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The RNA-dependent RNA polymerase (RdRp) complex of SARS-CoV-
2 lies at the core of its replication and transcription processes. The
interfaces between the subunits of the RdRp complex are highly con-
served, facilitating the design of inhibitors with high affinity for the
interaction hotspots of the complex. Here, we report development
and application of a structural bioinformatics protocol to design pep-
tides that can inhibit RdRp complex formation by targeting the in-
terface of its core subunit nonstructural protein (nsp) 12 with acce-
sory factor nsp7. We adopt a top-down approach for protein design
by using interaction hotspots of the nsp7-nsp12 complex obtained
from a long molecular dynamics trajectory as template. A large li-
brary of peptide sequences constructed from multiple hotspot motifs
of nsp12 is screened in silico to determine peptide sequences with
highest shape and interaction complementarity for the nsp7-nsp12
interface. Two lead designed peptide are extensively characterized
using orthogonal bioanalytical methods to determine their suitabil-
ity for inhibition of RdRp complexation and anti-viral activity. Their
binding affinity to nsp7 (target), as determined from surface plasmon
resonance (SPR) assay, is found to be comparable to that of the nsp7-
nsp12 complex. Further, one of the designed peptides gives 46 % in-
hibition of nsp7-nsp12 complex at 10:1 peptide:nsp7 molar concen-
tration (from ELISA assay). Further optimization of cell penetrability
and target affinity of these designed peptides is expected to provide
lead candidates with high anti-viral activity against SARS-CoV-2.
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Introduction1

The Coronavirus disease 2019 (COVID-19) is caused by a2

new strain of β-coronaviruses termed Severe Acute Respira-3

tory Syndrome Coronavirus 2 (SARS-CoV-2).(1, 2) At the4

heart of the transcription machinery of SARS-CoV-2 virus5

is the RNA-dependent RNA polymerase (RdRp) which con-6

trols the genomic replication processes of single stranded RNA7

viruses. The genome is used as a template by hijacking the8

machinery of the host cells to translate RdRp which in turn9

is used to complete the transcriptional synthesis of different10

protein structures and RNAs in SARS CoV2.(3, 4) RdRp11

is a trimeric complex of three different proteins non struc-12

tural proteins viz NSP7, NSP8 and NSP12 of which NSP1213

is the core catalytic unit and a target of several drug discov-14

ery programs.(5, 6) Recent studies revealed highly conserved15

structural and functional features of RdRp in coronaviruses16

and an amino acid sequence identity of 96% with the RdRp17

of SARS-CoV.(7, 8) It is understood that the interaction of18

NSP7 and NSP8 with NSP12 significantly enhances the poly-19

merase activity of the otherwise minimal activity of innate20

NSP12. (9–11) Therefore targeting the integrity of the RdRp21

complex by exploring the hotspots to disrupt the protein-22

protein interactions in the subunit has been suggested as an 23

effective drug discovery strategy.(12, 13) The crystal resolved 24

structure and long trajectory from Molecular Dynamics (MD) 25

simulations of RdRp reveal major contributions to NSP12 26

binding by NSP7 as opposed to NSP8 which forms much fewer 27

contacts.(6, 14) Cryo-EM maps revealed that the N-terminal 28

region of NSP8 adopts an extended, disordered conformation 29

making it a challenging target for disrupting protein-protein 30

interactions (PPIs). Moreover the binding site on NSP12 31

made by NSP7 is well conserved in contrast to the binding 32

site by the NSP8 subunit.(7) NSP7 in SARS-CoV-2 shares 33

100% sequence similarity with SARS-CoV in stark contrast 34

to the envelope proteins of coronaviruses. Additionally, NSP7 35

is found to make several protein-protein interactions in the 36

cellular viral proteome making it a prime pharmacological 37

target.(15) Three FDA approved small molecules drugs viz. 38

Metformin, Entacapone and Indomethacin were identified with 39

the potential role of disrupting the network of protein interac- 40

tions made by NSP7. (13) However, none of these drugs target 41

the interface made with NSP12 protein. Therefore we have 42

chosen the protein-protein interface of NSP12-NSP7 complex 43

as a target for development of orthosteric inhibitory drugs. 44

Peptide sequences can be computationally tailored to mimic 45

the hotspot interactions of one of the binding partners and 46

are thus considered as natural inhibitors of PPIs.(16, 17) 47

Several peptides have been reported as potent against mi- 48

crobial pathogens including the recent approval of anti-HIV 49

peptides.(18–20) With a steady development and approval 50

of peptide based drugs in the recent past, they are seen as 51

promising alternatives to small molecule drugs due to high se- 52

lectivity and easy of manufacturing.(21) Short peptides possess 53

low immunogenicity profiles, minimal off-target interactions 54

and cheaper production costs. Despite their effectiveness in 55

disrupting PPIs, peptides have a notably short duration of 56

action due to proteolysis and rapid renal clearance.(22) Pro- 57

tein based drugs such as peptides, miniproteins, nanobodies 58

and antibodies have also been identified to target PPIs of 59

structural proteins on SARS-CoV2.(21, 23–29) There are over 60

60 small molecules targeting the enzymatic activity of RdRp 61

and over 30 small molecules targeting intracellular PPIs are in 62

active clinical trials (30) yet fewer peptide based drugs have 63

been developed for intracellular targets.(6, 31) In this work, 64

we report short peptide sequences that bind with nanomolar 65
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Fig. 1. NSP12-NSP7 subunit interactions of RNA dependent RNA polymerase (RdRp). A Interactions between the proteins involved in RdRp complex are depicted.
NSP7 is known to contribute the maximum to the binding affinity with NSP12. B Key hotspot interactions made by NSP12 as an ensemble average over a MD trajectory are
highlighted with a color gradient. C Three sequentially contiguous hot-segments identified from the hotspots are shown. These segments are spatially connected by linkers to
generate in-silico peptide libraries.

affinity (∼100 nM) to the NSP7 protein monomer of RdRp66

to inhibit the polymerase activity of NSP12. Protein-protein67

interaction hotspots identified from a long molecular dynam-68

ics (MD) trajectory were used as a template for creating an69

in-silico library of peptide sequences. Our in-house structural70

bioinformatics based protocols mined and iteratively screened71

peptide sequences to generate valid decoys that bind with72

similar or slighlty higher affinity than the original protein73

receptor.74

Results and discussion75

Determination of hotspot residues on NSP12 interface. Heteromeric76

protein-protein interactions bury on an average 1900Å2 of77

surface area upon binding, translating to 57 amino acids per78

interface.(32) However only a small fraction of these residues79

at the protein interface contribute the largest to binding80

energy. These residues are termed as hotspots of binding81

interactions.(33) In our work we demonstrate a structural82

bioinformatics pipeline for designing peptides by identifying83

hotspots from a long molecular dynamics (MD) trajectory.84

Our design strategy begins with using the information from85

identified hotspots from one of the protein binding partners86

as templates for generation of a library of peptide sequences87

with a goal of antagonistically inhibit a protein-protein inter-88

action. Similar template based strategies involve using the89

hotspot residues from the cystal complex of the heterodimer90

to construct a optimised protein,(16) or from the topologo-91

cial information of the binding partner without using the92

sequence.(24, 27) By aiming to mimick the binding interac-93

tions of NSP12 we seek to achieve equal or improved bindng94

affinity to the target protein (NSP7) at optimal concentrations95

to inhibit in-vivo viral interactions.(34) Peptide mimetics of96

protein protein interactions present several advantages. Firstly,97

it understood that peptides derived from the binding interface98

can mimic the entire partner protein and bind more tightly99

to the target protein.(35) An exhaustive study carried out100

using X ray crystallography and rigid-body ligand docking101

found out that the interface of the holo protein in the ligand102

bound state shows a high match with the interface in a protein-103

protein complex.(36) This study corroborates the motive for104

conformational change induced upon ligand binding to mimic 105

that of the partner protein. The results from their work thus 106

suggest that the protein-bound conformation of the receptor 107

is a significantly better starting point for drug design than the 108

apo structure. London et al. have demonstrated on a large 109

scale that self-inhibitory peptides can be derived from the 110

interfaces of protein-protein interactions.(37) These peptides 111

have been shown to be effectively mimic the binding modes 112

of the origin domain of the peptide and bind with similar or 113

better binding affinities owing their origin to hot segments on 114

the protein-protein interface.(38) Secondly, it has been shown 115

that the conformational change upon binding to helical pro- 116

teins results on an average of 0.11 nm change in the RMSD of 117

the Cα atoms compared to the free state, resembling the apo 118

conformation in the holo state.(39) Since NSP7 is an helical 119

bundle of three helices, we believe that peptides derived form 120

the bound interface of NSP12 will effectively bind to the apo 121

state of NSP7. Additionally, computational solvent mapping 122

studies which estimate the ligand druggability demonstrate 123

that the interactions between globular proteins results in con- 124

formational changes largely restricted to 0.6 nm of the binding 125

hotspot representing a high degree of structural conversation 126

of the binding hotspot in the apo and holo states.(40) Another 127

study demonstrates that surfaces with binding sites are predis- 128

posed in the apo structure of globular proteins making them a 129

feature of druggable sites as found from computational fluctua- 130

tional simulations.(41) Thirdly, from a more realistic statistical 131

ensemble picture it can be argued that the fit induced in NSP7 132

upon binding to NSP12 results in a conformation that is al- 133

ready present in the apo state of NSP7 since binding only 134

induces a shift in the relative population of the conformations 135

that favour binding.(42) This justifies our use of the holo state 136

for designing effective inhibitors of PPIs. We determined the 137

hotspot residues on NSP12 in the NSP12-NSP7 dimer subunit 138

complex from a MD trajectory of RNA-dependent RNA poly- 139

merase (RdRp) of SARS-CoV2 by calculating the difference 140

in the ressidue-wise area buried (eq 1). The trajectory was 141

clustered using a cutoff of 2.5Å on the backbone atoms of 142

Rdrp. The residue-wise hotspot areas were weighted (∆Ai) 143

by the population fraction of the cluster. 144
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Fig. 2. Bioinformatics and simulation strategies for screening peptides. A The library of peptide sequences constructed are scored with the hotspot areas of NSP12
segments identified from simulations. The plot compares the cumulative hotspot area of the peptide as a function of peptide lengths. Peptides derived from the same segment
are shaped in ◦ and inter-segment peptides are depicted in �. The sequences are colored with respect to the NSP12-NSP7 cluster from which the sequences were constructed.
B TM-scores are cross computed for 65 peptide conformations generated from 13 peptide sequences are shown in the bottom and top layers respectively. An edge represents
the ability of the peptides to adopt a conformation. Unique peptide sequences and folds identified from integer linear programming on a binary matrix of TM-scores are shown in
blue. C Binding interface similarity measured by the cosine distance of the docked peptides in comparison to the interface of cluster center of the most populated cluster of
NSP12-NSP7 is plotted for peptides (P1 to P5). Higher dot products indicate better ability of the peptides to replicate the binding modes of NSP12.

As a result, the interface residues on NSP12 contribute145

differently to binding with NSP7 indicating a complex, discon-146

tinuous binding epitope (Figure 1). The interface was split147

into contiguous stretches of amino acid sequences by allowing148

upto three intervening non-interface residues (i.e. ∆Ai = 0).149

A similar approach was followed by Jones and Thornton (43)150

allowing a break of five residues. Pal et al. (44) analyzed151

interfaces of heterodimeric complexes and found that a typical152

surface contains an average of 5.6 segments in agreegment with153

our observation of five segments on the interface of NSP12154

of which the prominent three are highlighted in Figure 1.155

However allowing a shorter stretch of non-interface residues156

resulted in large segments consisting upto 20 amino acids.(SI)157

Peptide design. Most studies have focused on design from a158

linear template of binding motifs from one segment. The159

disembodied segments identified from the hotspot region of160

NSP12’s interface originating from the dynamic binding inter-161

face were connected by linkers to create a composite peptide162

topology (Figure 1. Amino acid fragments within a segment163

were assembled by varying the sequence lengths leads to mul-164

tiple sequences. Glycine and alanine linkers combinatorially165

connect every possible spatially close residues from two differ-166

ent segments based on the Cα distances of the joining residues167

(Table 1). We also generated sequences from the same segment168

that resulted in a library of over 93,000 sequences ranging169

from three to 37 amino acids. Sequences originating from170

the parent segments contain rim residues or show little con-171

tribution to the binding hotspots were removed by scoring172

the library peptides. As shown in Figure 2 the constructed173

sequences are scored by the sum of the hotspot areas of the174

residues as found in the origin domain and weighted by the175

cluster population from which the interface was analysed (176

ΣiAiP c, Section ). We found that 21 of the highest scored 50177

sequences have a length of 8-12 amino acids, an ideal size for178

therapeutic peptides. Design of longer peptides is an added179

challenge as the folded states must be made stable enough180

to minimize conformational entropic cost upon binding to181

the target protein while very short peptides may not capture182

the native hotspot interactions made by NSP12.(39) The se-183

quences derived are from the most populated cluster of the184

MD trajectory and contain no sequences from two segments.185

We therefore added two inter-segment sequences with the high- 186

est hotspot scores to the exisiting set of 21 for further design 187

evaluations. Five low energy conformations for each of the 188

23 peptides were generated using a de-novo coarse grained 189

optimized potential for efficient structure prediction (OPEP) 190

forcefield at physiological pH.(45) The corresponding charge 191

on the peptide was found at physiological pH from residue pKa 192

values using the propka web-server.(46) The peptide confor- 193

mations were modelled by taking the structure of the receptor 194

(NSP7) into account, generating poses of peptide-protein at 195

the given binding patch. However we filtered 10 peptides 196

due to their inability to mimic the backbone topology of the 197

functional motifs from the origin domain (backbone RMSD > 198

0.35 nm). To achieve high binding activity, the peptides must 199

fold into states that replicate the binding modes of the defined 200

template(47). Additionally, this ensures that our peptides 201

have a high complementary shape to the target as seen in 202

the native hotspot interactions leading to high functionally 203

accurate mimetics. Finally, our combinatorial approach of 204

assembling amino acids might result in large number of entries 205

with high sequence identity that could lead to the same thera- 206

peutic functionality. To remove redundant peptide sequences 207

(and consequently folds) in the remaining set of 13 peptides, we 208

used a TM-score (template modelling score) metric to classify 209

similarity.(48) The peptides were aligned prior to TM-score 210

evaluations by standard Needleman–Wunsch algorithm with 211

an custom identity mutation matrix (see SI table for matrix). 212

This method aligns the sequences based on their identities 213

instead of similarities. We applied weighted integer linear 214

programming (wILP) method on the 65× 65 binary TM-score 215

matrix of 13 peptides (each peptide has 5 conformations) to 216

select a minimal set of non-redudant peptides with the highest 217

hotspot fraction of the blueprint interface (Section ). Optimi- 218

sation of peptide similarity has resulted in five distinct peptide 219

sequences (Figure 2). The selected peptides possess nearly 220

40% of the hotspot area as compared to the origin domain. 221

Peptide binding. To evaluate the quality of our designs we 222

adopted a multi-step docking process. We began with a global 223

blind docking of each of the five shortlisted peptides (P1-P5) 224

to allow for a complete 3 dimensional exploration of the tar- 225

get surface. This exercise will narrow down on the binding 226
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Fig. 3. Peptide binding to NSP7. A Table compares the binding affinity of proteins from MMPBSA-WSAS method on the docked complex to the affinity determined from SPR
experiments. SPR curves for NSP12-NSP7 and peptides P4 and P5 to NSP7 respectively. The cartoons show the binding pose of peptides to NSP7 with the highest cos θ.
Patch colored in yellow is the interface of NSP7 when bound to NSP12. B Competitive inhibition of NSP12-NSP7 complexation in the presence of peptides is measured by
ELISA assays. The signal is a measure of the NSP7 that remains bound to NSP12. Inhibition is measured for peptide ratios upto 20 times the concentration of NSP7.

site locally favoured by the peptides providing information on227

the binding specificity of the designed molecules. A robust228

quantitative descriptor developed by Anivash et al. (17) to229

evaluate the binding of quality given by the cosine distance230

(cos θ, see methods for details on construction procedure) was231

determined for the docked peptide-NSP7 complexes. Higher232

values of cos θ indicate preference for the peptides to share the233

same interface with NSP7 as shared by NSP12 in the RdRp234

subunit. The binding energies of peptide-protein binding for235

evaluating cos θ were calculated by MMPBSA-WSAS (Molec-236

ular Mechanics/Poisson Boltzmann/ Surface Area-Weighted237

solvent accessible surface area)(49, 50) method to compute the238

enthalpy and vibrational entropy. We notice lower values of239

cos θ during the first step of as the peptides were rigidly docked.240

However, peptides are very flexible and are known to adapt to241

the unbound structure of the receptor protein. Therefore we242

have allowed the peptides to undergo local perturbations to243

allow the peptide to refold and optimise the binding. Initial244

hits (docked poses with highest cos θ with the exception of P1,245

rejected due to poor scores) were considered for this step of246

flexible docking. Using FlexPepDock protocol implemented247

in Rosetta we carried out small-scale rigid body motion of248

the peptide coupled with backbone shear.(51) Alternate bind-249

ing modes were explored by enumerating mulitple side-chain250

rotamer conformations of individual residues of the peptide251

(Figure 2). By introducing flexibility we observe a significant252

improvement in the re-computed cos θ. This conformational253

sampling of the peptides is indicative of the ability of the254

peptides to fold and adapt a complementary shape to the255

backbone structure of the binding partner. As a final determi-256

nant of our design success we performed short all-atomic MD257

simulations of the peptide-protein complexes with the highest258

cos θ from the flexible docking stage in water buffer mimicking259

physiological conditions. Although we notice a decrease in260

the cosine similarity distance in the MD trajectories of the261

peptide-NSP7 complexes, the dot products can be considered262

to be high enough for the designed peptides to enable high263

specificity binding to the protein. Overall, considering the264

increasing intensity of validation with three docking steps265

we selected two designs viz. P4 and P5 for experimental266

validation as inhibitors of protein-protien association of the267

NSP12-NSP7 subunit of the RdRp complex.268

Experimental testing. RdRp functions as a polymerase in the 269

infected cell’s cytoplasm. Thus drugs must penetrate the host 270

cell to disrupt the intracellular PPIs of RdRp. Peptides P2 271

to P5 were appended by a short string of poly arginines at 272

the N-terminal for evaluating cell-penetrability using sequence 273

based predictors.(52) Sequences P4 and P5 were classified as 274

probable cell-penetrable entites while sequences P2 and P3 275

showed poor cell-penetration confidence and consequently were 276

not validated in-vitro for binding activity.(SI) We measured 277

the kinetics of P4 and P5 binding to NSP7 via Surface Plas- 278

mon Resonance experiments (SPR, Figure 3B). Both peptides 279

showed similar dissociation constants (KD) of 133 nM and 167 280

nM and similar binding kinetic profiles. The peptides possess 281

marginally improved binding affinity with NSP7 in comparison 282

to the NSP12-NSP7 complex (Table 3A). In contrast to the 283

experimentally predicted binding energies, ∆GMMPBSA−WSAS 284

has over-estimated the the binding energies by nearly two or- 285

ders of magnitude. Though it is noteworthy that the binding 286

free energies are predicted similar trends as measured by SPR. 287

Peptide-NSP7 docked poses with the highest dot products 288

(cos θ) after flexible docking are depicted in figure 3A with the 289

interface patch of NSP7 with NSP12 is colored in yellow. Poses 290

with high dot products signifying better binding specificity 291

are a strong indicator of the peptides’ ability to mimic the 292

binding modes of NSP12 and serve to validate our approach 293

of peptide design. Subsequently, the peptides were tested 294

for competitive binding with labelled NSP7 (his-taq) in the 295

presence of immobilised NSP12 using ELISA binding assays. 296

The signal in Figure 3B is a measure of the NSP7 bound to 297

the NSP12. P4 shows 46% inhibition in the binding of NSP7 298

with NSP12 at ten times the molar concentration of NSP7 299

translating to an IC50 of about 50 µM for P4. However, P5 300

did not show significant inhibition even at high concentrations 301

indicative of specificity at a non-neutralising site. ELISA based 302

competitive assays suggest that our peptide sequence needs 303

further optimisation for achieving higher affinities, highlight- 304

ing a fundamental shortcoming of our approach in restricting 305

the sequences of peptides from the template. Similar observa- 306

tions were made by Valiente et al (27), where the L-isoforms 307

showed a 43 times lower binding affinity to the spike protein 308

in comparison to the D-isoforms. Moreover, by constraining 309

the pepitdes to emulate the backbone fold of the template 310

we are intrinsically limiting the maximum possible binding 311

4 | Gaurav Goel et al.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477502


affinities of the peptides. (24, 34) De-novo design of stable312

folds could potentially enable topologies that manifest higher313

binding enthalpies and minimize entropic costs of folding to314

the holo state.315

Conclusion316

We developed a structural bioinformatics pipeline demonstrat-317

ing rational design of peptide inhibitors of protein-protein318

interactions from a long MD trajectory. The protocols aim to319

identify valid sequences from a virtual library of sequences con-320

structed using information of the template hotspots such that321

critical interactions made by the template are mimicked by322

the peptide. This is ensured by screening sequences containing323

a high fraction of the hotspot residues as identified in the tem-324

plate followed by their ability to reproduce the backbone folds325

from the structural repertoire of the interface of the template326

protein. To check the translation of the topological features327

of the peptides into binding affinity and specifity in-silico, the328

filtered sequences were docked in two stages, viz. rigid body329

global docking and flexible local docking. A final short MD330

simulation confirmed the presence of metastable peptide bind-331

ing poses to the interacting interface of NSP7 in RdRp. Two332

sequences, P4 and P5 were shortlisted for experimental vali-333

dation based on higher predicted cell-penetration confidence334

than P2 and P3. Similar profiles of binding kinetics of the335

peptides and NSP12 to NSP7 from SPR measurements provide336

proof of concept of our approach in the ability of the peptides337

to replicate the origin domain interactions. Competitive as-338

says based on ELISA substantiated the need for optimised339

sequences and folds different from the template for enhancing340

the binding affinity. Finally, we need to incorporate positive341

strategies for design that allows peptides to penetrate the cell342

membrane efficiently and target intracellular protein-protein343

interactions with high in-vivo efficacy. Requiring minimal344

computational efforts our template based design approach345

demonstrates that self inhibitory peptides derived from the346

interface of protein-protein interactions can serve as a good347

starting point for further refinement and lead optimisation.348

Methods and materials349

Computational design.350

Determination of binding hotspots . Key hotspot residue interac-351

tions made by NSP12 with NSP7 were obtained from the352

solvent accessible surface area analysis of its dimeric subunit353

complex of RdRp from a 10 µs molecular dynamics trajectory.354

(14) Interface residues on NSP12 are found from Eq. 1355

∆ANSP12hotspots = ANSP12monomer −ANSP12dimer

ANSP12dimer
total

[1]356

From a sufficiently long MD trajectory, a residue’s contribution357

to the binding hotspot is found by weighing its ∆A with a358

factor Pc that captures the probability of a residue to lie at the359

interface with NSP7. The MD trajectory was clustered using a360

0.25 RMSD cutoff on the backbone atoms of the NSP12-NSP7361

dimeric subunit. Pc for a given cluster c is the population362

fraction of the cluster (Pc = Nc
ΣcNc

) as observed in a MD363

trajectory obeying the ergodic principle.364

Table 1. Residues from different segments were connected based on
the Cα-Cα distances by a Glycine/Alanine bridge

Distance (nm) Bridge

<0.7 -G-
0.7-1.0 -G-A-
1.0-1.3 -G-A-A-

Design strategy. Following the work of Mishra et al., (17) se- 365

quences of peptides were built by sewing a chain of spatially 366

close hotspot residues from two different binding segments of 367

the hotspot as given in Table 1. A segment is defined as a 368

continuous sequence of residues on the NSP12 binding inter- 369

face. The segment terminates if three or more consecutive 370

residues are not part of the binding hotspot (i.e. Pi∆A = 0). 371

A combinatorial library of such inter-segment connections 372

was made and appended by intra-segment derived sequences. 373

Peptides in the generated library were scored by the hotspot 374

areas as evaluated from their parent NSP12 conformation. 375

Peptide sequences with length less than 12 amino acids were 376

selected from the top scoring sequences. Five conformations 377

with the lowest energy were selected using the OPEP forcefield 378

implemented in PEPFOLD. (53) 379

Assessment of peptide fold and elimination of redundancy . Pep- 380

tides are rejected if the backbone of the lowest energy conforma- 381

tions do not adopt to their origin motif’s (NSP12) structure 382

using a criteria of < 3.5 Å backbone RMSD. A structural 383

template modelling score (TM-Score) was applied for evaluat- 384

ing conformational and sequence similarity in the shortlisted 385

peptides.(54) The sequences of the selected set of peptides were 386

aligned using the Needleman–Wunsch algorithm implemented 387

in MATLAB’s Bioinformatics Toolbox. (55) To determine 388

the sequence identity, alignment was performed using an iden- 389

tity mutation matrix, created using the eye(20) command. 390

This amino acid mutation matrix used for global sequence 391

alignment on the fasta sequences of peptides prior to TM- 392

Score calculations. TM-Score matrix was computed for all the 393

conformations (each peptide has five conformations). Confor- 394

mations with structures greater than 0.5 are said to be within 395

the same fold and thus similar. To select a non-redundant set 396

of peptide sequences and folds we employed linear integer pro- 397

gramming (ILP) based optimisation on a binary TM-score ma- 398

trix weighted by the hotspot areas of all residues derived from 399

their respective parent template (ΣrPr∆Ar). Dual-simplex 400

algorithm with Gomory cuts was used to optimize the solution 401

for a minimal peptide set: 402

min
peptides∑

wiSi [2] 403

Cij =
conf∑

Si; Si ∈ {0, 1}; Cij ≥ 1; wi =
residues∑

Pr∆Ar

Peptide-NSP7 binding . All conformations in the non-redundant 404

set were rigidly docked onto the binding partners of NSP12. 405

The MM/PBSA-WSAS energies for binding were calculated 406

for peptide-NSP12 complex. The binding similtitude of the 407

peptides to partner PFIs was determined using a 70 length 408

vector (an element for each residue) with respect to NSP7 409

by summing up the following for all docked poses of a given 410

peptide-PFI pair: 411
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X̂ =
poses∑
p=1

ANSP7
p −APep−NSP7

p

APep−NSP7
total,p

· e
E∆G,p

kT∑
poses e

E∆G,p
kT

[3]412

413

Ŷ =
poses∑
p=1

ANSP7
p −ANSP12−NSP7

p

ANSP12−NSP7
total,p

· e
E∆G,p

kT∑
poses e

E∆G,p
kT

[4]414

415

cos θ = X̂ · Ŷ [5]416

The cosine similarity of this vector with the vector obtained417

for each of the NSP12-NSP7 complexes (central structures418

using a backbone clustering of 2.5 Å) was found. Peptides with419

high dot products (> 0.90 of the maximum dot product) were420

docked using Rosetta’s FlexPepDock to introduce flexibility421

in the peptide backbones. The dot products were recalculated422

using the Rosetta interface energy scores (Isc) (56) to identify423

the most effective flexible peptides binding to NSP7. The top424

scoring structures from the enriched ensemble were subjected425

to explicit all-atom molecular dynamics simulations in the426

canoncial ensemble for 20 ns using the CHARMM-36m force-427

field with the Nosé-Hoover thermostat and Parrinello-Rahman428

barostat.429

Experimental methods.430

SPR measurement. The binding Kinetics of NSP 7 with NSP 12,431

P4 and P5 proteins were measured by using a Biacore X-100432

system with CM5 chips (Cytiva). The NSP 7 protein was im-433

mobilized on the chip by amine coupling with a concentration434

of 50 µg/ml (diluted by 0.1 mM NaAc, PH 4.5) according to435

the manufacturer’s recommendation. For all measurements,436

the same running buffer was used which consists of 20 mM437

HEPES, pH 7.5, 150 mM NaCl and 0.005% tween-20 with438

a flow rate of 30 mL/min at 25 degree C. Serially diluted439

protein samples are injected in a series of 0.19, 0.39, 0.78,440

1.56 and 3.12µM with association time 60s and followed by441

90s dissociation phase. The Multi-cycle binding kinetics was442

analyzed with the Biacore X-100 Evaluation Software (Cytiva)443

and fitted with a 1:1 binding model.444

Competitive inhibition using ELISA. FLAG-taq Nsp12 and his-taq445

(HRP) nsp7 proteins of SARS-CoV-2 were purchased from446

BPS Biosciences, San Diego, CA, USA. The peptides were447

purchased from Genscript Biotech Corporation, New Jersey,448

USA. SARS-CoV-2 nsp12 protein was diluted at 10 ng/µl-1 in449

PBS buffer. Two hundred nanogram protein was coated per450

well on a 96-microtiter ELISA plate (Nunc, Thermo Fisher451

Scientific) overnight at 4 ◦C. Next day, unbound protein was452

removed, and wells were washed thrice with 1X PBS buffer.453

Wells were then blocked with 4% (w/v) skimmed milk prepared454

in 1X PBS buffer and incubated at 37 ◦C for 45 min. The455

peptides were dissolved in water and were incubated with the456

coated protein of Nsp12 in an increasing gradient (1:1, 1:3, 1:5,457

1:10, 1:20). For the positive control, no peptide was added to458

the well. Incubated peptides were allowed to interact with the459

coated NSp12 protein with slow shaking at room temperature460

for 1 h.Thirty microlitres of diluted nsp7 protein of SARS-461

CoV-2 (150 ng) was added to the well plate in triplicate and462

were allowed to interact with the coated Nsp12 protein at room463

temperature for 1 hr with shaking.Wells were then washed464

with 200 µl of PBS buffer three times followed by incubation465

with 100 µl of anti-his antibody prepared in 1X PBST buffer 466

at 1:5,000 dilution and incubated at 37 ◦C for 30 min. The 467

wells were then washed three times with 200 µl of 1X PBS 468

buffer. One hundred microlitre 3,3’ ,5,5’ -tetramethylbenzidine 469

substrate (Thermo Fisher Scientific) was added to each well 470

and incubated for 10 min. The reaction was stopped by adding 471

100 µL of 0.18 M sulphuric acid and the optical densities of 472

the plate wells were measured using Biotek plate reader at 450 473

nm. 474
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