysis provides an integrative analysis to maximize comprehensive 

biological insight across molecular layers[6]. A novel form of cell regulated necrosis, 

pyroptosis, which mainly induced by gasdermin, plays a crucial role in cancer and 

hereditary diseases[7]. Pyroptosis is an inflammatory form of cell death, and 

pyroptotic cells are characterized by cellular swelling and bubble-like protrusions[8]. 

Pyroptosis can be triggered by the canonical caspase-1 inflammasomes or by 

activation of caspase-4, -5 and -11 by cytosolic lipopolysaccharide[9]. Then the 
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canonical caspase-1 inflammasomes the effector molecule Gasdermin D (GSDMD) 

cleaved and promotes its oligomerization to form large pores in the plasma membrane, 

causing cell death[10]. Besides, some cytokines such as IL-18 and IL-1β were active 

during pyrototic. Moreover, pyroptosis has a crucial role in the proliferation and 

migration of cancer regulated by molecules like non-coding RNAs[11]. Furthermore, 

it has been revealed that pyroptosis-induced inflammation triggers robust antitumour 

immunity and can synergize with checkpoint blockade[12]. These findings 

collectively demonstrate that pyroptosis has significant roles in the development and 

antitumour processes. However, its specific functions with multiple omics in HCC 

have not been reported. Thus, we performed a multi-omics study to determine the 

functions of pyroptosis-related genes in HCC, explore the gene copy number variants, 

mutations, immunocyte correlations, tumor stem cell correlations and drug 

sensitivities of related genes and two different risks groups, and establish a robust 

prognostic model based on pyroptosis for detection the early stage of HCC.  

 

Materials and Methods 

Dataset Collection 

The HCC RNA-seq count and clinical profiles were obtained from the TCGA GDC 

database (https://portal.gdc.cancer.gov/) and the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/, ID: GSE20140). The FPKM data normalized 

from RNA-seq count was transformed to log2(TPM+1) for further analysis. The data 

of cope number variation and simple nucleotide variation were downloaded from 
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TCGA GDC database (https://portal.gdc.cancer.gov/). All expression data have been 

normalized before analysis. Patients were excluded if they died within 30 days or did 

not have prognostic information. 

Analysis of Differential pyroptosis-related genes in HCC 

55 pyroptosis-related genes together were collected from prior articles. The 

differentially expressed genes (DEGs) in HCC samples and matched normal tissues 

were analyzed by the “limma” package in the R software and visualized by the 

heatmap with adjust p-value < 0.05. The protein-protein interaction network for DEGs 

was generate using STRING website (https://cn.string-db.org/). The gene ontology 

(GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) pathway enrichment 

analyses were applied to explore the molecule mechanisms of risk using the R 

“clusterProfiler” package. 

Construction and Validation of the prediction model for HCC  

The Cox regression analysis was used to screen the prognostic DEGs. And the 

screened genes were further narrowed down by the LASSO Cox regression model (R 

“glmnet” package) to develop the prognostic model. After standardization and 

normalization of the expression data, the risk score formula was calculated based on a 

screened 22-gene signature as follows: ∑ 7
i Xi Χ  Yi (X: coefficients, Y: gene 

expression level). Subsequently, the patient samples from TCGA and GEO cohort 

were divided into low and high risk groups based on the model. Kaplan-Meier 

survival curves were depicted to predict the clinical outcomes in the two groups by 

the R “survival” package. The R “survminer” and “timeROC” packages were applied 
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to assess the survival and prognosis of patients.  

Multi-Omics Data Analysis 

To determine the mutation of DEGs in samples, the R “maftools” package was 

applied. The R “CIBERSORT” package was used to assess the immune cells 

infiltration in samples. Then, the R “ggplot2” was used to visualize the correlation of 

immune cells and risk genes. To explore the TME, the scores of immune-related 

projects were evaluated by the R “estimate” package. The drug sensitivity analysis 

was performed by the R “pRRophetic” package. The R “ggpubr” and “ggExtra” 

packages were employed to assay the correlation of tumor stem cell index and risk. 

Statistical Analysis 

One-way ANOVA was applied to calculate the differences in gene expression. The 

Pearson chi-square test was used to compare the profiles between two subgroups. 

Differences in OS between two subgroups were performed by Kaplan-Meier method 

with a two-side long-rank test. Hazard rations (HRs) were calculated by univariate 

and multiple Cox regression analysis. All statistical significance was considered as a 

p-value less than 0.05. All statistical analyses were achieved by the R software 4.0.1.  

Results 

Landscape of pyroptosis genes in HCC 

  55 pyrotosis-related genes were collected, and they were compared in The Cancer 

Genome Atlas (TCGA) data from 50 normal and 374 tumour tissues. Together, we 

identified 42 differentially expressed genes (DEGs) (all p <0.05). Among them, 9 

genes were downregulated while 32 other genes were upregulated in the tumour group 
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compared to the normal group. The RNA levels of these genes are presented as 

heatmaps in Fig.1A. To further explore the interactions of these differentially 

expressed pyroptosis-related genes, we conducted a protein-protein interaction (PPI) 

analysis, and the results are shown in Fig.1B. The minimum required interaction acore 

for the PPI analysis was set at 0.9. The correction network containing all 

pyroptosis-related genes is present in Fig.1C. Furthermore, the tumor mutational 

burden (TMB) of these genes in HCC samples was assayed (Fig.2A). And the 

frequency of copy number variations (CNV) of pyroptosis genes in HCC was further 

evaluated (Fig.2B).  

 

Tumour classification based on the expression level of pyroptosis genes 

  After removing the normal hepatocellular tissues, we used unsupervised clustering 

methods to classify the tumor samples into different molecular subgroups based on 

pyroptosis-related genes. By increasing the clustering variable (K) from 2 to 9, we 

found that when K=2, the intragroup correlations were low, indicating that the HCC 

patients could be well divided into two clusters, termed as C1 and C2, based on the 42 

DEGs (Fig.3A, B). Combining the matched clinical profiles, we found the overall 

survival (OS) time of the two clusters has a significant difference (Fig.3C). To 

evaluate more clinical significances of subtypes, clinical outcomes and 

clinicopathological features were compared between the two clusters, the results 

showed that the grade of disease has a significant difference between the two clusters 

(p<0.001) (Fig.3D).  
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Establishment of an accurate prognostic model using the TCGA cohort 

   The differential genes were screened between two cluster. And 79 HCC samples 

from Gene Expression Omnibus (GEO) cohort (GSE20140) were selected. Then, we 

intersect the genes of the TCGA cohort, GEO cohort and differential genes from two 

clusters. Further, the intersected genes of TCGA cohort combining matched clinical 

information were analyzed with Univariate Cox regression analysis to screen of the 

survival-related genes. The p value filter was 0.001. It showed that the majority of 

survival-related genes were associated with increased risk with HRs>1 (Table.1). 

Through the least absolute shrinkage and selection operator (LASSO) Cox regression 

analysis, 22 genes were selected to be modeled according to the optimum λ value (Fig. 

4A, B). The risk forecasting formula was calculated as follows: = (-0.004*SPP1 exp.) 

+ (0.143*MYCN exp.) + (-0.03*PON1 exp.) … + (0.11*MT3 exp.) (Table.2). Based 

on the median score calculated by the risk score formula, 374 HCC patients from 

TCGA cohort were trained into low- and high-risk subgroups (Fig.4C). The principal 

component analysis (PCA) showed that patients with different risks were well 

separated into two clusters (Fig.4D). There has a significant difference in OS time 

between the low and high risk groups (P<0.001) (Fig.4E). The time-dependent 

receiver operating characteristic (ROC) analysis showed that the areas under the ROC 

curve (AUC) were generally higher than 0.8 at 1, 3, 5 years, demonstrating that the 

prognostic model has high accuracy and sensitivity (Fig.4F).  
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Internal and external validation of the prognostic model using the GEO cohort 

HCC patients from a Gene Expression Omnibus (GEO) cohort (GSE20140) were 

utilized as the validation set. The gene expression data were normalized before 

analysis. According to the median risk score from the TCGA cohort, patients from the 

GEO cohort were also divided into the low- and high-risk groups (Fig.5A). The PCA 

showed satisfactory separation between the two subgroups (Fig.5B). Similar to the 

TCGA cohort, Kaplan-Meier analysis indicated that the low-risk group had bette r 

overall survival than the high-risk one (p=0.018) (Fig.5C). Moreover, the ROC curve 

analysis showed that the AUC was 0.846 for 5 years, 0.839 for 7 years, and 0.817 for 

9 years (Fig.5D).  

 

The prognostic value of the established risk model 

   Firstly, the model genes were analyzed by univariate Cox regression to evaluate 

the prognostic value of some features such as risksoce, age, disease-stage. The result 

showed that the riskscore and disease-stage were significant prognostic factors for 

patients (p<0.05) (Fig.6A). Subsequently, we take the two factors into further 

multivariate analysis, and it indicated that the riskscore can serve as independent 

prognostic factor (p<0.05) (Fig.6B). Moreover, we generated a risk-heatmap of 

clinical characteristics based on the model genes. The map showed that the T staging, 

stage and grade of HCC distributed diversely between the high and low-risk groups 

divided by these model genes (p<0.001) (Fig.6C). 
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Identification the DEGs and functional analysis  

  The differential gene expression (DEGs) was analyzed between the two risk 

subgroups which defined by the risk model. The classical method - “limma” R 

package was applied to identified the DEGs. And the filter standard was set at 

|log2FC | ≥ 1 and the adjusted p value (FDR) < 0.05. Together, there have 73 DEGs 

between the two subgroups (Table.3). Subsequently, these 73DEGs were further 

enriched by Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) pathway analysis. The enriched results indicated that biological functions 

contributed to the risk difference were main related with material metabolism and 

molecule secretion (Fig.6D, E). 

 

Comprehensive biological analysis with multiple dimensions 

 The immune cell infiltration in HCC samples from TCGA cohort were evaluated, 

and the correlation of model genes and the infiltrated immune cells was further 

analyzed. The result indicated that the CD8 T cells and CD4 T cells memory activated 

had strong positive correlation with GZMH gene, while CD4 T cells memory resting 

had strong negative correlation with GZMH (Fig.7A). Moreover, we evaluated the 

tumor microenvironment (TME) of HCC samples according to the immune-related 

scores (including stromal score, immune score and estimate score). And the difference 

between the scores of two risk subgroups were further compared, it showed that the 

low risk group have high scores in all three immune-related dimensions than the high 

risk group (Fig.7B). Furthermore, it demonstrated that the risk score generated by the 
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risk model has significant positive correlation with tumor stem cell index (RNAss) 

(Fig.7C). Finally, the sensitivity of some drugs with therapeutic potentialities were 

investigated in the two risk groups. It was found that some drugs such as Nilotinib, 

Bortezomib and Dasatinib has significant different IC50 between the low and 

high-risk group, and high-risk group has lower IC50 (Fig.8). 

 

Discussion   

  After developed chronic fibrotic liver disease which caused by viral or metabolic 

aetiologies, patients tend to develop HCC[13]. However, the key question is how we 

can reliably estimate the HCC risk and diagnose the early stage of HCC. 

Unfortunately, the robust estimate system hasn’t been established and many patients 

suffered from HCC severely[14]. To establish a precise prognosis model which can 

solve the urgent need well, we integrate the muti-omics analysis and the progress of 

pyroptosis. The pyroptosis was a novel form of cell death, and was discovered to have 

pivotal roles in oncogenesis, immune cells infiltration and antitumor response[15]. In 

this study, we collected 52 pyroptosis-related genes and found most of them have 

different expression level between HCC samples and the matched normal tissues. This 

indicated that pyroptosis has important functions in HCC. Furthermore, we explore 

the protein-protein interactions and mutual regulatory relations of the 42 DEGs. It 

showed that GSDMD, CASP8, PYCARD and some CHMP family genes were the core 

interaction genes. And most of the interacted genes were positive regulated each other. 

In the aspect of TMB and CNV, the TP53 was the most mutated gene, and the main 
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pattern is the missense mutation. We also found that most of the DEGs has CNV in 

HCC simples, and GSDMC, AIM2, GADMD, CHMP6 have high gain variations, 

while CASP9 has high loss variations. 52 prognostic genes were identified using Cox 

analysis, and the HCC patients could be divided into two clusters using consensus 

clustering analysis based on the expression level of prognostic genes. It is noteworthy 

that the two clusters have significant difference both in OS rate and the clinical 

feature. This differs from other clusters in preparing models for HCC, which have no 

significant differences in clinical features[16, 17]. This indicates that our method for 

building model has more accuracy and significance in predicting the prognosis of 

HCC patients. Moreover, we integrated the multiple omics analysis to demonstrate the 

landscape of our gene signature and prognosis model in various molecule layers. 

  Subsequently, we performed the LASSO and Cox analysis based on prognosis 

genes, and establish a 22 genes signature prognosis model. As expected, this model 

can separate the different risk patients well and two patient subtypes divided by the 

model has significant OS rate difference. Moreover, the AOCs of ROC analysis for 

several years are about 0.8. These all together confirmed that our model is reliable and 

precious for predicting the HCC patients’ prognosis. Importantly, the model was well 

validated in the internal test and external validation cohorts. Furthermore, the 

univariate and multivariate Cox regression analysis all showed that the riskscore 

generated by the model can serve as an independent prognosis factor. To explore the 

potential biological functions and pathways which contribute to the risk of developing 

HCC, we performed GO and KEGG enrichment analysis. We found that material 
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metabolism and molecule secretion could be the mechanism for developing HCC. 

Recently, Zheng et al. has depicted the landscape of tumor-infiltrating T cells in 

pan-cancer, revealing the heterogeneity of T cells in cancer[18]. Thus we further 

evaluate the relevance of infiltrated immune cells and the model genes. The GZMH 

was found to have strong correlation with CD4 and CD8 T cells, which could provide 

new sight for further study. In the aspect of TME, the low risk group defined by our 

model has higher immune related score, indicating that the low risk patients could be 

benefited from better immune state[19]. We also clarified that the index of tumor stem 

cell is raised with the increase of the risk. This result demonstrate that the content of 

tumor stem cell could be a risk factor of HCC, and in turn verified the robust of our 

model[20]. Finally, we screened some drugs which has different sensitivity in treating 

the two risk groups. And the IC50 of screened drugs are significantly lower in the 

high risk group, illustrating these drugs have higher sensitivity in the high risk group 

than the low one.  

  In conclusion, this was the first study to comprehensively investigate the role of 

pyroptosis in HCC with multiple omics analysis. We established a robust and acute 

prognostic model for HCC. Compared with other published models, our model 

showed distinct advantage in multiple aspects: We are the first to integrate the 

multi-omics analysis to establish pyroptosis-related model; We collected more 

pyroptosis genes and identified more prognostic genes for building model; The 

subtypes have showed significant difference in clinical profiles before and after the 

model built. All the findings in our study provide a comprehensive landscape of 
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molecule heterogeneity in HCC based on pyroptosis and facilitate the precise 

management of HCC patients.  
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Fig. 1: The landscape of pyrotosis-related genes in HCC. (A) Heatmap of the 

differential gene expression between the normal and tumor tissues. (B) PPI network 

of the DEGs. (C) The correlation network (Redline: positive correlation; Blueline: 

negative correlation. The depth of the colors reflects the strength of the relevance). 
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Fig. 2: The landscape of DEGs in HCC. (A) The simple nucleotide variation of 

DEGs in HCC samples. (B) The cope number variation of DEGs in HCC samples.  
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Fig. 3: Identification of the heterogenetic clusters based on the DEGs. (A) 

Consensus cluster matrix of HCC samples when k = 2. (B) The cumulative 

distribution function curves with k from 2 to 9. (C) Kaplan-Meier analysis for overall 

survival of the two clusters. (D) The clinicopathologic differences of the two clusters. 
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Fig. 4: Construction of the prognosis model. (A) The optimal parameter (λ) was 

chosen by cross-validation. (B) LASSO coefficient plot of the prognostic genes. (C) 

Risk score analysis in HCC patients. (D) PCA plot for HCC patients based on the risk 

score. (E) The KM analysis of overall survival in the two groups. (F) The ROC 

analysis to evaluate the predictive efficiency. 
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Fig. 5: Validation of the prognosis model in the GEO cohort. The figure legends 

were the same as that of Fig. 4. 
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Fig. 6: The value of prognosis and the enrichment analysis. (A, B) Univariate and 

Multivariate Cox analysis based on the risk model. (C) Heatmap for the correlations 

between clinical profiles and risk groups (***p<0.001). (D, E) GO and KEGG 

pathway enrichment analysis of the DEGs. 

 

 

Fig. 7: Comprehensive analysis with multiple omics. (A) The connections between 

immune cells infiltration and the model genes. The strength of color represents the 

degree of correlation. (B) The statue of tumor microenvironment in the low and 

high-risk groups. (C) The correlation of tumor stem cell index (RNAss) and the risk 

score (p<0.05). 
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Fig. 8: Some potential drugs screened by drug sensitivity analysis. 
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