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Abstract 
 
Existing methods to analyse RNA localisation are constrained to specific RNAs or subcellular 
niches, precluding the cell-wide mapping of RNA. We present Localisation of RNA (LoRNA), 
which maps, at once, RNAs to membranous (nucleus, ER and mitochondria) and membraneless 
compartments (cytosol, nucleolus and phase-separated granules). Simultaneous interrogation of 
all RNA locations allows the system-wide quantification of RNA proportional distribution and the 
comprehensive analysis of RNA subcellular dynamics. Moreover, we have re-engineered the 
LOPIT (Localisation Of Proteins by Isotope Tagging) method, enabling integration with LoRNA, 
to jointly map RNA and protein subcellular localisation. Applying this framework, we obtain a 
global re-localisation map for 31839 transcripts and 5314 proteins during the unfolded protein 
response, uncovering that ER-localised transcripts are more efficiently recruited to stress 
granules than cytosolic RNAs, and revealing eIF3d is key to sustain cytoskeletal function. Overall, 
we provide the most exhaustive map to date of RNA and protein subcellular dynamics. 
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Introduction 
 
Compartmentalisation of eukaryotic cells and the dynamic distribution of macromolecules such 
as RNA and protein across these compartments are vital for cell function. There are numerous 
different classes of RNA species that perform their function in a spatially restricted manner, for 
example by creating translation “hotspots” so that newly synthesised proteins can act at precise 
locations without disturbing cellular protein homeostasis1. The ability to map RNA species to 
different subcellular compartments, and to determine how they relocalise upon perturbation, is 
thus key to understanding cellular homeostasis2,3. Despite the role that localisation of the 
transcriptome plays in cell function, cell-wide methods to study RNA subcellular localisation are 
limited. 
  
The localisation of a single RNA transcript can be determined using smFISH4, while the RNA 
content of specific organelles can be explored using proximity-dependent biotinylation 
techniques, such as APEX-seq5,6.  As the application of APEX-seq only enables interrogation of 
a single subcellular compartment per experiment, it does not provide a cell-wide view of RNA 
localisation. Furthermore, combining multiple APEX-seq experiments to generate a more holistic 
cellular map is time consuming and is not compatible with measuring proportional quantification 
of RNAs at different localisations. Previous attempts to determine the localisation of RNA in a cell-
wide manner have been restricted by technical limitations, including localisation-independent 
RNA clustering and length-dependent RNA-localisation biases7,8. Obtaining a comprehensive 
map of RNA localisation, therefore, remains an ongoing challenge. 
  
A number of approaches have been developed to determine the subcellular localisation of 
proteins based on protein correlation profiling. These cell-wide methods involve cell fractionation, 
reordering of the subcellular content, and the use of localisation-specific abundance profiles of 
marker proteins to determine the subcellular localisation of the complete proteome9–12. One such 
technique is the Localisation Of Proteins by Isotope Tagging (LOPIT) method13,14.  Since all 
compartments are mapped simultaneously, LOPIT is especially suited to study protein re-
localisation in dynamic conditions15, providing a distinct advantage over other methodologies, 
where few proteins (immuno-fluorescence; IF) or specific locations (proximity-dependent 
biotinylation; BioID, APEX2) are measured per experiment. However, the LOPIT framework is not 
compatible with simultaneous mapping of RNA since it was developed solely for protein 
subcellular mapping. 
  
Here, we have developed a new simple method to study cell-wide subcellular localisation of RNA 
(termed LoRNA).  Importantly, LoRNA allows the proportional estimation of RNA species across 
multiple locations. LoRNA is based on the same concept as LOPIT, but with modified fractionation 
approaches to ensure no RNA distribution bias. To demonstrate its utility, we apply LoRNA to U-
2 OS cells, to produce a comprehensive subcellular map of the transcriptome, uncovering the 
extent to which lncRNA is cytosolically distributed and features of RNA species that contribute to 
their subcellular distribution. 
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Additionally, the cell fractionation approaches we have developed for LoRNA are compatible with 
LOPIT, allowing simultaneous cell-wide maps of the proteome and transcriptome to be created. 
To demonstrate the use of this integrative framework in a dynamic context, we have 
simultaneously applied LoRNA and LOPIT to examine the redistribution of RNA and protein during 
the activation of the unfolded protein response (UPR). The UPR is triggered by the accumulation 
of unfolded proteins in the ER lumen16. Its activation reduces global protein synthesis rates, and 
this results in the loss of RNA targeting to the ER, the formation of stress granules (SGs), and the 
upregulation of stress-response genes17. Importantly, its deregulation is associated with disease 
states including neurodegeneration18, cancer progression19 and diabetes20.  

Our results expose a major reorganisation of the transcriptome and proteome upon the UPR 
activation and reveal that RNA species associated with the ER are more readily recruited to SGs 
than cytosolic RNAs. Our data show that RNAs encoding cytoskeletal proteins are retained and 
targeted to the periphery of organelles during UPR and suggest this occurs through binding by 
eIF3d.   

Altogether, applying this integrative approach generates the most comprehensive map of RNA 
and protein cell-wide localisation dynamics to date, which can be readily explored via the following 
dedicated open-source resource: https://proteome.shinyapps.io/density_lorna_rnaloc_gene/.  
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Results 
 
Simultaneous RNA and protein subcellular localisation  
 
Organelles can be distinguished by their physicochemical properties, and we have previously 
shown that this approach can be used to simultaneously sort all organelles and map protein 
subcellular localisation14,21. We reasoned that this principle could be applied to map the 
subcellular localisation of RNA in all niches at once. To demonstrate this, we developed a new 
method to sort the entire cellular content based on the density of its constituents and interrogate 
the localisation of RNA, which we refer to as LoRNA (Fig. 1a). Crucially, unlike previous methods8 
, the cell lysate is loaded into the density gradient at the density of free RNA (1.17 g/ml). Therefore, 
organelle-associated RNAs migrate upwards in the density gradient, while cytosolic RNA-protein 
complexes migrate downwards. This loading scheme avoids cytosolic RNA contamination of 
organelle-enriched fractions and allows RNA to reach equilibrium faster (Supplementary Fig. 1a). 
After equilibrium density centrifugation, three distinct bands were observed in the gradient, which 
were enriched in Endoplasmic Reticulum (ER) and mitochondria, nucleus, and cytosol proteins, 
respectively (Supplementary Fig. 1 b,c). Performing RNA-Seq along the gradient revealed distinct 
profiles resulting in separate clusters for RNAs known to localise to the mitochondria, ER, 
nucleolus, nucleus and cytosol (Fig. 1b,c Supplementary Fig. 1d,  Supplementary table 1, 2). To 
our knowledge, this is the first time the complete subcellular localisation of RNA has been 
successfully resolved at a cell-wide level. Furthermore, a novel sub-cytosolic RNA sedimentation 
profile was discovered by semi-supervised clustering, hitherto referred to as ‘cytosol light’, which 
we explore in more detail later (Fig. 1b, Supplementary Fig. 1e,f).  
 
Importantly, we engineered this new cell fractionation method to allow the simultaneous mapping 
of RNA and protein localisation (Fig 1a). To map protein subcellular localisation we adapted the 
LOPIT framework and quantified protein abundance in the same gradient fractions by mass 
spectrometry (Supplementary Fig 1 g,h). Analysis of protein mapping accuracy by classifying 
organelle marker proteins resulted in F1 scores (harmonic mean of precision and recall) of 0.71 - 
1 for each organelle, demonstrating the high resolution of this novel density-based LOPIT 
(dLOPIT) method (Sup Fig. i, Supplementary table 3). These results demonstrate that the 
combination of LoRNA with dLOPIT allows the simultaneous mapping of the transcriptome and 
proteome subcellular localisation. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477541doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477541
http://creativecommons.org/licenses/by/4.0/


 
 
 
 

 6 

 
 

Figure 1. RNA subcellular localisation. a, Schematic representation of LoRNA. Cells are lysed and 
fractionated by density equilibrium centrifugation. RNA and protein are extracted from each fraction to 
perform LoRNA and LOPIT. Cell lysate and gradient banding pattern are represented in yellow.  Aqueous 
and organic phases are blue and red respectively b, Application of LoRNA to U-2 OS cells. Mean profiles 
for RNA markers along pooled gradient fractions in a single experiment. Shaded regions denote +/- one 
standard error. c, PCA projection of RNA profiles across three replicate experiments, with marker RNAs 
highlighted.  
 
 
Simultaneous localisation of RNA content permits its quantification at different subcellular 
compartments  
 
To estimate the proportional content of each RNA in every localisation, relative RNA abundances 
were adjusted to account for the total RNA content per fraction. This allowed us to decompose 
the RNA profiles into the constituent contributions from each localisation, as determined from the 
profiles of RNAs with known localisations (Fig. 2a). In this way, we estimated the proportional 
localisation of 31839 transcript isoforms (13142 genes). Transcript-level RNA mapping retains 
valuable information on the differential localisation of splicing variants (Sup Fig 2a). We therefore 
use transcript-level proportions, unless specified otherwise. As expected, RNAs exist on two 
major axes: Nucleus:Cytosol and Cytosol:Membrane, with expected proportions obtained for 
RNAs known to be extremely enriched in specific locations (Fig. 2b).  
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Figure 2. System-wide quantification of RNA localisation a, Schematic representation of how 
localisation proportions are estimated. New profile (left) is decomposed into different proportions of each 
marker profile (middle) to approximate the original profile (right). b, Cytosol, membrane and nuclear 
(including nucleolus) proportions for all transcripts (left) and selected localisation-enriched transcripts 
(right). c, Schematic representation of cell fractionation by sedimentation coefficient and linear profiles of 
the localisation markers. d, PCA projections of RNA profiles in c, with markers highlighted. e, Membrane, 
nucleus and cytosol proportions obtained by equilibrium density centrifugation-based LoRNA projected on 
the sedimentation-based-RNA map. f, Correlations between proportions obtained using different 
fractionation approaches. Cytosol proportions by density is the sum of cytosol and cytosol-light proportions. 
Membrane proportion by sedimentation is the sum of mitochondrial and ER proportions. 
 
To comprehensively validate our system-wide RNA localisation results, we developed an 
orthogonal method to sort the cellular content by a different physicochemical property, namely 
the sedimentation coefficient of the different organelles instead of density. Previous attempts to 
study RNA localisation using this concept applied high g-forces7, and analysis of the published 
data highlights that this creates an RNA-length dependent localisation bias (Supplementary Fig. 
2a,b). We therefore optimised the fractionation speeds and times to avoid RNA-length-dependent 
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sedimentation bias, whilst still separating the major subcellular localisations (Fig. 2c & 
Supplementary Fig. 2b,c,d, Supplementary table 1, 2). While the low g-force required to avoid this 
bias precludes sub-cytosolic resolution, differential centrifugation provides better separation 
between mitochondria and ER than density centrifugation (Fig. 2d). The projection of the density-
based RNA proportions onto the map obtained with our orthogonal approach showed a 
remarkable agreement for membranes, nucleus, and cytosol (Fig. 2e). In addition to the excellent 
separation of the main RNA localisation niches, reliable estimates of cytosol and membrane 
proportions were also achieved (Fig. 2f, Supplementary Fig 2e). These proportions show 
Pearson’s correlations of 0.77 and 0.83, respectively, confirming the reliability of our estimates. 
Thus, LoRNA provides an accurate quantitative system-wide map of RNA localisation, for the first 
time.  
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Key RNA features drive subcellular localisation  

 
Figure 3. Features driving RNA localisation  
a, Cytosol, nucleus and membrane proportions for mRNAs and lncRNAs. b, Empirical cumulative frequency 
distributions for nucleus proportions for mRNAs and lncRNAs. c, Coefficient estimates and p-values for 
logistic regression model of lncRNA cytosol proportions. d, Proportions for mRNAs encoding signal 
peptides and/or transmembrane (TM) domains. e, Membrane proportions for mRNAs shown in d. f, GO-
terms significantly enriched in mRNAs not encoding signal peptides and/or TM domains but over 35% 
membrane localised. g, smFISH validation of ER localisation of MACF1 and DST RNAs not encoding signal 
peptides and TM domains. h, ER proportion in smFISH and LoRNA. 
 
 
We next explored the RNA features associated with proportional localisation. While mRNAs are 
observed throughout the cell, and relatively depleted from the nucleus, lncRNAs were observed 
to be strictly within the nucleus:cytosol axis (Fig. 3a left). Although lncRNAs are more nuclear 
localised than mRNAs, the overall distribution of lncRNAs was more cytosolic than we anticipated 
(Fig. 3b). Notably, comparing the proportions between our two cell fractionation approaches, we 
observed that 59.7% of lncRNAs were consistently cytosolic in both approaches. As expected, 
higher ribosome association correlates with greater cytosol localisation22 (Supplementary Fig. 3a). 
Interestingly, we found that cytosolic localisation can be predicted according to transcript length, 
presence of polyA tail and AU content, with short, polyadenylated and low AU content lncRNA 
being more cytosolic (Fig. 3c). This simple model is as accurate as a more complex model built 
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from a penalised regression over a wide range of potential features (ROC AUC = 0.86 for both 
models; Supplementary Fig. 3b). We therefore favour this simpler model and suggest these are 
the key features driving cytosolic localisation for lncRNAs (Fig. 3c). 
 
While generally we found mRNAs predominantly in the cytosol, RNAs encoding proteins with 
signal peptides and/or transmembrane domains (TMs) were much more prominently membrane 
localised, consistently with their co-translational targeting to the ER (Fig. 3d). Furthermore, our 
data confirmed the relationship between the distance from the first signal peptide / TM domain to 
the stop codon and the membrane proportion (Supplementary Fig. 3c)23,24. Surprisingly, we also 
identified 100 membrane-localised RNAs that did not encode a signal peptide or TM. These 
included the mRNA encoding the ER-localised signal recognition receptor subunit beta, which co-
translationally binds to the alpha subunit25, and mRNAs encoding for mitochondrial proteins 
(Supplementary Fig. 3d), but most of the RNAs were not previously described as membrane 
localised. GO analysis revealed a significant enrichment for terms associated with membrane or 
cytoskeleton localisation (Fig. 3f), suggesting potential localised translation at the surface of the 
membranes. smFISH quantification of the ER association for the Microtubule-actin cross-linking 
factor 1 (MACF1) and Dystonin (DST) mRNAs confirms the localisation of transcripts encoding 
cytoskeletal proteins at the ER (Fig 3 g,h) . 
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Global assessment of transcriptome and proteome relocalisation  

 
 

Figure 4 Transcriptome and proteome subcellular redistribution upon UPR 
a, PCA projection of RNA profiles in control and UPR. Colour and intensity indicates RNA proportion for the  
primary localisation. PC2 in UPR is inverted. b, Cytosol, membrane and cytosol light proportions in control 
and UPR. Point colour indicates RNA major localisation (excluding nucleus and nucleolus) in control, with 
colour intensity denoting proportion. c-d, Differential protein localisation in control and UPR. e, Abundance 
profiles for stress granule proteins relocalising from ribosomes to the fraction discriminating the cytosol-
light-RNA profile under UPR, grey arrows mark cytosol light discriminating fraction. 
 
 

 
We next combined LoRNA and dLOPIT to interrogate RNA and protein re-localisation upon 
activation of the unfolded protein response. The UPR is an adaptive signalling pathway induced 
by the accumulation of unfolded proteins in the ER lumen to reinstate homeostasis by reducing 
the protein folding load and increasing the protein folding capacity of the ER. To induce the UPR, 
we inhibited the SERCA Ca2+ pump by treating U-2 OS cells with 250nM of Thapsigargin (TG) for 
1 h. This reduces calcium in the ER lumen, impairing protein folding and activating the UPR, 
which, in turn, rapidly induces a global translational shutdown through phosphorylation of eIF2α 
(Supplementary Fig. 4a,b). This results in the formation of stress granules (SGs) (Supplementary 
Fig. 4c) and the increased expression of UPR genes like XBP1 and CHOP (Supplementary Fig. 
4d).  
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LoRNA allows quantification of the redistribution of RNA upon inhibition of translation, with RNA 
migrating from the membranes towards the cytosol (Fig. 4a, Supplementary Fig. 4e). Surprisingly, 
we found a pronounced relocalisation of RNAs to the cytosol light, both from the cytosol and from 
membranes (Fig. 4b). dLOPIT analysis of protein re-localisation identified 73 proteins that were 
differentially localised 1h post-stimulation (Fig. 4c,d). The Golgi apparatus was the most affected 
organelle after the short stimulation, as expected given its role in the trafficking of newly 
synthesised proteins. Interestingly, six proteins lost their co-localisation with the ribosome upon 
UPR, including proteins known to relocalise to stress granules, such as STAU2 and PABPC1. 
The linear profiles for these proteins along the gradient fractions show that 4/6 increase in 
abundance in the fraction we previously observed to differentiate the cytosol light profile for RNAs 
(Fig. 4e, Supplementary Fig 4f). We therefore hypothesised that the cytosol light profile may 
represent RNP granules. To test this, we identified further proteins whose profile overlapped the 
cytosol light RNA profile, using the profile of these 4 proteins in UPR. We identified 22 proteins 
with a matching UPR profile, including 5 members of the P-body associated CCR4-NOT 
complex26, P-body proteins DCP1A/B27 and stress granule components YBX328, SECISBP228 and 
CASC329. Furthermore, the profile of GFP-tagged DCP2 and G3BP1 proteins in the density  
gradients confirmed that cytosolic phase-separated particles sediment at the density ranges of 
the cytosol light (Supplementary Fig. 4g,h, supplementary methods), suggesting that the cytosol 
light RNA profile represents the distribution of phase-separated cytosolic RNP particles. Thus, the 
integration of LoRNA and dLOPIT allows, for the first time, the simultaneous quantification of the 
transcriptome and proteome re-localisation in membrane enclosed organelles and membraneless 
compartments. 
 
 
RNA features driving granule localisation  
As the proteins relocalising to the cytosol light upon UPR are associated with RNA condensation 
into phase-excluded particles, we further characterised the RNA composition of this fraction and 
interrogated the features of the enriched RNAs. RNAs with higher cytosol light abundance were 
correlated with lower ribosome association and longer transcript length (Fig. 5a,b), both features 
associated with RNAs partitioning to granules30,31. Furthermore, RNAs enriched in P-bodies using 
fluorescence-activated particle sorting have a similar distribution to the cytosol light profile32 
(Supplementary Fig. 5a). Altogether, this provides strong evidence that our cytosol light profiles 
represent granule localisation and we thus refer to this localisation accordingly henceforth.  
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Figure 5. Analysis of the characteristics driving RNAs to granules  
a-b, Ribosome density33 and transcript length for RNAs split into deciles of cytosol light proportion, shown 
as Tukey boxplots. c, Relocalisation to granules (cytosol light) in UPR. RNAs are binned by transcript length 
and split by localisation in control conditions. d, Coefficients for features selected by lasso regression model 
of relocalisation to granules. Features describe RBP binding or the interaction between RBP binding and 
localisation in control. RBP eCLIP cell line indicated in feature name. Positive coefficients mean increased 
relocalisation to granules. e, Coefficients for RNA length features. f, Coefficients and AU content for kmer 
features. g, Coefficients for codon features.       
 

 
Our quantification of RNA recruitment to granules following induction of the UPR agrees with a 
recently published targeted study34 (Supplementary Fig. 5b). Importantly, LoRNA provides cell-
wide information on RNA localisation prior and post stimulation. This allowed us to uncover that, 
although many cytosolic RNAs migrate to granules upon UPR, membrane RNAs migrating to 
granules do so at a higher proportion (Fig. 5e, Supplementary Fig. 5c). To fully characterise the 
features driving RNAs towards granules upon UPR activation, we modelled the contribution of a 
broad range of RNA features, including transcript length, localisation prior to stress, RBP binding, 
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kmer content, codon usage, and presence of IRES or upstream ORFs. Overall transcript length, 
especially longer 3’UTRs in membrane RNAs, was observed to be the greatest positive predictor 
of relocalisation to granules (Fig. 5f). RBPs whose binding was positively predictive of RNA 
relocalisation to granules included the granule proteins FAM120A, IGF2BP1, and G3BP1 (Fig. 
5g) with binding of canonical stress granule proteins TAIL1, TIA1 and IGFBP3 to membrane-
localised RNAs also showing a significant predictive value. Intriguingly, unexpected associations 
between RBP binding and relocalisation to granules were observed, including LIN28B in 
membrane-localised RNAs and ZNF622, which is involved in ribosome subunit joining35 and 
upregulated upon viral infection and UPR stress36. Importantly, we found that ZNF622 relocalises 
from the cytosol to the ER upon UPR (Supplementary Fig. 5d,e), a step that may be required for 
the membrane-RNA recruitment to granules.  
 
A higher AU content in the coding and 3’UTR regions was predictive of greater relocalisation to 
granules (Fig. 5f). The latter fits with the known role of 3’UTR AU-rich elements (AREs) in 
regulating RNA stability. Interestingly, higher G content, but not C content, in the coding region 
was a predictor of lower granule relocalisation (Fig. 5f). In addition, the frequency of AUG kmers 
in the 5’UTR was predictive of lower relocalisation, although presence of annotated uORFs was 
not. This may indicate that the presence of an AUG at the 5’UTR inhibits granule association, 
regardless of the ORF capacity of the sequence. Finally, while overall codon optimality was not a 
selected predictive feature, the frequency of UUA, GAU, AAU, and CAC codons were predictive 
of granule relocalisation (Fig. 5g). These codons include 3 of the 4 codons that require queuosine-
modified tRNAs for their decoding (p=0.003, Fisher’s exact test), pointing to a potential role of this 
modification in the stress response and RNA recruitment to phase-separated particles. 
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RNAs coding for cytoskeletal proteins retain organelle association upon UPR 

 
Figure 6. Analysis of the RNAs retaining membrane association under UPR 
a, Membrane proportions in control and UPR. Yellow line indicates fit from generalised additive model 
(GAM) with cubic regression spline. b, Relationship between residual from GAM and the distance between 
the first signal or TM domain and stop codon. Blue line indicates smoothed fit by LOESS local regression. 
c, Coefficients for RBPs which are predictors of GAM residuals for RNAs which do not encode a signal 
peptide/TM domain. RBP eCLIP cell line indicated in feature name. d, Membrane proportions as per a, for 
RNAs bound by eIF3d according to eCLIP or Subunit-Seq37. e, GO terms enriched in membrane RNAs 
bound by eIF3d, relative to all membrane RNAs. f, Representative U-2 OS cell migration time series for 
eIF3d knock-down and siRNA Control (siCt) cells in control and UPR conditions. g, Quantification of cell 
migration at 24 h post UPR induction in eIF3d knock-down and siRNA Control cells (n=5). 

 
Despite the global loss of RNA from the membranes, some RNAs remain membrane-enriched 
upon UPR (Fig. 6a). We modelled this relationship using a generalised additive model and 
identified RNAs with unexpectedly high membrane localisation after UPR. Notably, RNAs with 
longer sequences between the signal sequence and stop codon are retained more efficiently in 
membranes, suggesting the involvement of the signal recognition particle 23 and therefore active 
reassociation with the membranes (Fig. 6b). To gain a deeper understanding on the mechanisms 
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of RNA retention in the periphery of organelles upon UPR activation, we then identified RBPs 
previously found to interact with these RNAs using publicly available eCLIP data 38 which could 
explain this higher membrane localisation. We observed that eIF3d binding was associated with 
the greatest degree of membrane localisation (Fig. 6c, Supplementary Fig. 6a). We further 
confirmed this using complementary data from a targeted CLIP experiment that specifically 
identified RNAs bound by eIF3d at their 5’cap37 (Fig. 6d). Comparing the membrane-localised 
RNAs bound by eIF3d to those not bound to it, we observed an over-representation for GO terms 
relating to the actin cytoskeleton, cell morphogenesis, and focal adhesions (Fig. 6e). We therefore 
postulate that eIF3d could be required for remodelling the cytoskeleton in processes that may be 
dependent on localised translation like cell migration, particularly during activation of the UPR. 
Indeed, knocking down eIF3d (Supplementary Fig. 6b) reduced cell migration overall, with a 
significatively stronger effect in cells undergoing UPR (Fig. 6f,g, Supplementary Fig. 6c). eIF3d 
has been previously shown to promote recruitment of specific mRNAs to ribosomes during ER 
stress39. Our results suggest that eIF3D is required for continued translation of actin cytoskeleton 
components localised in the periphery of the membranes during UPR. 
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Discussion 
 
In this work, we have developed an integrative framework coupling two new methods, LoRNA 
and dLOPIT, to generate the first cell-wide simultaneous map of RNA and protein subcellular 
localisation in membranous (nucleolus, ER, and mitochondria) and membraneless (cytosol, 
nucleolus, and cytosolic granules) compartments. By precisely reconstructing RNA localisation, 
LoRNA allows quantitative determination of the complete subcellular distribution of each RNA. 
Coupling LoRNA and dLOPIT, we characterise the dynamic transcriptome and proteome 
subcellular redistribution upon UPR. We establish the RNA features driving relocalisation to 
granules, identify transcripts that are targeted to the periphery of the organelles during the 
unfolded protein response, and suggest a role for eIF3d in maintaining cytoskeleton function upon 
UPR activation. 
  
When interpreting LoRNA proportions, it is important to consider that the RNA marker profiles that 
are used to estimate localisation proportions do not represent spatial coordinates in the cell, but 
rather the typical profile for RNAs which predominantly reside in that localisation. For example, 
the distribution of the cytosolic RNA markers include nascent RNA copies that are nuclear-
localised. As such, proportions are with respect to RNAs that are paradigmatic representatives of 
localisation, and do not represent absolute localisations. This subtle distinction is important when 
comparing LoRNA proportions to orthogonal methods such as smFISH where the localisation of 
individual molecules is examined. Furthermore, in cases where gradients are of interest, such as 
across the cytosol of a polarised cell, targeted methods such as FISH or IF are required as any 
high-throughput method involving cell lysis will necessarily result in a loss of subcellular 
coordinates. When RNA compartments not amenable to biochemical fractionation (e.g. the 
nucleopore) are of interest, alternative methods like APEX-Seq may be applicable. Nevertheless, 
multiple APEX-based experiments need to be combined to cell-wide map RNA localisation, 
making this approach incompatible with the proportional estimation of RNA localisation and 
specially challenging to apply in dynamic systems or to study multiple biological systems. 
Nonetheless, APEX and LoRNA can function as complementary approaches to interrogate 
molecular subcellular distribution at different resolutions. 
  
One of our most striking findings regarding RNA relocalisation after UPR activation is that 
membrane-localised RNAs are recruited more efficiently to granules than cytosolic RNAs. This 
conflicts with transcriptomic studies that have claimed ER-targeted RNA are depleted from SGs40. 
However, targeted methods to purify SGs typically focus on specific engineered bait proteins and 
require multiple purification steps, while LoRNA recovers granules regardless of their specific 
composition, based on their distinct density sedimentation profile, which may explain the apparent 
discrepancy between SG transcriptomics and LoRNA. Since our results suggest ER-RNA 
relocalisation to granules during stress is widespread, we speculate that novel subtypes of stress-
induced granules may be the ultimate destination for membrane RNAs upon UPR activation, 
opening new avenues for future research. Furthermore, we observed previously uncharacterised 
predictors of RNA relocalisation to  granules. Of particular note, we found that ZNF622 relocalises 
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to the ER upon UPR and RNAs containing ZNF622 binding sites relocalise more readily to 
granules. Given that ZNF622 has been recently shown to inhibit ribosome subunit joining35, and 
may be involved in the ER associated degradation (ERAD) machinery or ER quality control 
following viral infection36, ZNF622 relocalisation to the ER may be required to inhibit ER-localised 
translation and drive ER-targeted RNAs to granules upon UPR. Additionally, the relocalisation of 
RNA to granules is associated with altered frequencies for 3 codons that require queuosine-
modification in the U-wobble position of the cognate tRNA. Considering the emerging role that 
tRNA modifications play in translation41,42, it would be interesting to explore if a tRNA-specific co-
translational mechanism could regulate the  recruitment of RNAs to SGs.  
 
The precise measurement of RNA proportionality afforded by LoRNA allowed characterisation of 
the relocalisation of RNA away from membranes in unprecedented detail. Intriguingly, we found 
that despite the general loss of mRNA from the ER upon UPR43, many RNAs are partially retained 
in association with organelles, or even migrate to the ER. Notably, we found that many of these 
mRNAs encode for proteins involved in cytoskeletal remodelling. Furthermore, eIF3d binding 
correlates with membrane localisation and knocking it down impairs cell migration, a process 
highly dependent on cytoskeletal remodelling. Actin cytoskeleton remodelling plays a key role to 
restore Ca2+ homeostasis in the ER upon UPR through promotion of ER-PM contact44. Separately, 
eIF3d has been found to maintain RNA translation upon stress39. Altogether, we speculate that 
the cytoskeleton remodelling required to overcome UPR is eIF3d-dependent and that it involves 
the in-situ translation of cytoskeletal mRNAs. 
  
In summary, our work provides the first quantitative system-wide determination of RNA 
localisation and re-localisation during the UPR. The resulting data has invaluable potential for 
future studies characterising the functions of specific RNAs and proteins. To facilitate this, we 
have generated a user-friendly graphical interface to explore our data available at 
https://proteome.shinyapps.io/density_lorna_rnaloc_gene/. LoRNA allows for the unbiased cell-
wide determination of RNA compartmentalisation. This will support a much-needed paradigm shift 
from the study of RNA localisation through relative enrichments between two localisations, 
towards a cell-wide analysis of RNA proportional distribution. We anticipate others will build upon 
LoRNA. For example, coupling it with direct RNA sequencing methods would enable the precise 
interrogation of the role of RNA modifications in RNA localisation. By enabling simultaneous 
characterisation of proteome and transcriptome relocalisation, the combination of LoRNA with 
dLOPIT represents a transformative approach to study how the cell coordinately responds to 
physiological signals, stress conditions, exogenous cues, or infectious pathogens. Importantly, 
integrative research combining LoRNA and dLOPIT can contribute to the translation of molecular 
biology observations to medical benefits by fostering new studies into the role of RNA and protein 
localisation dynamics in cell homeostasis and disease. 
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Methods 
 
Cell culture and UPR induction 
U-2 OS cells were obtained from the American Type Culture Collection (ATCC), maintained in 
McCoy’s A5 media (Gibco-BRL) supplemented with 10% of FBS (Gibco-BRL), at 37 ºC and 5% 
CO2, and regularly tested for mycoplasma contamination with negative results. UPR was induced 
by directly adding 250 nM of Thapsigargin (TG, UPR) or equivalent volume of DMSO (control) to 
cells at 90% confluency. Cells were incubated with TG or DMSO for 1 h at 37 ºC unless specified 
otherwise.  
 
Density based cell fractionation 
7ml discontinuous density gradients of 15, 25 and 25% iodixanol (Optiprep, Stemcell 
technologies), 0.25 M sucrose, 75 mM KCl, 5 mM MgCl2, 50 nM CaCl2, 10 mM HEPES pH 7.4 
and EDTA free protease inhibitor were prepared in polyallomer optiSeal ultracentrifuge tubes 
(11.2 ml capacity; Beckman Coulter) gradients were allowed to diffuse 1h at 20 ºC. Partially 
diffused gradients were stored at 4oC for 1 h while cells were prepared for fractionation. Cells 
were cultured in 500 mm2 pates until 90% confluence, using a single plate per replica per 
condition. Cells were treated with TG or DMSO for 1 h. After treatment, cells were washed twice 
with PBS and detached using EDTA-free trypsin (Thermo Scientific) for 10 min. Trypsin was 
quenched by adding equal volume of media (supplemented with DMSO or TG). Detached cells 
were transferred to a 50 ml tube and spun down 10 min at 250 g. Cell pellets were washed twice 
with ice cold PBS and resuspended in 900 μl of lysis buffer (0.25 M sucrose, 75 mM KCl, 5 mM 
MgCl2, 50 nM CaCl2, 10 mM HEPES pH 7.4 and EDTA-free protease inhibitor) and lysed with a 
ball bearing homogenizer (Isobiotec) on ice. 50 μl of lysate was stored at -80oC as total cell lysate. 
Cell lysate iodixanol and ion concentration was adjusted by adding 1.5 ml of 50% iodixanol 
solution (in 75 mM KCl, 5 mM MgCl2, 50 nM CaCl2, 10 mM HEPES pH 7.4 and EDTA free protease 
inhibitor) to a 1 ml cell lysate, and underlaid in the previously prepared density gradient with a 2.5 
ml syringe and a wide-bore blunt-end needle (Sigma-Aldrich). Finally, a 40% iodixanol (in 75 mM 
KCl, 5 mM MgCl2, 50 nM CaCl2, 10 mM HEPES pH 7.4 and EDTA-free protease inhibitor) cushion 
was underlied until the tube was filled. Density gradients were centrifuged in a NVT65 fixed-angle 
near-vertical ultracentrifuge rotor (Beckman Coulter) in a Optima L-80 XP ultracentrifuge 
(Beckman Coulter) for 16 h at 100.000 g and collected using an auto Densi-Flow peristaltic pump 
fraction collector with a meniscus-tracking probe (Labconco) to obtain 20 fractions of 500 μl each. 
The refractive index (RI) of each fraction is measured with a Hand-held refractometer (Reichert) 
and the iodixanol concentration was calculated as Iodixanol% = (RI / 0.83) - 10.111, and fraction 
density calculated by d = m / V. The iodixanol concentration per fraction was adjusted to 30% in 
a volume of 600 μl. All fractions were frozen and dried by sublimation using Vacuum centrifuge 
with cold trap (Labconco, Refrigerated CentriVap concentrator). Dried pellets were solubilised in 
1 ml of trizol (Thermo Scientific) and stored at -80 ºC.  
 
Differential sedimentation speed based cell fractionation 
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Cells were cultured in 500 mm2 plates until 90% confluence, using a single plate per replicate. 
Five replicates were performed for the differential sedimentation speed based cell fractionation 
experiment. Cells were washed twice with PBS and detached using trypsin/EDTA (0.05%) 
(Thermo Scientific) for 5 min. Trypsin was quenched with an equal volume of media. Detached 
cells were transferred to a 50 ml falcon tube and spun down for 5 min at 200 g at 4 oC. The pellets 
were washed twice with ice cold PBS and resuspended in 1 ml of lysis buffer (75 mM KCl, 5 mM 
MgCl2, 50 nM CaCl2, 10 mM HEPES pH 7.4 and EDTA-free protease inhibitor) and homogenised  
on ice using ball bearing homogenizer (Isobiotec). A total lysate sample of 75 μl was obtained 
and stored at -80 ºC. The remaining sample was fractionated into five consecutive fractions at 
centrifugation speeds (100, 500, 2000, and  5000 g) using the supernatant of every centrifugation 
as starting material for the next, with a Eppendorf Centrifuge 5424R. The supernatant of the last 
centrifugation was retained as the final fraction.  
 
RNA and protein sample precipitation  
RNA and protein were obtained from trizol solubilised fractions by adding 200 μl of chloroform 
and phase partitioning the sample for 15 min at 12000 g at 4 ºC.  RNA was purified by collecting 
and transferring the trizol/chloroform upper aqueous phase to a new tube and the RNA 
precipitated with 750 μl of isopropanol (Sigma Aldrich) for 10 min at 16000 g. RNA pellets were 
washed twice with 70% ethanol and solubilised in 200 μl of RNAse-free water (Thermo Scientific). 
RNA samples were treated with DNAse in RNeasy columns (Qiagen) according to manufacturer 
instructions using the RNase-free DNAse Set kit (Qiagen). RNA concentration was measured with 
a DS-11 UV Spectrophotometer (Denovix). RNA samples were pooled as indicated in the 
supplementary table 4. Protein was purified by precipitating the trizol/chloroform lower organic 
phase (and interface) using 9:1 v:v of methanol:sample. Samples were solubilised in 1% SDS 
(Thermo Fisher Scientific) 100 mM TEAB (Sigma-Aldrich) using a Bioruptor sonicating bath 
(Diagenode). Protein concentration was measured with Pierce BCA Protein concentration assay 
kit (Thermo Fisher Scientific) on a spectrophotometer plate reader (Molecular Devices, 
SpectroMax M2).  
 
RNA sequencing 
RNA sequencing libraries for the density fractionation were generated using 1 μg of RNA as 
starting material and depleting ribosomal RNA using Ribocop V3 (Lexogen). Post ribosomal RNA 
depletion, RNA content was measured with a Bioanalyzer pico kit (Agilent). 1% RNA SIRVs were 
spiked-in (Lexogen), and RNA seq libraries were generated and amplified using the CORALL 
RNA sequencing kit (Lexogen) according to the manufacturer instructions. All CORALL generated 
libraries were sequenced in parallel on 4 Novaseq S4 lanes (Illumina). RNA sequencing libraries 
for the differential sedimentation speed based cell fractionation experiment were performed using 
QuantSeq 3’ mRNA-Seq kit (Lexogen) according to manufacturer instructions. A total of 400 ng 
of total RNA and 0.1% RNA SIRVs (Lexogen) were used for library preparation of each fraction. 
All libraries were balanced, multiplexed and pooled, and run on two single-end Novaseq SP lanes 
(Illumina).  
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477541doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477541
http://creativecommons.org/licenses/by/4.0/


 
 
 
 

 21 

Proteomic sample preparation 

Samples were resuspended in 100 µL of 100 mM TEAB (Sigma-Aldrich), reduced with 10 mM 
DTT (Sigma-Aldrich) at room temperature for 60 min and alkylated with 40 mM iodoacetamide 
(Sigma-Aldrich) at room temperature in the dark for 60 min. Samples were digested overnight at 
37 °C with 1 µg of trypsin (Promega). Subsequently, 1 µg of modified trypsin (Promega) was 
added, and the samples were incubated for 3-4 h at 37 °C. Samples were then acidified with TFA 
(0.5% (v/v) final concentration (Sigma-Aldrich) and centrifuged at 21,000 g for 10 min. The 
supernatant was immediately desalted. 

For peptide clean-up and quantification, 200 µL of Poros Oligo R3 (Thermo Fisher Scientific) resin 
slurry (approximately 150–200 µL resin) was packed into Pierce centrifuge columns (Thermo 
Fisher Scientific) and equilibrated with 0.1% TFA. Samples were loaded, washed twice with 
200 µL 0.1% TFA and eluted with 300 µL 70% acetonitrile (ACN) (adapted from45). From each 
elution, 10 μL was taken for Qubit protein assay (Thermo Fisher Scientific) quantification and the 
remaining sample was retained for MS. 

TMT-10plex or TMTpro-16plex (Thermo Fisher Scientific) labelling from desalted peptides was 
performed according to the manufacturer’s protocol. Equal amounts of desalted peptides were 
labelled immediately after being quantified with Qubit protein assay (Thermo Fisher Scientific). 
Multiplexed TMT samples were then fractionated using high-pH reverse phase chromatography. 
In detail, the TMT-labelled peptide samples were resuspended in 100 μL of 20 mM ammonium 
formate pH 10 (Buffer A). The total volume of each sample was injected onto an Acquity UPLC 
BEH C18 column (2.1-mm i.d. × 150-mm; 1.7-μm particle size) on an Acquity UPLC System with 
a diode array detector (Waters) and the peptides were eluted from the column using a linear 
gradient of 4–60% (v/v) acetonitrile in 20 mM ammonium formate pH 10 over 50 min and at a 
0.244 mL/min flow rate (with a total run time of 75 min). The gradient was set up as follows: 0 min–
95% Buffer A–5% Buffer B (20 mM ammonium formate pH 10 + 80% (v/v) acetonitrile), 10 min–
95% Buffer A–5% Buffer B, 60 min–25% Buffer A–75% Buffer B, 62 min–0% Buffer A–100% 
Buffer B, 67.5 min–0% Buffer A–100% Buffer B, 67.6 min–95% Buffer A–5% Buffer B. 
Approximately 40–50 1-min fractions, representing peak peptide elution, were collected starting 
from initial peptides elution, and were reduced to dryness by vacuum centrifugation shortly 
thereafter. For downstream MS analysis, the fractions were concatenated into 20 samples by 
combining pairs of fractions which eluted at different time points during the gradient. 

Each sample was analysed in an Orbitrap Eclipse mass spectrometer (Thermo Fisher Scientific). 
Mass spectra were acquired in positive ion mode applying data acquisition using synchronous 
precursor selection MS3 (SPS-MS3) acquisition mode46 triggered using Real-time Search against 
human protein sequences from UniProt/Swiss-Prot. Carbamidomethylation of cysteine and TMT-
6plex (total proteome samples) or TMTpro-16plex tagging (Subcellular fractionated samples) of 
lysine and peptide N terminus were set as static modifications, with oxidation of methionine as a 
variable modification. Scoring thresholds were set as follows: Xcorr=1.4, dCn=0.1 and Precursor 
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PPM=10. For details of LC-MS/MS acquisition and proteomics data processing see 
supplementary methods. 

 

MS spectra processing and peptide and protein identification 

Raw data were viewed in Xcalibur v.2.1 (Thermo Fisher Scientific), and data processing was 
performed using Proteome Discoverer v2.3 (Thermo Fisher Scientific). The raw files were 
submitted to a database search using Proteome Discoverer with SequestHF and MS Amanda47  
algorithms against the Homo sapiens database downloaded in June 2020 from UniProt/Swiss-
Prot. Common contaminant proteins (several types of human keratins, BSA and porcine trypsin) 
from the common Repository of Adventitious Proteins (cRAP) v1.0 (48 sequences, adapted from 
the Global Proteome Machine repository, https://www.thegpm.org/crap/) were added to the 
database. The spectra identification was performed with the following parameters: MS accuracy, 
10 p.p.m.; MS/MS accuracy of 0.5 Da; up to two missed cleavage sites allowed; 
carbamidomethylation of cysteine and TMT-6plex (total proteome samples) or TMTpro-16plex 
tagging (Subcellular fractionated samples) of lysine and peptide N terminus as a fixed 
modification; and oxidation of methionine and deamidated asparagine and glutamine as variable 
modifications. Percolator was used for false discovery rate estimation and only rank 1 peptide 
identifications of high confidence (FDR < 1%) were accepted. TMT reporter values were assessed 
through Proteome Discoverer v2.3 using the Most Confident Centroid method for peak integration 
and integration tolerance of 20 p.p.m. Reporter ion intensities were adjusted to correct for the 
isotopic impurities of the different TMT reagents (manufacturer specifications). Reporter ion 
intensities were adjusted to correct for the isotopic impurities of the different TMT reagents 
(following manufacturer specifications). Sample labels for each TMT tag are presented in 
supplementary table 4. 

 
Spatial proteomics 
Previous marker proteins defined for U-2 OS were annotated in13. 12 / 733 markers were deemed 
outliers based on manual curation of their profile and consideration of localisation assigned in 
HPA48 and GO. Nuclear proteins can diffuse out of the nucleus, complicating their abundance 
profile (see supplementary methods). To ensure accurate assignment of nuclear proteins, nuclear 
markers were annotated de novo, utilising the COMPARTMENTS database49. COMPARTMENTS 
localisations were mapped to the localisations defined by the standard LOPIT marker sets. 
Proteins with a score of 5 for the ‘Nucleus’ and no score over 2 for any other localisation were 
denoted as exclusively nuclear. The profiles for these nuclear exclusive proteins were split into 
three groups, which were separated based on the following thresholds on the row-sum normalised 
abundances: Group 1 =over 0.3 in pooled fraction 4. Group 2 = over 0.2 in pooled fraction 5. 
Group 3 = over 0.4 in pooled fraction 8. A GO enrichment analysis, using a Hypergeometric test, 
was then used to determine the enriched functionalities, relative to the background of all quantified 
proteins. This indicated that the first group of nuclear proteins were highly enriched in nucleolus, 
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chromatin and ribosome biogenesis proteins, whereas the other two were enriched in 
nucleoplasm proteins but no more specific GO terms. Furthermore, proteins annotated as nuclear 
membrane or nuclear lamina in GO were more closely associated with group 1. Thus, group 1 
was denoted as ‘Nucleus’ and the other groups were referred to as ‘Nucleoplasm-1’ and 
‘Nucleoplasm-2’. Finally, the ‘Proteosome’ marker set was expanded to define a set of markers 
for ‘Protein complexes’ by including proteins annotated in GO as part of the MARS complex 
(‘GO:0017101'), COP9 signalosome ('GO:0008180') or eIF3 complex (‘'GO:0005852'), with 5/42 
of the additional protein complex markers excluded as outliers.  SVM classification in basal 
conditions was performed as described in50, with hyperparameters selected by grid search and 
50 iterations.  
 
BANDLE51 was used to identify differentially localised proteins between control condition and 
UPR. Differential localisation analysis was performed on each replicate separately, with 10,000 
MCMC iterations, 5,000 burn-in iterations, 4 chains and 1/20 thinning. Off diagonal values for the 
matrix of Dirichlet priors were set at 0.01, with default values used for the penalised complexity 
priors. MCMC chains were inspected for convergence based on the reported number of 
localisation outliers, as suggested in51, and all chains were found to converge. Localisations in 
each condition were determined by setting the following threshold: bandle localisation probability 
* (1 - bandle outlier probability) > 0.95. Where this threshold was not met, the localisation was 
deemed ‘Undefined’. Proteins were deemed differentially localised if they were never assigned to 
the same localisation across the two conditions and at least 2/3 replicates had BANDLE 
differential localisation probabilities over the following thresholds to define three levels of 
confidence were for relocalisation: >= 0.99 = ‘Highly confident’, >= 0.95 = ‘Confident’ and >= 0.85 
= ‘Candidate’. 
  
RNA-seq data processing for CORALL RNA-Seq samples 
RNA-Seq fastq processing and quantification was performed using bespoke pipelines built with 
CGAT-core52. Fastq files were demultiplexed using idemux (https://github.com/Lexogen-
Tools/idemux) and concatenated into one fastq per sample. To assess PCR duplication rate, 
UMIs were extracted from the read sequences using UMI-tools 53. Reads were aligned to a 
concatenation of the hg38 reference genome and the artificial SIRV genome using hisat v2.2.154 
using default settings. Secondary reads and reads with MAPQ<10 were discarded. Duplicate 
reads were identified with UMI-tools dedup using default settings. Transcript isoform quantification 
was performed from the fastqs without deduplication, using Salmon v1.4.055 against a 
concatenation of the ensembl v102 human transcriptome and the artificial SIRV annotations, 
using default settings.  
 
 
Data analysis 
Data analyses post RNA and peptide quantification steps above were performed using R v4.0.356 
and R markdown notebooks57, making extensive use of the tidyverse R packages58, MSnbase59, 
pRoloc60 and  camprotR (https://github.com/CambridgeCentreForProteomics/camprotR).  
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Differential abundance analysis 
Gene-level quantifications (transcripts per million; TPM) were parsed using tximport61. Differential 
gene abundance was tested using DESeq262 with default settings, with a False Discovery Rate 
threshold of 5% used to identify significant changes in abundance.  
 
Spatial transcriptomics  
Transcript isoform and gene-level quantifications (transcripts per million; TPM) were parsed using 
tximport61 to generate objects to hold the quantification estimates for a single experiment. To take 
advantage of the spatial proteomics functionalities available through pRoloc60, we stored the RNA 
quantification data in MSnSets. Separate objects were created to hold transcript isoform and 
gene-level abundance estimates.  Transcripts and genes with average TPM < 0.5 or TPM==0 in 
>= 2/3 samples in a given condition were discarded. Post TPM-filtering, 41547 transcript isoforms 
and 14203 genes were quantified in at least 2 replicates in both conditions. 
 
Localisation markers were identified using a combination of a priori markers and semi-supervised 
clustering by non-negative matrix factorisation (NNMF). A priori markers were defined as follows: 
Nuclear markers were > 16-fold nuclear enriched in nuclear/cytosol fraction RNA-Seq63 or 
manually defined known nuclear lncRNAs (XIST, MALAT1, MEG3, DLX6-AS1, PINCR, UCHL1-
AS1, NEAT1). Cytosol markers were significantly enriched in NES APEX-Seq5, or manually 
defined from known cytosolic lncRNAs (LINCMD1, NORAD, H19, NKILA, SNHG5, DANCR, OIP5-
AS1, SNHG1). ER markers were defined as having enrichment in ER-Ribo-Seq > 2^0.5 24 and 
significant enrichment > 8-fold in KDEL APEX-Seq5 and a predicted signal peptide or 
transmembrane domain according to ensembl. Mitochondrial markers were mitochondrially-
encoded mRNAs. To determine the optimal number of clusters (k) for NNMF, the imputation-
based approach was used64, with the selected k value minimising the mean squared error for 
NNMF-imputation of randomly added missing values. This gave k=5 for the basal condition 
experiment and k=4 for the UPR experiment. NNMF cluster assignments in basal conditions were 
then compared to the a priori markers to define a set of NNMF-guided gene-level markers, in 
which each marker set was associated with the NNMF cluster with greatest overlap and all 
markers in the NNMF cluster were retained. In addition, the NNMF cluster containing the nuclear 
markers was further used to define a nucleolus marker set by intersecting it with the top 30 most 
abundant snoRNAs according to the total RNA-Seq. Finally, a novel NNMF cluster was observed 
in both basal condition and UPR, which contained few a priori markers. The genes assigned to 
the novel NNMF cluster in both basal and UPR conditions were used to define a novel profile, 
which was observed to have the greatest relative abundance in between the nucleus and cytosol 
profile peaks, and was hence denoted as cytosol-light. Gene-level markers were used to generate 
transcript-level markers by taking all the transcript isoforms for each gene-level marker where the 
ensembl transcript biotype and gene biotype matched. The final marker sets were manually 
curated to remove 14 / 135 gene-level markers and 37 / 202 transcript-level markers that were 
deemed to be outliers. The higher proportion of transcript-level markers removed reflects the 
markers having been built at the gene level and extended naively to transcript-level markers.  
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Estimation of localisation proportions  
RNA content per fraction was estimated using the relative abundance of all SIRV features and 
human RNA and the proportion of the fraction used for RNA-Seq library preparation.  Relative 
RNA-Seq quantifications in each fraction were adjusted with respect to the RNA content per 
fraction and abundance estimates row-sum normalised across the 8 fractions per replicate. Non-
negative least squares regression was used to estimate localisation proportions by separately 
modelling the profile of each transcript/gene as a non-negative linear combination of the average 
profile for the markers of each localisation. Since most of the ER markers relocalised upon UPR 
and the mitochondrial markers represent 100% membrane localisation in both conditions (no RNA 
copies in the cytosol), mitochondrial markers were used to estimate the membrane proportion. 
The proportion estimates were bootstrapped 100 times by re-sampling the markers, with 
resampling. Proportion estimates for a given transcript/gene were discarded where the model did 
not account for at least 90% of the variance or the absolute value or the intercept was greater 
than 0.05. The mean proportions across replicates were estimated for transcripts/genes with 
estimates from at least 2/3 replicates. In total, proportions for 27368 transcript isoforms and 13274 
genes were retained. 
 
Reads were frequently observed to bridge annotations between lncRNAs and neighbouring 
protein-coding, which resulted in misestimation of lncRNA proportions. To avoid this, we excluded 
all lncRNAs with a protein-coding gene within 15Kb downstream or 30Kb upstream.  
 
Defining signal peptide and transmembrane domain features 
Signal peptide and transmembrane (TM) domain annotations were obtained from ensembl v102 
and the distance between the start of the first signal peptide or TM domain and the stop codon 
was determined.  For gene-level analyses, the minimum distance across all transcript isoforms 
was used. A conservative annotation of presence/absence of either signal peptide and/or TM 
domain was obtained by taking the union of the ensembl annotations with uniprot annotations. 
 
eCLIP binding data 
eCLIP data in bed format was obtained from ENCODE using ENCODExplorer. Genomic 
coordinates were converted to transcriptomic coordinates using mapToTranscripts function in 
GenomicFeatures R package65. 
 
Modelling lncRNA cytosol localisation 
To model the cytosolic localisation of lncRNAs, transcript length, spliced status, eCLIP binding 
data, kmers frequencies, AU content, RNA modifications, PolyA status, presence in FANTOM5 
robust catalogue, and abundance were considered. Transcript length and splicing status was 
obtained from ensembl v102. eCLIP data was obtained as described above. 64 RBPs with > 10 
lncRNA targets were retained and binding data converted to binary 0=unbound, 1=bound. Kmers 
(k=1-7) were counted and expressed as frequencies. RNA modifications were obtained from 
m6A-atlas66, with modifications with > 10 lncRNA targets retained, namely, m6A, m5c, m1A and 
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Psi. The FANTOM5 robust catalogue and PolyA status were obtained from67. PolyA status was 
converted to a binary 0=non-polyadenylated, 1=polyadenylated, with ‘undetermined’ encoded as 
0 and ‘bimorphic’ encoded as 1. Abundance was calculated as the mean TPM from the total RNA-
Seq of basal condition samples. Cytosol proportions were converted to a binary feature, where 1 
= cytosolic (⅔ cytosol) and 0 = not-cytosolic (< ⅓ cytosol). The data was then split 80:20 into 
training and test data. Elastic net logistic regression was used to model the cytosol variable, with 
10-fold cross-validation, using the glmnet R package68. By default, glmnet scales the dependent 
variables but returns the coefficients on the original scale. Alpha values were varied between 0-
1, in steps of 0.1. Cross-validation folds were pre-computed to ensure they were the same for 
each alpha value. The alpha value with the minimum mean cross validation error was identified 
as 1, e.g lasso regression. Lambda was selected to give the most parsimonious model, using the 
‘one-standard-error’ rule69. The final model contained 45 / 21918 non-zero coefficients. The 
predictive accuracy of this model was assessed using the hold-out test data and compared to the 
accuracy of a simpler logistic regression model of just transcript length, polyA status and AU 
content.  
 
Modelling UPR-resistant membrane localisation 
Membrane proportion in UPR was modelled as being dependent upon membrane proportion in 
control conditions using a Generalised Additive Model (GAM) with a cubic regression spline with 
shrinkage, using the mgcv R package. The residual from the GAM was taken to represent the 
degree of UPR resistant localisation relative to the overall reduction in membrane proportions. 
Lasso regression (glmnet R package68) was used to model UPR resistance, with RBP binding 
from eCLIP data (see above) being the dependent variables. 10-fold cross-validation was used 
to select the lambda value that minimised the mean cross validation error, with the ‘one-standard-
error’ rule used to select the most parsimonious model69. Transcripts with signal peptides/TM 
domains were separately modelled transcripts from those without.  
 
Modelling relocalisation to granules 
Granule relocalisation (UPR granule proportion - Control granule proportion) was modelled 
according to the following features which were annotated to each mRNA: localisation in basal 
conditions, RNA length, RBP binding, sequence kmers, 5’ AUGs, codon features, upstream open 
reading frames (uORFs) and internal ribosome entry site (IRES). One-hot encoding was used for 
the features describing the localisation in basal conditions, where the highest proportion 
localisation was taken to be the single localisation for the RNA. Transcript, 5’ UTR, 3’UTR and 
coding sequence lengths were obtained from ensembl v102. eCLIP data was obtained as 
described above. 177 RBPs with > 100 mRNA transcript targets were retained and binding data 
converted to binary 0=unbound, 1=bound. Kmers (k=1-6) were counted and expressed as 
frequencies. 5’ AUGs were identified with separate features to encode in-frame and out-of frame 
AUGs. Codon, dinucleotide and wobble base frequencies were computed from the coding 
sequence. Codon optimality (MILC70) was computed, with separate features for the comparison 
against all transcripts and just the top 1% most abundant. uORFs were identified from71, retaining 
only ORFs with a score > 5 and an AUG start codon. Annotated IRES were obtained from 
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IRESbase72. uORF and IRES were converted to binary presence/absence features for each 
transcript. In addition, pairwise interactions between the localisation in basal conditions and the 
transcript, 3’UTR, 5’UTR and coding length features and RBP binding features were added as 
separate features. 
 
Granule relocalisation data was split 80:20 into training and test data. Elastic net regression was 
used to model the granule relocalisation, with 10-fold cross-validation, using the glmnet R 
package68. By default, glmnet scales the dependent variables but returns the coefficients on the 
original scale. Alpha values were varied between 0-1, in steps of 0.1 Cross-validation folds were 
pre-computed to ensure they were the same for each alpha value. The alpha value with the 
minimum mean cross validation error was identified 1, e.g lasso regression. Lambda was selected 
to give the most parsimonious model, using the ‘one-standard-error’ rule69. The final model 
contained 74 / 16895 non-zero coefficients. 
 
Data processing and analysis for differential centrifugation-based LoRNA  
Data processing and analysis for samples quantified using 3’ Quant Seq was identical to CORALL 
RNA-Seq samples, except for the following: Gene read counts were normalised to counts per 
million (CPM) using the total number of assigned reads per sample. Genes with average CPM < 
1 or CPM==0 in > 20% of the samples were discarded. Markers identified from equilibrium density 
centrifugation-based LoRNA were annotated and proportions calculated as indicated above, 
except that proportions were estimated separately for mitochondria and ER and summed to give 
membrane proportions, and ‘cytosol-light’ proportions were not estimated. The mean proportions 
across replicates were estimated for transcripts/genes with estimates from at least 3/5 replicates. 
For details on the analysis of the technical bias between RNA length and sedimentation, see 
supplementary methods. 
 
Gene-Ontology enrichment analyses 
All Gene-Ontology (GO) enrichment analyses were performed using the goseq R package73. For 
the analysis of GO terms enriched in eIF3d-bound membrane RNAs, the membrane proportion in 
basal conditions was included as the bias factor and enrichment effect sizes accounting for 
biasing factors were calculated using the probability weight functions obtained with goseq using 
the estimate_go_overrep function in camprotR. For the analysis of GO terms enriched in the 
membrane RNAs not encoding a signal peptide or TM domain, no bias factor was included and a 
Hypergeometric test was instead used. For both analyses, p-values were adjusted for multiple 
testing using the Benjamini-Hochberg procedure74 and GO terms with adjusted p-value > 0.05 
(5% FDR) or accounting for fewer than 10% of the foreground genes were excluded. Redundant 
GO terms were removed using the remove_redunant_go function in camprotR R package.   
 
Single molecule FISH probe design and synthesis 
Subcellular RNA localisation was assessed by using an adaptation of the single-molecule 
inexpensive FISH protocol75. Z (CTTATAGGGCATGGATGCTAGAAGCTGG) and Y 
(AATGCATGTCGACGAGGTCCGAGTGTAA) FLAP DNA handles, labelled at the 5’ and 3’ ends 
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with Atto488, were purchased from Sigma (HPLC-purified) and resuspended to a concentration 
of 100 µM in nuclease-free water. For each target RNA, 30-48 DNA probes of 20 nucleotides (nt) 
were designed with a minimum spacing length of 2 nt and a guanine-cytosine content of 40-65%. 
Each gene-specific sequence was flanked by a 28 nt sequence complementary to either a Z- or 
Y-FLAP sequence. The resulting 48 nt probes were purchased from Sigma (standard desalt 
purification, 100 µM in nuclease-free water). Fluorescently labelled gene-specific probes were 
then generated as follows: 200 pmol of an equimolar mixture of all gene-specific oligos for each 
gene were mixed with 250 pmol of the appropriate FLAP oligo in 1x NEBuffer 3 (New England 
Biolabs, B7003), then incubated in a Thermocycler (BioRad) for 3 min at 85 oC, 3 min at 65 oC, 
and 5 min at 25 oC (lid 99oC). 
 
smiFISH/Immunofluorescence and Immunofluorescence 
 
For smiFISH/IF experiments, 8 104 U 2-OS cells were seeded in each well of a 12-well plate, on 
top of no 1.5 glass coverslips previously washed in 1 M HCl. The following day, cells were treated 
with either 250 nM Tg or the corresponding volume of DMSO, rinsed three times with PBS (with 
MgCl2 and CaCl2, Sigma D8662), then fixed for 10 min in 3% Methanol-free PFA (Alfa Aesar, 
43368) in PBS at RT. The fixative was then quenched in 100 mM Glycine (Sigma) in PBS for 10 
min at RT, samples were then washed twice in PBS for 10 min and permeabilised in 70% EtOH 
at 4 oC for at least 1 h. Samples were then prepared for hybridisation by washing in 10% 
Formamide (Sigma), 1 U/µl RNasin Plus (Promega) in 2x Saline-sodium citrate (SSC) buffer for 
10 min. From this step onwards, samples were protected from direct light. Hybridisation was 
performed by incubating coverslips with 100 – 250 nM probes diluted in hybridisation buffer (2X 
SSC buffer, 10% Dextran sulfate (Sigma), 10% Formamide, 2 mM ribonucleoside vanadyl 
complexes (Sigma), 200 µg/ml bovine serum albumin (Roche), 1 mg/ml E. coli tRNA (Roche), 1 
U/µl RNasin Plus (Promega)), for 3 h at 37 oC in a humid chamber. Coverslips were then 
transferred to a clean 12-well plate and washed twice in 10% Formamide, 1 U/µl RNasin Plus, 2x 
SSC buffer, for 10 min at 37 oC. Further washes were then performed (three times in 2X SSC with 
no incubation, twice in PBS for 10 min), before incubation with blocking buffer (3% nuclease-free 
bovine serum albumin (Sigma) in PBS) for 30 min at RT. Samples were then incubated with 
primary antibody diluted 1:500 in blocking buffer, for 2 h at RT. They were then washed three 
times in PBS for ten min, incubated with a secondary antibody diluted 1:2000 in blocking buffer, 
for 1 h at RT. After three additional washes in PBS, the nucleus was stained by incubation with 
4′,6-diamidino-2-phentylindole (DAPI, Sigma, 200 ng/ml in PBS) for 1 min at RT. Coverslips were 
then washed twice in PBS for 5 min before being mounted onto glass microscope slides with a 
drop of ProLong™ Glass Antifade Mountant (Invitrogen). 
 
For consistency, IF experiments were performed following the smiFISH/IF procedure with the 
omission of the FISH hybridisation step and the washes in 10% formamide, 2X SSC.  
 
Confocal microscopy 
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Images were acquired on a Zeiss Axio Observer.Z1 LSM 980 microscope equipped with Airyscan 
2, using ZEN Blue software (version 3.3), in Airyscan super-resolution imaging mode. A C-Plan-
Apochromat 63X /1.4 NA oil objective was used with Zeiss Immersol 518F (23 oC) immersion oil. 
20 Z-slices per image were acquired at an interval of 0.13 µm.  
 
Image processing and quantification 
Airyscan processing with standard parameters was applied to each image in Zen Blue software. 
Further processing and analysis were performed using FiJi software76 (version 2.3.051). RNA 
FISH images were background subtracted (rolling ball radius = 10 pixels); RNA foci were then 
detected and counted using the FindFoci function, as part of the GDSC plugin77. To quantify the 
degree of co-localisation of RNA foci with the ER, Manders’ overlap coefficient was calculated 
using the JACoP plugin78.  
 
 
Cell migration assay 
Cell migration assays were performed using the xCELLigence RTCA DP instrument (ACEA 
Biosciences) according to manufacturer’s instructions. Cells were treated with thapsigargin for 1 
hour, collected by trypsinisation and washed in PBS to remove all traces of serum. 30,000 cells 
were seeded in the upper chamber of a 16 well migration plate (CIM-16 plate) in 100 μl of media 
containing 0.1% serum. Cells migrate to a lower chamber containing 160 µl of media 
supplemented with 10% serum. As cells migrate across the microelectrodes into the lower 
chamber they generate impedance measurements which enables label free quantification of cell 
migration for 24 hours (Cell index). Cell indexes for Tg-treated samples were expressed as fold 
changes relative to the DMSO control sample. Significance testing between eIF3d and control 
siRNA knockdowns was performed with a paired Student’s t-test. For details on cell death assays, 
see supplementary methods. 
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Data availability 
 
The mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE79 partner repository with the dataset identifier PXD030456. The RNA-
Seq data have been deposited in ENA with study accession PRJEB49479.  
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