Abstract
Understanding the cellular immune response to infections, cancers and vaccines lags behind the investigation of humoral responses. While neutralizing antibody responses wane over time, the ability of T cells to recognize viruses including SARS-CoV-2 is instrumental to providing long-term immunity. Although T-cell receptor (TCR) repertoire screening can provide insights into the skewing of a T-cell response elicited upon vaccination or infection, they unfortunately provide no assessment into the functional capacity of T cells or their ability to eliminate virally infected targets. We have used time-lapse imaging microscopy in nanowell grids (TIMING) to integrate the migration of individual T cells with analysis of effector functions including cytokine secretion and cytotoxicity. Machine learning is then applied to study thousands of videos of dynamic interactions as T cells with specificity for SARS-CoV-2 eliminate targets bearing spike protein as a surrogate for viral infection. Our data provide the first direct evidence that cytotoxic T lymphocytes from a convalescent patient targeting an epitope conserved across all known variants of concern (VoC) are serial killers capable of eliminating multiple infected targets. These data have implications for development of vaccines to provide broad and sustained cellular immunity and for the recovery and monitoring of individuals who have been exposed to SARS-CoV-2.
Multidisciplinary abstract We present an imaging platform that uses artificial intelligence (AI) to track thousands of individual cell-cell interactions within nanowell arrays. We apply this platform to quantify how the T cell component of adaptive immunity responds to infections. Our results show that T cells specific for a conserved epitope within the SARS-CoV-2 spike protein are serial killers that can rapidly eliminate virally infected targets. The ability to map the functional capacity of T cells and their ability to kill infected cells provides fundamental insights into the immunology of vaccines and recovery from infections.
Competing Interest Statement
DM, MF and LC are employed by CellChorus. NV and LJNC are co-founders of CellChorus. None of these interests had an impact on the results reported in the manuscript.