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Abstract: The present study investigated the distribution status and biodiversity of Trichoderma species 13 

surveyed from coffee rhizosphere soil samples from Ethiopia and their potential for biocontrol of coffee 14 

wilt disease (CWD) caused by Fusarium xylarioides. Trichoderma isolates were identified based on molecular 15 

approaches and morphological characteristics followed by biodiversity analysis using different 16 

biodiversity indices. The antagonistic potential of Trichoderma isolates was evaluated against F. xylarioides 17 

using the dual confrontation technique and agar diffusion bioassays. A relatively high diversity of species 18 

was observed including 16 taxa and 11 undescribed isolates. Trichoderma asperellum, T. asperelloides and T. 19 

longibrachiatum were classified as abundant species, with dominance (Y) values of 0.062, 0.056 and 0.034, 20 

respectively. Trichoderma asperellum was the most abundant species (comprising 39.6% of all isolates) in all 21 

investigated coffee ecosystems.   Shannon’s biodiversity index (H), the evenness (E), Simpson’s biodiversity 22 

index (D), and the abundance index (J) were calculated for each coffee ecosystem, revealing that species 23 

diversity and evenness were highest in the Jimma zone (H =1.97, E = 0.76, D = 0.91, J = 2.73). The average 24 

diversity values for Trichoderma species originating from the coffee ecosystem were H = 1.77, D = 0.7, E = 25 

0.75 and J = 2.4. In vitro confrontation experiments revealed that T. asperellum AU131 and T. longibrachiatum 26 

AU158 reduced the mycelial growth of F. xylarioides by over 80%. The potential use of these Trichoderma 27 

species for disease management of F. xylarioides and to reduce its impact on coffee cultivation is discussed 28 

in relation to Ethiopia’s ongoing coffee wilt disease crisis. 29 

Keywords: bioassays, biodiversity indices, coffee ecosystem, Fusarium xylarioides, Trichoderma species 30 

1. Introduction 31 

Trichoderma species are widely found in different soil types, ecosystems and climatic zones, and 32 

categorized based on their metabolic, physiological, and genetic diversity features [1]. They are 33 

economically significant because of their functions as primary decomposers, producers of antimicrobial 34 

compounds and enzymes, and their use as biocontrol agents against diverse phytopathogens [2-5]. Many 35 

research studies have revealed that in addition to directly inhibiting phytopathogens growth via 36 

mycoparasitism, antibiosis, and competition [6], some Trichoderma species have beneficial effects on plants 37 
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resulting from plant growth promotion, solubilization of soil micro- and macro-nutrients [7], and activation 38 

of plant systemic resistance [8], in a multifaceted three-way interaction between antagonist, 39 

phytopathogens, and host plants [9]. To date, studies on Trichoderma diversity have mainly been conducted 40 

in Asia, Europe, and America [10]; there have been few investigations into the diversity and distribution of 41 

Trichoderma in Africa, with the exception of some studies targeting specific ecological niches [11,12]. In 42 

particular, there has been only one published study on Trichoderma species inhabiting coffee plants, which 43 

focused on species isolated from the rhizosphere of C. arabica in Ethiopia [13].  44 

Morphological characterization and distinction was first used by Rifai [14] and later by Bisset [15-18] 45 

to investigate the diversity and evolution of Trichoderma species. However, species identification and 46 

delimination based on morphology alone is very difficult, making such approaches unreliable and 47 

subjective [19]. A more reliable approach is molecular phylogenetic analysis based on DNA sequencing 48 

data; over 375 Trichoderma species have been validly described and characterized in this way [20]. Reliable 49 

phylogenetic information is also important for studying the diversity of secondary metabolites of 50 

Trichoderma species. Consequently, molecular biological analysis is essential for the accurate identification 51 

of Trichoderma [21]. The internal transcribed spacer (ITS) is a widely used “universal” fungal molecular 52 

barcode [22,23]. However, it has low species resolution in the genus Trichoderma [24]. Therefore, the 53 

sequence of translation elongation factor 1-alpha (TEF1-α) was recommended as an alternative molecular 54 

barcode for phylogenetic analysis of this genus [24]. 55 

Trichoderma species stand out among rhizospheric microorganisms due to their high biocontrol 56 

potential and their ability to facilitate nutrient uptake by plants while also providing protection against 57 

phytopathogens [25]. To maximize their beneficial effects on crop plants, it is essential to evaluate the 58 

functional and structural diversity of Trichoderma species found in specific agro-climatic conditions. The 59 

rhizosphere of coffee exhibits particularly high diversity with a wide range of putative Trichoderma species 60 

and is a hotspot for the evolution of this genus [13]. Trichoderma species have been extensively studied and 61 

used as biocontrol agents against diverse plant pathogens including bacteria [26,27], fungi [28], oomycetes 62 

[29], and nematodes [30] for many different crops and agro-climatic conditions [31].   63 

Ethiopia is the center of origin for Arabica coffee (Coffea arabica L.) and hosts a large germplasm 64 

diversity. It is also Africa's largest coffee producer and the world's fifth-largest coffee exporter, with a 65 

forecasted production of 457,200 metric tons (MT) in 2021/2022, having a value in excess of 900 million USD 66 

[32,33]. Coffee cultivation provides a livelihood for around 25 million [34,35], accounting for 25-30% of total 67 

export incomes [36]. In addition to the worldwide reputation of Ethiopia’s genetic resources, coffee plays 68 

a major role in the national economy and the livelihoods of approximately 4.5 million coffee farmers [37,38]. 69 

Despite its leading position in coffee cultivation in Africa, the Ethiopian coffee sector is underachieving 70 

due to the rise of various fungal and bacterial diseases, and these pressures are predicted to increase with 71 

climate change [39,40]. During the last decade of the 20th century, Coffee Wilt Disease (CWD) caused by 72 

Fusarium xylarioides become the principal production constraint for Arabica coffee in Ethiopia, Uganda, the 73 

Democratic Republic of Congo (DRC) and Tanzania [40]. The yearly coffee yield loss due to CWD in 74 

Ethiopia is estimated to be 30 - 40% [40-43]. CWD incidence is greatly affected by the farming system, with 75 

much higher rates in garden and plantation coffee. CWD has conventionally been managed by uprooting 76 

and burning the affected coffee plant and using resistant varieties [44].  77 
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The potential use of Trichoderma species for plant pathogen control is now well documented, although 78 

this approach is largely unexploited for many diseases of tropical perennial crops. Therefore, given the 79 

importance of coffee in Ethiopia’s national economy, the damaging nature of CWD, the limited availability 80 

of resistant crop lines, and the lack of information on the biocontrol of CWD, a study on the potential of 81 

Trichoderma species to suppress the growth of F. xylarioides is needed to identify new genomic resources for 82 

management of this pathogen. Screening the biodiversity of different coffee ecosystems and the 83 

ecophysiology of Trichoderma species from a genomic perspective and analyzing their diversity will provide 84 

important insights into the potential value of Trichoderma for controlling CWD in the future.  85 

The prospect of influencing coffee rhizosphere by inoculating potential Trichoderma species to control 86 

CWD, enhance coffee growth and health was substantially studied under laboratory, greenhouse and field 87 

conditions (Mulatu A., unpublished data). However, the reduced efficiency of biocontrol agents under field 88 

condition is hindered due to their ability to adapt to local biotic and abiotic environmental conditions. To 89 

understand this phenomenon, it is necessary to study the geographical distribution and habitat preference 90 

of biocontrol agents in the rhizosphere. Hence, the present investigation was undertaken to study the 91 

distribution and biodiversity patterns of Trichoderma species in major coffee growing regions of Ethiopia 92 

with the long-term objective of assessing their potential as biocontrol agents of CWD.  93 

2. Materials and Methods  94 

2.1 Collection of Soil Samples and Isolation of Trichoderma species 95 

 Trichoderma isolates were collected from ten major Ethiopian coffee growing areas (Jimma, Kaffa, 96 

Benchi Maji, Sheka, Bunno Bedele, Bale, Sidama, Gedio, West Wollega and West Guji) in different agro-97 

climatic zones. Trichoderma isolates were obtained from coffee rhizosphere soil gathered during surveys 98 

conducted between May 2016 and August 2017. The surveys covered all major coffee growing areas of 99 

Ethiopia’s southern, western, and southwestern regions. During soil collection, the upper surface soil litter 100 

(4–6 cm) was discarded, and 200 g soil samples were collected from a depth of approximately 10-15 cm. 101 

Over 184 soil samples were obtained from 28 districts (categorized under 10 zones) along the main roads 102 

(Figure 1 and Table S1). The soil samples were placed in sterile polyethylene bags, transported to the 103 

laboratory, and processed immediately. The strains were isolated using Trichoderma Specific Medium 104 

(TSM) according to previously reported methods Gil, et al. [45] and  Saravanakumar, et al. [46] and purified 105 

by sub-culturing on potato dextrose agar (PDA). Fusarium xylarioides (DSM No. 62457, strain: IMB 11646), 106 

the causative agent of coffee wilt disease [9,47,48], was used as a test pathogen to evaluate the biocontrol 107 

potential of Trichoderma species. 108 
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 109 

Figure 1. Map of study areas and illustration of the geographical locations of districts from which 110 

rhizospheric soil samples were collected, Ethiopia. SNNP = South Nations and Nationalities Peoples region. 111 

2.2  Morphological Characteristics 112 

The Trichoderma isolates were characterized based on their morphology by growing them on PDA at 113 

28 ± 2°C for 5 days following the protocol described by Samuels and Hebbar [49]. The Trichoderma colonies 114 

were visually observed to determine their color (obverse and reverse), texture, margin, and sporulation. 115 

All Trichoderma isolates were classified and identified at the species level using morphological 116 

characteristics as suggested by Rifai [31] and Leahy and Colwell [50]. For further experiments and long-117 

term storage, Trichoderma isolates were sub-cultured and slants were prepared in cryovials overlaid with 118 

20 % glycerol and stored at -80 °C.  119 

2.3 DNA Extraction, PCR Amplification and Sequencing 120 

 Genomic DNA was extracted according to Gontia-Mishra et al. (2014). Polymerase chain reaction 121 

(PCR) amplification of the TEF1-α region was performed using EF2-EF1728M primer following the 122 

conditions given by White, et al. [51]. PCR amplifications were carried out in a total reaction volume of 12.5 123 

μl, including 0.25 μl of each primer, 1.25 μl of BSA, 6.25 of Taq polymerase [including dNTPs], 0.25 μl of 124 

genomic DNA [30 ng/µl]; 0.25 µl DMSO and 4 µl of sterile ultrapure water. PCR conditions for TEF1-α , 125 

conditions were 94 °C/2 min, followed by nine cycles at 94 °C/35 s, 66 °C/ 55 s, and 35 cycles at 94 °C/35 s, 126 

56 °C/55 s and 72 °C/1 min 30 s. PCR products were visualized by Gelred (Thermo Fisher Scientific, 127 

Germany) staining following electrophoresis of 4 μl of each product in 1% agarose gel. The PCR products 128 

were sequenced by the Eurofins Sanger sequencing facility, Germany. 129 
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2.4 Phylogenetic Analysis 130 

Consensus sequences were assembled from forward and reverse sequencing chromatograms using the 131 

CLC Main Workbench 8.1 software packages. Tef1-α contigs of all isolates were compared to homologous 132 

sequences deposited in the NCBI GenBank database. Sequences generated and used in the current study 133 

were deposited in this database (Table 1). Sequences utilized from other studies were retrieved from the 134 

NCBI GenBank database for use in our phylogenetic analyses. Sequence alignments were carried out using 135 

MUSCLE as implemented in MEGA 10 [52]. Before phylogenetic analyses, the most appropriate nucleotide 136 

substitution model for each locus was chosen using MRMODELTEST v.2126. The nucleotide substitution 137 

model for TEF1-α was HKY + I + G. The evolutionary history or consensus tree was inferred using the 138 

Maximum Likelihood test [53]. Trichoderma species matching with the isolates obtained in this work were 139 

retrieved and used to construct the phylogenetic tree, including two Nectria species as the outgroup. Nodal 140 

robustness was checked using the bootstrap method and phylogenetic robustness was evaluated using 141 

1000 replicates. Only sequences that matched published results identified through BLASTN searches with 142 

>97% sequence identity and an e-value of zero were used.  143 
 144 

Table 1. Identification, origin, NCBI Genbank accession numbers, and isolation details of Trichoderma species from 145 

coffee rhizospheric soil of Ethiopia. 146 
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2.5 Diversity Analysis of Trichoderma species  147 

 The degree of dominance index (Y) was used to quantitatively categorize the habitat preference of 148 

Trichoderma isolates in the coffee rhizosphere. The dominance values were computed using the following 149 

equation:   150 

 𝒀 =
𝒏𝒊 𝐱 𝒇𝒊

𝑵
 151 

Here, ‘N’ is the total number of Trichoderma  isolates, ‘ni’ is the number of the genus (species) i, and ‘fi’ 152 

is the frequency with which genus (species) i appears in the samples. The species i is dominant when Y > 153 

0.02  [54]. Species richness (the total number of species), abundance (the sum of the number of isolates of 154 

each species), and diversity were evaluated using the Simpson biodiversity index (D) [55], Shannon’s 155 

biodiversity index (H) [56], Pielou species evenness index (E) [57], and Margalef’s abundance index (J) [58]. 156 

These ecological indices were used to quantitatively describe the diversity and habitat preference of 157 

Trichoderma species in different coffee ecosystems and major coffee growing zones of Ethiopia.  158 

Trichoderma species diversity, defined as the product of the evenness and the number of species, was 159 

evaluated using the Shannon biodiversity index (H) [56,59]. Simpson’s diversity index was calculated to 160 

assess the dominance of individual species [55,60]. This index shows  the  probability that two species 161 

selected randomly from a given ecosystem will belong to different species categories. Margalef’s 162 

abundance index was used to evaluate the species richness while the Pielou index was used to determine 163 

the evenness of the Trichoderma population. The biological diversity indices were calculated using the 164 

following equations:  165 

                 𝐷 =
1

𝛴ⅈ−1
𝑠 𝑃𝑖

2 , 𝑃𝑖
2 =

𝑛ⅈ(𝑛ⅈ−1)

𝑁(𝑁−1)
 166 

                 𝐻 = ∑ P𝑖 𝑙𝑛 P𝑖,𝑁
𝑖=1  𝑃𝑖 =

𝑛𝑖

𝑁
 167 

                         𝐸 =
𝐻

𝐻𝑚𝑎𝑥
, 𝐻𝑚𝑎𝑥 = 𝑙𝑛𝑆 168 

                         𝐽 =
𝑆−1

𝑙𝑛 𝑁
 169 

Here, ‘S’ is the total number of Trichoderma species, ‘N’ is the sum of all Trichoderma species isolates, 170 

‘Pi’ is the relative quantity of Trichoderma species ‘i’, and ‘ni’ is the number of isolates of Trichoderma species 171 

‘i’.  172 

2.6 In vitro Bioassay  173 

In the present study, a total of 175 Trichoderma isolates were tested against F. xylarioides according to the 174 

method of Dennis and Webster [61]. Briefly, mycelial disks (5 mm in diameter) from seven days old growing 175 

edges of Trichoderma and F. xylarioides were put on opposite sides of a PDA Petri dish (3 cm away from each 176 
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other). Control plates were also prepared without a Trichoderma disk. The culture plates were incubated at 177 

25°C with a 12 h photoperiod for 7 days. Following the methodology of [62], the percentage of colonization 178 

(%C) of each Trichoderma isolate was computed using the formula: 179 

 %𝐶 = (
𝐷𝑇−𝐷𝐸

𝐷𝐸
) 𝑥100 180 

Here, DT is the distance between colonies after mycelial growth stabilizes and DE is the initial distance 181 

between the two mycelial discs.       182 

In brief, Trichoderma species (1 x 107 spores/ml) were inoculated into 1 liter of PDB at pH 7.2 and cultured 183 

for 21 days at 28 °C. After the incubation, the liquid culture was subjected to ethyl acetate extraction and the 184 

crude extract was concentrated using a rotary evaporator. Finally, the concentrated extracts were dissolved 185 

in methanol for further partial purification using Sephadex LH-20. A total of 25 fractions were collected from 186 

the chromatographic column and subjected to agar diffusion assay against F. xylarioides on King B medium. 187 

2.7 Statistical Data Analysis 188 

 Experimental results were analyzed using one-way analysis of variance (ANOVA) with SPSS, version 189 

25. All statistical analyses of ecological indices used to evaluate the biodiversity of Trichoderma species were 190 

performed using Microsoft Excel 2019 and R software. The significance of differences between the mean 191 

results for treatments was evaluated using the Highest Significant Difference (HSD) based on the Tukey 192 

test with a significance threshold of p ≤ 0.05. 193 

3. RESULTS 194 

3.1 Isolation and Morphological characterization of Trichoderma Isolates  195 

 Trichoderma isolates were collected from the coffee rhizosphere conducted in southern, western, and 196 

southwestern parts of Ethiopia. A total of 175 Trichoderma isolates were obtained from 184 rhizospheric soil 197 

samples collected from 28 districts distributed across different agroclimatic zones with soil pH ranging 198 

from 4.8 to 8.2. They were morphologically characterized by culturing on PDA plates to capture a full-scale 199 

Trichoderma diversity and distribution profile. Macroscopic morphological analysis revealed colonies with 200 

fast mycelial growth, concentric halos, and floccose or compact surfaces on the culture medium (Figure 2). 201 

They were found to form colonies with white mycelia, becoming green when forming conidia and 202 

conidiophores. The mycelium, initially of a white color, acquired green or yellow shades, or remained 203 

white, due to the abundant production of conidia and secondary metabolites. Concentric rings on culture 204 

media were observed for some isolates. Morphological variants including phialides, conidial arrangements, 205 

and conidial structures were also observed among the Trichoderma isolates. Microscopic analysis revealed  206 

plentiful sporulation of conidia originating from verticillate conidiophores. The conidia of most Trichoderma 207 

isolates were ellipsoidal, globose, subglobose, apex broadly rounded and base more narrowly rounded 208 

(Figure 2). However, morphological characteristics were insufficient to distinguish between different 209 

Trichoderma isolates. Therefore, molecular identification was needed to differentiate the complex and 210 

overlapping Trichoderma isolates.  211 
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 212 
     Figure 2. Morphological characteristics of Trichoderma species colony grown on PDA: T. asperellum (1), T. asperelloides (2), T. longibrachiatum (3), T. harzianum 213 

(4), T. aethiopicum (5), T. citrinoviride (6), T. hamatum (7), T. reesei (8), T. vi ride (9), T. bissettii (10), T. brevicompactum (11), T. erinaceum (12), T. gamsii 214 

(13), T. koningiopsis (14), T. orientale (15) and T. paratroviride (16); x = structure of conidiophores. Conidiophores were observed with 400× 215 

magnification.216 
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3.2 Molecular Identification of Trichoderma Isolates 217 

 In total, 164 isolates of Trichoderma were identified at the species level based on their TEF1-α sequences 218 

and by morphological analysis. The isolates were assigned to 16 putative species of Trichoderma, namely T. 219 

asperellum (64 isolates), T. asperelloides (32), T. longibrachiatum (20), T. harzianum (8), T. aethiopicum (6), T. 220 

hamatum (6), T. viride (4), T. reesei (4), T. koningiopsis (3), T. brevicompactum (3), T. citrinoviride (3), T. gamsii (3), 221 

T. erinaceum (2), T. orientale (2), T. bissettii (3), and T. paratroviride (1) (Figure 3 and Supplementary Table S1). 222 

These results represent the first observations of the following nine Trichoderma species in Ethiopia: T. 223 

asperellum, T. bissettii, T. brevicompactum, T. citrinoviride, T. erinaceum, T. orientale, T. paratroviride, T. reesei and 224 

T. viride. In addition, 11 undescribed and different isolates could not be matched to any other sequence in 225 

Genbank, demonstrating the considerable unresolved biodiversity of Trichoderma in the coffee ecosystem.  226 

 227 

Figure 3. Trichoderma species isolated and identified from coffee rhizospheric soil samples: the numbers in 228 

parenthesis was the percentage of each Trichoderma species. 229 

3.3 Phylogenetic Analysis 230 

The TEF1-α phylogenetic analysis indicated that the 164 Trichoderma isolates were grouped into 16 highly 231 

supported monophyletic groups on the phylogeny. The Tef1-α phylogenetic analysis and the resulting 232 

maximum likelihood tree achieved good resolution for most of the analyzed isolates and effectively 233 

discriminated between members of the detected clades. Five basic clades were categorized following the 234 

identification manual for Trichoderma, namely Brevicompactum, Longibrachiatum, Hamatum, Harzianum and 235 

Viride (Figure 4). One hundred and two isolates were categorized into three known species belonging to the 236 

clades Hamatum: T. asperellum, T. asperelloides, and T. Hamatum, while 15 isolates were identified as T. orientale, 237 

T. asperellum (35)

T. asperelloides (17)

T. longibrachiatum (11)

T. harzianum (6)

T. aethiopicum (3)

T. citrinoviride (3)

T. hamatum (3)

T. reesei (2)

T. viride (2)

T. bissettii (3)

T. brevicompactum (2)

T. erinaceum (1)

T. gamsii (2)

T. koningiopsis (2)

T. orientale (2)

T. paratroviride (2)

Unidentified (6)
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T. koningiopsis, T. viride, T. erinaceum, T. paratroviride, and T. gamsii in the clade Viride. In addition, 36 isolates 238 

were identified as T. longibrachiatum, T. aethiopicum, T. citroviride, T. bissettii, and T. reesei in the clade 239 

Longibrachiatum. Eight isolates were identified as T. harzianum in the clade Harzianum, and 3 isolates grouped 240 

as T. brevicompactum belonging to the clade Brevicompactum (Figure 4).  241 

Figure 4. Phylogenetic tree constructed from Maximum Likelihood analysis of TEF1-α genes of Trichoderma. 242 

The TEF1-α nucleotide sequences were aligned with similar sequences from taxa of Trichoderma species 243 

available in the GenBank. The bootstrap scores are based on 1,000 iterations. The scale bar represents 50 244 

substitutions per nucleotide position. Sequences from this study are designated with isolate ID: AU. 245 

3.4 Biodiversity and Distribution of Trichoderma Isolates 246 

3.4.1 Diversity analysis of Trichoderma species 247 

The dominance value (Y) was 0.048 (> 0.02), indicating that the genus Trichoderma was dominant in 248 

coffee rhizosphere soil. T. asperellum, T. asperelloides and T. longibrachiatum were classified as the principal 249 

species, with dominance (Y) values of 0.062, 0.056, and 0.034, respectively. The analysed data were used to 250 

compute Simpson’s biodiversity index (D), Shannon’s biodiversity index (H), evenness (E), and the 251 

abundance index (J) for each coffee ecosystem and coffee growing zone, as shown in Supplementary Table 252 

S1. The highest species diversity and evenness (H = 1.97, E = 0.79, D = 0.81) were recorded in the forest and 253 

semi-forest coffee ecosystems of Kaffa, Jimma, and Bale. The Shannon and Simpson diversity indices 254 

estimated for the garden coffee ecosystems of the West Guji and Bunno Bedele zones showed that they had 255 

lower species diversity (H = 1.57, D = 0.7). The calculated species abundance values were E = 2.71 for forest 256 

coffee, E = 2.64 for semi-forest coffee, and E = 2.14 for garden coffee. The average diversity values for 257 

Trichoderma species originating from the coffee ecosystem were H = 1.77, D = 0.7, E = 0.75 and J = 2.4 (Table 258 

2). Simpson’s index and the evenness index were close to 1 except in the West Guji zone, indicating a very 259 

high diversity of Trichoderma species in major coffee growing areas of Ethiopia. The numbers of species and 260 

isolates, and the dominant species of Trichoderma varied geographically (Table S2). These results revealed 261 

that the forest, semi-forest, and garden ecosystems had a high diversity of Trichoderma species. The 262 

rhizosphere of C. arabica in Ethiopia thus hosts a large and highly diverse population of Trichoderma species. 263 
 264 
Table 2. Univariate diversity indices analysis of Trichoderma isolates in different coffee ecosystems and 265 

major coffee growing zones of Ethiopia. 266 

Ecological  

indices 

Coffee Ecosystem  Major coffee growing zones 

Native 

Forest 

Semi 

forest 

Garden 

coffee 

Avera

ge 
Jimma Kaffa 

Bench 

Maji 
Sheka 

Bunno 

Bedale 

West 

Wollega 

West 

Guji 
Gedio Sidama Bale 

Simpson index  

(D) 
0.81 0.81 0.7 0.76 0.91 0.94 0.83 0.82 0.7 0.64 0.53 0.9 0.8 0.87 

Shannon’s  

index (H） 
1.97 1.96 1.57 1.77 1.97 1.82 1.7 1.83 0.75 0.94 1.29 1.33 1.54 1.89 

Pielou evenness  

Index (E） 
0.79 0.79 0.71 0.75 0.76 0.95 0.87 0.83 0.86 0.72 0.68 0.96 0.86 0.97 

Abundance 

index (J) 
2.71 2.64 2.14 2.4 2.73 2.58 1.97 2.49 1.24 1.95 1.17 1.86 2.09 2.6 
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3.4.2 Distribution of Trichoderma species in different coffee growing zones  267 

 Distribution and habitat preference analysis showed that Trichoderma species were widely dispersed 268 

throughout different coffee production systems. The proportion and composition of Trichoderma species 269 

varied among the sampled coffee growing districts and zones. The proportion of Trichoderma species 270 

obtained from Jimma zone was the highest (27%), followed by Sheka zone (16%) and Bench Maji zone 271 

(13%); the lowest proportion was obtained in the Bunno Bedele zone (3%) (Figure 5). Species richness was 272 

highest in the Jimma zone (25 soil samples), from which 11 Trichoderma species were identified, followed 273 

by the Sheka zone (9 species, 18 soil samples), whereas Bunno Bedele had only 3 Trichoderma species. 274 

Among the identified isolates, T. asperellum (39.6%) and T. asperelloides (28%) were the most abundant 275 

species, being found in all major coffee growing zones and districts of Ethiopia (Figure 5). Conversely, T. 276 

paratroviride was noted only in soil samples collected from Jimma zone. The number of Trichoderma species 277 

declined on going from the southwest to the south. The 11 known species identified in the Jimma zone 278 

were T. asperellum, T. asperelloides, T. longibrachiatum, T. harzianum, T. aethiopicum, T. citrinoviride, T. viride, 279 

T. reesei, T. koningiopsis, T. erinaceum and T. paratroviride. On the other hand, Trichoderma species obtained 280 

from the Sheka zone were T. asperellum, T. asperelloides, T. longibrachiatum, T. viride, T. hamatum, T. 281 

brevicompactum, T. koningiopsis, T. citrinoviride, and T. bissettii. T. asperellum and T. asperelloides were found 282 

in all major coffee growing areas and were the most widely dispersed species. Another widely distributed 283 

species was T. longibrachiatum, which was scattered in all zones except Kaffa. However, some species were 284 

unique to one zone; for instance, T. paratroviride was isolated only from Jimma zone (Figure 5). 285 

 286 
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Figure 5. Distribution of Trichoderma species in major coffee growing zones of Ethiopia. 287 

3.4.3 Distribution of Trichoderma species in a Coffee Ecosystem 288 

There were slight differences in the communities of Trichoderma species observed in the coffee 289 

rhizosphere soils of the different coffee ecosystems. Their high biodiversity was apparent in the distribution 290 

of Trichoderma species (Table S1). In total, 72 soil samples were collected from the native forest ecosystem, 291 

yielding 68 isolates representing 12 species of Trichoderma. Fifty-nine soil samples were collected from 292 

disturbed semi-forests, yielding 62 isolates representing 13 species. Fewer samples were collected from 293 

garden coffee ecosystems (53 soil samples), yielding only 9 different Trichoderma species. The isolation 294 

frequency of Trichoderma in the native forest ecosystem was 39%, which was substantially higher than that 295 

for garden coffee ecosystems (29%; Figure 6). Except for species represented by single isolates, all species 296 

were found in multiple areas, showing that they may be regularly distributed within the coffee rhizosphere. 297 

However, there were some notable exceptions: T. erinaceum and T. brevicompactum were mostly isolated 298 

from the forest rhizosphere, T. paratroviride and T. citrinoviride were only found in semi forest zones, and T. 299 

orientale was only observed in the garden coffee ecosystem (Figure 6).  300 

 301 

Figure 6. Distribution of Trichoderma species in different coffee production ecosystems. 302 

3.5 Screening of Biocontrol Trichoderma  303 

All isolates were capable of significantly inhibiting the mycelial growth of F. xylarioides. Twelve isolates 304 

exhibited the highest defined level of in vitro antagonistic activity. ANOVA analysis revealed statistically 305 

significant (p ≤ 0.05) differences in the mycelial growth inhibition profiles of the Trichoderma isolates against 306 

F. xylarioides, with inhibition percentages ranging from 44.5% to 84.8% (Table 3). Among them, T. asperellum 307 

AU71, T. longibrachiatum AU158 and T. asperellum AU131 were the most effective, causing 79.3%, 82.4%, 308 

and 84.8% inhibition, respectively ((Table 3 and Figure 7 A-C)). The mean inhibitory effect of these isolates 309 
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against F. xylarioides was such that the pathogen’s growth was suppressed almost completely whereas it 310 

grew rapidly on control plates lacking Trichoderma isolates ((Figure 7 (1D)). The inhibition of F. xylarioides 311 

radial growth in the dual culture confronting assay was attributed to inhibitory secondary metabolites 312 

released by one or both organisms as well as competition, mycoparasitism, and production of cell wall 313 

degrading enzymes. The potential Trichoderma species exhibited an average growth rate of 0.45 mm/h in 314 

dual culture bioassays. 315 

Based on the in vitro bioassay results, three potent isolates (T. asperellum AU71, T. asperellum AU131 316 

and T. longibrachiatum AU158) were subjected to secondary metabolite extraction. The agar well diffusion 317 

method was used to quantify the antifungal activities of crude metabolites extracted from these species 318 

((Table 3 and Figure 7 (2A-C)). All crude metabolites from these microorganisms inhibited the mycelial 319 

growth of F. xylarioides at the point of application around the agar wells; inhibition percentages of 83.5%, 320 

86.7%, and 88.2% were observed for the extracts of T. asperellum AU71, T. asperellum AU131, and T. 321 

longibrachiatum AU158, respectively, ((Figure 7 (2ABC)) (p ≤ 0.05).  322 

 323 

Figure 7. Antagonistic effects of Trichoderma species against F. xylarioides: (1A-C) dual culture bioassay, (2A-324 

C) agar diffusion bioassay. T. asperellum AU71 (A), T. asperellum AU131 (B), T. longibrachiatum AU158 (C) 325 

and F. xylarioides (1D) alone as a control. Red arrows indicate the growth of the test pathogen. 326 

Table 3. In vitro evaluation of Trichoderma isolates against F. xylarioides by dual confrontation culture technique 327 

and agar diffusion assay. 328 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477504doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477504
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

29 
 

Trichoderma  

species 

 Mycelia Inhibition over control (%) Scale of antagonistic 

activity 
Dual Culture  Agar diffusion assay 

T. hamatum AU23 71c ± 1.07 67.32ab ± 4.06 + + + 

T. longibrachiatum AU32 75.2b ± 0.7 69.82ab ± 4.20 + + + 

T. asperellum AU53 72.6b ± 0.3 66 .3c ± 2.3 + + + 

T. koningiopsis AU70 62.59d ± .9 70.71ab ± 4.82 + + + 

T. asperellum AU71 79.3a ± 3.03 83.5a ± 4.83 + + + + 

T. asperellum AU97 74.8b ± 1.0 76.42b ±3.68 + + + + 

T. harzianum AU105 68.7c ± 1 75.82b ± 4.81 + + + 

T. aethiopicum AU106 59.3d ± 5.1 68.50c ± 5.12 + + 

T. longibrachiatum AU121 79.2b ± 0.9 63.4c ± 3.4 + + + 

T. asperellum AU131 84.8a ± 0.9 86.7a ± 1.6 + + + + 

T. longibrachiatum AU158 82.4a ± 0.5 88.2a ± 3.5 + + + + 

T. asperellum AU171 77.7ab ±0.3 66.4c ± 2.5 + + + 

Mean ± standard deviation 73.96 ± 1.3 74.25 ± 3.74 - 

Scale of antagonistic activity : ++++: very high antagonistic activity (>75%), +++: high antagonistic activity (61-75%), ++: 329 

moderate antagonistic activity (51-60%), +: low antagonistic activity (<50%), -: no antagonistic activity. Different 330 

alphabets depicted in superscript in the columns indicate mean treatments that are significantly different according to 331 

Tukey's HSD posthoc test at p < 0.05, each value is an average of 3 replicate samples± standard error. 332 

4. Discussion 333 

A total of 164 isolates belonging to five clades were obtained from coffee rhizosphere soil samples. 334 

Trichoderma species were primarily identified based on morphological characteristics including green 335 

coloration interleaved with a white mycelium, which is consistent with the morphological features  336 

reported previously for this fungus [31,63]. The identification keys of Samuels, et al. [63] and Rifai [31] state 337 

that T. longibrachiatum holds subglobous to ovoid conidia and lageniform phialides. Additionally, [35] 338 

describes the presence of yellowish-green pigment on the backside of plates of T. longibrachiatum; which 339 

was also observed in this work. However, phenotypic characters are varied and depend partly on culture 340 

conditions [64] and secondary metabolite production [65]. This plasticity of characteristics means that 341 

analyses based solely on phenotypic traits cannot provide conclusive taxonomic identification of 342 

Trichoderma species [66,67]. 343 

Phylogenetic grouping revealed that the Trichoderma isolates recovered in this study formed a reliable 344 

maximum likelihood tree with acceptable taxonomic assumptions [68,69]. Modern methodologies for 345 
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Trichoderma identification and classification into phylogenetic clades are based on analyses of sequence 346 

data [41,67,69]. Five clades were identified in this study, namely; Hamatum, Harzianum, Longibrachiatum, 347 

Brevicompactum and Viride (Figure 4). The Hamatum clade contains economically important species such as 348 

T. asperellum and T. asperelloides, which are used in agriculture as biological control agents [70,71]. The 349 

Longibrachiatum clade has high optimal and maximum growth temperatures and yellow reverse 350 

pigmentation due to the production of secondary metabolites such as pyrone. Trichoderma longibrachiatum 351 

has been used to produce various antimicrobial substances with important agricultural, health, and 352 

environmental benefits [19]. 353 

The diversity of Trichoderma species in Africa in general [43,72], and in Ethiopia in particular [24,73] is 354 

somewhat understudied when compared to other parts of the world. Nine Trichoderma species were 355 

identified for the first time in Ethiopia in this work. It is notable that these species were previously 356 

described in America [74], Asia [46,54,75] and in European Mediterranean countries [42,76]; their  presence 357 

in coffee rhizosphere soils in Ethiopia can be attributed to the diverse ecological substrata and climate 358 

conditions of the country’s coffee growing areas and reflects the high Trichoderma biodiversity present in 359 

coffee ecosystems. The only previous study comparable to this one in terms of sampling size and studied 360 

area was conducted in the neotropical forests of South America, mainly in Colombia [77]. In that study, a 361 

high diversity of Trichoderma (29 species among 183 isolates) was detected, with a high proportion of 362 

putative new species among the isolates (11 species, corresponding to 6% of the sample). The main 363 

difference between their findings and ours is that we investigated a well-defined microecological niche, 364 

namely the rhizosphere of C. arabica.  365 

The biodiversity of Trichoderma species is difficult to evaluate comparatively due to range of indices 366 

suggested for this purpose [78]. In the present study, several widely used diversity indices were tested 367 

using a range of simple and multifaceted statistical analyses to evaluate whether some were better 368 

suggested for certain analyses than others. The Shannon index values calculated for native forest and semi-369 

forest ecosystem samples were almost twice those obtained for soils in Sardinia; H = 1.97 versus 1.59, 370 

respectively, even though the number of samples investigated in the latter case was almost three times that 371 

collected in this work. However, the Shannon indices of the Sardinian ecosystems and the garden coffee 372 

zones were quite similar (H = 1.59 versus 1.57), possibly reflecting the extensive disturbance of both 373 

ecosystems by human activities [79]. These results showed that Trichoderma diversity and habitat preference 374 

can be used as a natural indicator of rhizosphere soil health. Forest and semi-forest coffee regions had richly 375 

varied Trichoderma populations with relatively high diversity and very similar biodiversity indices and 376 

evenness values. 377 

The number of Trichoderma species detected in this work was almost twice that reported in earlier 378 

studies on biodiversity in Ethiopia [24] and other countries including Poland [80], Central Europe [76], and 379 

China’s Northern Xinjiang region [75]. In addition, significant differences were observed between the 380 

Trichoderma populations of different coffee growing zones; this variation may reflect differences in the 381 

zones’ ecological environments. The populations of Trichoderma species in the forest and semi-forest coffee 382 

ecosystems of southwestern Ethiopia were diverse and their composition varied between ecosystems. 383 

Jimma zone had 11 Trichoderma species and the largest number of Trichoderma isolates (48), followed by the 384 

Sheka (9 species, 27 isolates), Benchi Maji (7 species, 22 isolates), and Bunno Bedele (3 species, 6 isolates) 385 
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zones (Table 1). Our results suggest that forest and semi-forest ecosystems are particularly favorable for 386 

the survival and colonization of Trichoderma, indicating that this genus has a clear environmental 387 

preference, in keeping with previous reports [54,75,76]. 388 

T. asperellum (39%) was found to be the most widely distributed and abundant fungal species in this 389 

work (Figure 3). The occurrence of Trichoderma species is modulated by several factors, including metabolic 390 

variety, reproductive ability, substrate availability, and the competitive abilities of Trichoderma isolates in 391 

nature [76,81,82]. Trichoderma isolates were obtained from different coffee ecosystems, with T. asperellum, 392 

T. asperelloides and T. longibrachiatum being the most widely distributed species. T.  asperellum is the most 393 

dominant and cosmopolitan species like T. harzianum [83], whereas T. asperelloides and T. longibrachiatum 394 

were found mostly in forest ecosystems of South America and Asia [77,84]. Conversely, previous studies 395 

have found T. harzianum, T. hamatum, T. spirale, and T. asperelloides to be the most widely distributed species 396 

of this genus in coffee ecosystem in Ethiopia [24]. Except for species that were only found as single isolates, 397 

all species were obtained in multiple districts, suggesting that they are quite evenly distributed within the 398 

coffee rhizosphere. T. erinaceum and T. brevicompactum were only isolated from the native forest; T. 399 

paratroviride and T. citrinoviride were only obtained from semi-forest areas, and T. orientale was only isolated 400 

from garden coffee ecosystem samples. Studies conducted by Hoyos-Carvajal and Bissett [77] indicated the 401 

dominant Trichoderma species in the neotropics are T. asperellum, followed by T. harzianum. Our results 402 

confirmed the predominance of T. asperellum, followed by T. asperelloides. Conversely, Belayneh, et al. [24] 403 

reported that T. hamatum was the most dominant species in the rhizosphere of coffee plants. The large 404 

number and wide distribution of Trichoderma species identified within Ethiopia’s coffee ecosystem 405 

demonstrate the presence of significant genetic diversity, suggesting that further study of these species 406 

may offer opportunities to improve the sustainable management of coffee cultivation and discover effective 407 

bio-control agents for managing CWD.  408 

  This work represents the first investigation of the biodiversity of Trichoderma species in the 409 

rhizospheres of Ethiopia’s coffee ecosystem and their suitability as biological control agents (BCA) against 410 

CWD (F. xylarioides). The results presented herein mainly concern the taxonomy of the Trichoderma isolates 411 

with some observations on their ecology, and will support the selection of candidate biocontrol agents for 412 

the management of CWD in Ethiopia. This work is part of a larger project seeking to control CWD using a 413 

classical biological control strategy involving sourcing and releasing potential BCA from the center of 414 

origin of coffea arabica to minimize the incidence and severity of the disease.  Such approaches using fungal 415 

natural enemies have been used successfully to control various soil-borne plant pathogens [9,24,73,85,86]. 416 

Our results indicate that there is a lot of Trichoderma species that are substantially antagonistic to F. 417 

xylarioides and which could be exploited for the biocontrol of CWD in this way. In the previous study, we 418 

formulated a biofungicide from T. asperellum AU131 and T. longibrachiatum AU158 under solid state 419 

fermentation (SSF) to control of CWD [87]. 420 
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All Trichoderma strains isolated in this work effectively inhibited the mycelial growth of F. xylarioides 421 

colonies. However, there were notable differences between strains in terms of the magnitude of their 422 

antagonism and reduction of the growth rate of F. xylarioides in paired culture experiments. For example, 423 

Filizola, et al. [88] state that some isolates of certain species suppress the growth of phytopathogens via 424 

hyper-parasitism, whereas others achieve growth suppression via mechanisms such as antibiosis or 425 

competition. It has also been reported that Trichoderma species grow faster than competing phytopathogens 426 

because they use food sources more efficiently. Another important mechanism involves the secretion of 427 

metabolites and hydrolytic enzymes that reduce or hinder the growth of plant pathogens in the area; this 428 

mechanism has been suggested to contribute to the success of Trichoderma species against phytopathogenic 429 

fungi [89]. The potential of T. asperellum and T. longibrachiatum as effective biocontrol agent of fungi 430 

and bacterial strains of both on annual and perennial crops were clearly stated by many research 431 

reports [90,91], For instance, T. asperellum exhibits strong control effects on F. graminearum, F. 432 

oxysporum and Verticillium wilt of olive [92,93]. On the other hand, T. longibrachiatum is also used 433 

as potential biocontrol agents most effective against P. grisea, F. verticillioides, H. oryzae, F. 434 

moniliforme, and A. alternate with inhibition percentages of 98.9, 96.4, 95.1, 93.6, and 93.0%, 435 

respectively [94]. We should point out here the fact that the three T. asperellum strains assessed in 436 

this work were isolated from coffee rhizosphere in production fields from southwestern Ethiopia. 437 

This aspect should be considered a valuable asset for biocontrol applications, as native isolates 438 

are better adapted to their local climate conditions and pathogenic targets than foreign isolates. 439 

Various secondary metabolites produced by Trichoderma species including harzianolide, peptaibols, 440 

pyrones and other secondary metabolites were mentioned to have antimicrobial potential and to act as 441 

plant growth promoters (Mulatu, unpublished data). In addition to achieving higher growth rates than F. 442 

xylarioides in competition experiments, the Trichoderma strains isolated in this work achieved growth rates 443 

significantly exceeding the value of 0.33 mm/h reported by [95]. Moreover, field and greenhouse 444 

experiments using Geisha coffee varieties of C. arabica (the most susceptible to CWD) gave similar results 445 

(Afrasa Mulatu., unpublished data). The results obtained indicate that understanding the genetic variation 446 

within the genus Trichoderma is essential for selecting novel indigenous Trichoderma species that can be used 447 

as biocontrol agents against CWD. In addition, our findings display the distribution and diversity profile 448 

of Trichoderma species and provide insights into their potential usefulness as microbial fungicides to 449 

safeguard coffee cultivation across different agroclimatic zones in Ethiopia. 450 

5. Conclusions 451 

A total of 175 isolates of Trichoderma were identified at the species level based on TEF1-α sequence analysis, 452 

yielding 16 putative species. T. asperellum, T. asperelloides, and T. longibrachiatum were classified as the 453 

abundant species and the average diversity values for Trichoderma species originating from coffee 454 

ecosystems were H = 1.77, D = 0.7, E = 0.75, and J = 2.4. The results obtained suggest that T. asperellum and 455 

T. longibrachiatum are promising suppressors of F. xylarioides growth and promoters of plant growth, 456 

suggesting that they could be valuable biocontrol agents for the management of CWD. Additionally, our 457 

results demonstrated the existence of a guild of Trichoderma species that are potentially antagonistic to F. 458 

xylarioides, which could be exploited to develop more effective biological control of CWD.  459 
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