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Abstract 49 

The Million Veteran Program (MVP) participants represent 100 years of US history, including significant 50 

social and demographic change over time. Our study assessed two aspects of the MVP: (i) longitudinal 51 

changes in population diversity and (ii) how these changes can be accounted for in genome-wide 52 

association studies (GWAS). The MVP was divided into five birth cohorts (N-range=123,888 [born from 53 

1943-1947] to 136,699 [born from 1948-1953]). Groups of participants were defined by (i) HARE 54 

(harmonized ancestry and race/ethnicity) and (ii) a random-forest clustering approach using the 1000 55 

Genomes Project and the Human Genome Diversity Project (1kGP+HGDP) reference panels (77 world 56 

populations representing six continental groups).  In these groups, we performed GWASs of height, a 57 

trait potentially affected by population stratification. Birth cohorts demonstrate important trends in 58 

ancestry diversity over time. More recent HARE-assigned Europeans, Africans, and Hispanics had lower 59 

European ancestry proportions than older birth cohorts (0.010<Cohen’s d<0.259, p<7.80x10
-4

). 60 

Conversely, HARE-assigned East Asians showed an increase in European ancestry proportion over time. 61 

In GWAS of height using HARE assignments, genomic inflation due to population stratification was 62 

prevalent across all birth cohorts (linkage disequilibrium score regression intercept=1.08±0.042). The 63 

1kGP+HGDP-based ancestry assignment significantly reduced the population stratification (mean 64 

intercept reduction=0.045±0.007, p<0.05) confounding in the GWAS statistics. This study provides a 65 

comprehensive characterization of ancestry diversity of the MVP cohort over time and highlights that 66 

more refined modeling of genetic diversity (e.g., the 1kGP+HGDP-based ancestry assignment) can more 67 

accurately capture the polygenic architecture of traits and diseases that could be affected by population 68 

stratification. 69 

 70 
 71 

 72 
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Introduction 73 

Genome-wide association studies (GWAS) have successfully identified loci associated with 74 

thousands of human traits and diseases using extremely large sample sizes.
1
 Multi-ancestry cohorts, 75 

such as the Department of Veterans Affairs (VA) Million Veteran Program (MVP), offer unique 76 

opportunities to study the genetic architecture of complex traits across diverse populations.
2
 As of June 77 

2021 MVP has enrolled more than 840,000 Veteran volunteers, >650,000 of whom have been 78 

genotyped, and includes a wide range of phenotypic and health outcome information. Generally, GWAS 79 

are conducted within samples stratified by genetically-determined ancestry groups and using genetic 80 

principal components to account for within-ancestry population structure.
3
 Recently, other methods 81 

have been proposed to improve the modeling of genetic diversity and the gene discovery of complex 82 

traits in diverse populations.4-6
 With respect to MVP diversity classification, the HARE (harmonized 83 

ancestry and race/ethnicity) approach was developed to inform genetic ancestry assignments by 84 

leveraging self-identified racial and ethnic (SIRE) background under the hypothesis that these variables 85 

provide complementary information and may improve the appropriateness of population strata in 86 

genetic studies.
3
 The HARE approach uses supervised machine learning and genetically determined 87 

ancestry to refine SIRE information for GWAS in three ways: (i) identify individuals whose SIRE is 88 

inconsistent with genetic information, (ii) reconcile conflicts among multiple SIRE sources, and (iii) 89 

impute missing racial/ethnic information when the predictive confidence is high. Although the HARE 90 

approach aims to increase the inclusivity of the population group definition to reduce the number of 91 

unclassified individuals, it can also, by the same process, increase the heterogeneity and the complexity 92 

of genetic structure within each HARE-defined group. Additionally, the inclusion of SIRE information can 93 

introduce biases related to specific racial and ethnic classifications used. For example, SIRE information 94 

used in MVP is based on racial and ethnic categories defined by the US Census. In this classification, the 95 

“Asian” group includes two distinct ancestry groups – Central/South Asian and East Asian – that are very 96 
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different from a genetic perspective.7
 Therefore, a GWAS conducted on a HARE-assigned “Asian” 97 

superpopulation has a high risk to be biased by population stratification unaccounted for by genetic 98 

principal components. To a lesser extent, population stratification could also affect GWAS conducted in 99 

samples defined using HARE assignment due to an increased genetic heterogeneity.  100 

To test this hypothesis, we compared the HARE approach with a classification based on genetic 101 

ancestry categories derived from a high-resolution reference panel (77 world populations representing 102 

six continental groups),
8; 9

 testing how they model genetic diversity in a GWAS of height. Previous 103 

studies demonstrated that height polygenic architecture can be strongly affected by unaccounted for 104 

population stratification.10
 To understand multiple scenarios related to the different sample 105 

compositions over time that characterize the US and therefore the MVP, we stratified the MVP cohort, 106 

which spans almost 100 years (from 1904-1999), into five birth cohorts of approximately 130,000 MVP 107 

participants each. Consistent with US demographics and changes in military policies, the demographic 108 

characteristics of US military personnel have changed drastically over time with more personnel 109 

identifying as Black, Hispanic, Asian, or other non-European descent categories in more recent 110 

decades.10; 11
 Accordingly, the five birth cohorts will present different ancestry compositions reflecting 111 

these social and demographic changes. But they also reflect demographic changes reflected in differing 112 

admixture in ancestry groups over time and social changes in self-identification. These cohorts 113 

permitted us to assess how different superpopulation-assignment approaches work in different 114 

scenarios to correct the population stratification affecting height polygenic architecture.
10

 This trait was 115 

selected due to the well-documented unaccounted-for effects of population stratification in large 116 

genetic studies.
10

 Our findings provide a comprehensive evaluation of the challenges in accurately 117 

modeling the diversity of human populations in the context of multi-ancestry GWAS. Additionally, we 118 

characterized the longitudinal changes of ancestry composition in the MVP cohort, showing how social 119 

and demographic changes can affect the genetic structure and introduce specific challenges in the 120 
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design of GWAS. This study presents one possible solution, a higher resolution ancestry reference panel, 121 

to mitigating these effects on genetic structure in GWAS. 122 

  123 

Subjects and Methods 124 

Definitions of Race, Ethnicity, and Ancestry Groups 125 

 This study compares different cohorts of Veterans grouped together based on genetic data or 126 

on HARE. HARE relies on the blending of self-identity and genetic information; we will use the following 127 

terminology for clarity. “Superpopulation” to reference a group of participants defined by HARE or 128 

genetic data.  “Ancestry” is strictly applied to population defined by genetic data only. “Ethnicity” 129 

describes a population of people with common national and/or cultural traditions. In the MVP, 130 

participants self-reported one of the following ethnicities: “not Spanish, Hispanic, or Latino,” “Mexican, 131 

Mexican American, or Chicano,” “Puerto Rican,” “Cuban,” or “Other Spanish, Hispanic, or Latino.”
2
 132 

Finally, “race” is a social construct that groups individuals by self-identity and encompasses many 133 

aspects of cultural belonging and physical appearance. In the MVP, participants self-reported one or 134 

more of the following races: “White,” “Black or African American,” “Chinese,” “Japanese,” “Asian 135 

Indian,” “Other Asian,” “Filipino,” “Pacific Islander,” and/or “Other.”
2
 Populations grouped by ancestry, 136 

race, or ethnicity generally overlap in the MVP (e.g., non-Spanish, Hispanic, or Latino Black or African 137 

American Veterans generally have high proportions of continental African ancestry). 138 

 139 

Cohort Description 140 

 The MVP is an ongoing voluntary research cohort of the United States military population 141 

composed of active users of the Veterans Health Administration healthcare system who learn of the 142 

MVP by invitational mailing and/or from MVP staff while receiving clinical care. All MVP participants 143 

provided informed consent and Health Insurance Portability and Accountability Act (HIPAA) of 1996 144 
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authorization. As of 2021, approximately 840,000 Veterans have enrolled in the program.
12

 Research 145 

involving the MVP data was approved by the Veterans Affairs (VA) Central Institutional Review Board 146 

(IRB). The current project was also approved by VA IRBs in Durham (North Carolina), Houston (Texas), 147 

Boston (Massachusetts), and West Haven (Connecticut).  148 

 The MVP integrates data from the Electronic Health Record and at least two surveys 149 

administered at the time of recruitment.
2
 The Baseline Survey collects data regarding demographics, 150 

family pedigree, health status, lifestyle habits, military experiences, medical history, family history of 151 

illness, and physical features. The Lifestyle Survey asks questions from validated instruments in domains 152 

selected to provide information about sleep and exercise habits, environmental exposures, diet, and 153 

sense of well-being.  154 

 155 

SNP Genotyping and Quality Control 156 

For the current analysis, we used the release 4 data freeze consisting of genotype data available 157 

for 658,582 participants (8.9% females and 29.4% from non-EUR HARE superpopulations). Genotyping 158 

was performed with the MVP 1.0 custom Axiom® Biobank array consisting of 668,418 SNP assays. The 159 

details on the quality control, superpopulation assignment, relatedness, and imputation have been 160 

described previously.
12

 161 

 162 

Harmonized Ancestry and Race/Ethnicity (HARE) 163 

 HARE was designed to define strata for superpopulation-specific GWAS using a two-stage 164 

categorization procedure.
3
 First, a support vector machine (SVM) was built to learn the correspondence 165 

between genetically determined ancestry and SIRE information. Second, HARE was assigned based on 166 

the harmonization of SIRE, genetically determined ancestry, and the trained SVM. There are four HARE 167 

superpopulations in MVP Release 4: non-Hispanic Black with predominantly African ancestry 168 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477583doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477583


 8 

(N=123,120), non-Hispanic Asian with predominantly East Asian ancestry (N=8,329), non-Hispanic white 169 

with predominantly European ancestry (N=464,961), and Hispanic with predominantly Admixed 170 

American ancestry (N=52,183). HARE unclassified status can be due to (i) lack of SIRE and predicted 171 

probability of ancestry cannot be resolved between two populations or (ii) discordance between genetic 172 

information and SIRE.
3
 A total of 9,989 participants (1.52%) could not be classified by HARE.  173 

 174 

High-resolution Ancestry Reference Panel 175 

 A high-resolution ancestry reference panel of non-MVP individuals was created following 176 

procedures developed in the Pan-ancestry UK Biobank initiative (see 177 

https://pan.ukbb.broadinstitute.org/ for full details). The reference panel combines individuals from the 178 

1000 Genomes Project (1kGP Phase 3; 26 populations across five continental ancestries)
13

 and Human 179 

Genome Diversity Project (HGDP; 51 populations across six continental ancestries).
9
 Hereafter this panel 180 

is referred to as 1kGP+HGDP. These data were stratified into continental ancestries according to their 181 

recruitment strategies and the previous genetic inference analyses.9; 13
 The ancestry groups include 182 

African (AFR), Central/South Asian (CSA), East Asian (EAS), European (EUR), Middle Eastern (MID), and 183 

Admixed American (AMR). SNP coordinates were assigned relative to the hg37 reference genome. After 184 

quality control for minor allele frequency (1%), missingness (SNP=5% and individual=3%), 185 

heterozygosity, and pairwise kinship estimates, the high-resolution ancestry panel included 3,284 186 

individuals. Principal components analysis (PCA) was performed on unrelated individuals from the 187 

reference panel.  First, we applied PCA on a high quality and linkage disequilibrium (LD)-pruned (r
2
=0.01, 188 

1500-kb window size) dataset of genotypes from the MVP using plink 2.0.
14

 The PC loadings from top 20 189 

PCs of the 1kGP+HGDP reference panel (training data) were projected onto PC loadings of genotypes 190 

from the MVP participants. Ancestry assignments were performed using the random forest classifier 191 

implemented in the randomForest R package with default settings. The projected ancestry groupings 192 
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in MVP were further refined for ancestry outliers using the top 20 PCs within the assigned ancestry 193 

group for the MVP cohort. We defined outliers based on PC loadings outside six median absolute 194 

deviations across the first 20 PCs.  195 

 196 

Birth Cohort Definition 197 

 Each MVP participant endorsed service in one of nine possible service eras: 1941 or earlier, 198 

December 1941 to December 1946, January 1947 to June 1950, July 1950-January 1955, February 1955 199 

to July 1964, August 1964 to April 1975, May 1975 to July 1990, August 1990 to August 2001, or 200 

September 2001 or later.
2
 Though MVP participants are mapped to service era, these strata represent 201 

overlapping periods of service with >22% of MVP participants serving in multiple eras (Table S1), 4.3% of 202 

whom served in non-contiguous eras. For these reasons, military service data were not used to stratify 203 

the MVP. Using self-reported participant birth year from the MVP Baseline Survey,
2
 we used a 204 

cumulative distribution function to identify approximately equally sized birth cohorts (BCs). Each BC 205 

consisted of approximately 130,000 participants (Table S2). 206 

 207 

Height as a Model Trait to Investigate Population Stratification 208 

 This study aims to detect and quantify the effect of residual population stratification among 209 

ancestry assignments. GWASs of height show severe biases attributed to unaccounted-for ancestry 210 

diversity among discovery samples.
10

 Height in the MVP was measured in inches as part of the core vital 211 

signs assessment at participant enrollment. GWAS of height were performed using age, sex, and 10 212 

within-superpopulation PCs as covariates.
10; 12; 15

 Covariate PCs were calculated per superpopulation per 213 

classification method resulting in ancestry- and method-specific PCs for each HARE superpopulation and 214 

each 1kGP+HGDP ancestry group.  215 

 216 
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Ancestry Proportion 217 

 The ancestry proportions among MVP participants were estimated using ADMIXTURE.
16

 With 218 

ADMIXTURE, each MVP participant was assigned five ancestry proportions using reference populations 219 

from 1kGP Phase 3: Han Chinese in Beijing (CHB), British in England and Scotland (GBR), Luhya in 220 

Webuye, Kenya (LWK), Peruvian in Lima, Peru (PEL), and Yoruba in Ibadan, Nigeria (YRI). These reference 221 

populations were selected to represent homogeneous continental ancestries along with a relatively 222 

large Admixed American reference population (PEL).  223 

 224 

Detection of Unaccounted-For Ancestry Diversity 225 

 The outcome used to quantify the presence of unaccounted-for ancestry diversity in each GWAS 226 

was the linkage disequilibrium score regression (LDSC) intercept and attenuation ratio.
17

 The LDSC 227 

intercept assesses whether the distribution of genome-wide association statistics is consistent with an 228 

expected distribution. The LDSC intercept of GWAS typically range from 1-1.05 with values greater than 229 

1.05 often considered as evidence of systematic bias in the test statistics.
17-19

. Attenuation ratios 230 

quantify the proportion of inflation in the mean χ2
 statistic that can be ascribed to causes other than 231 

polygenicity. When the LDSC intercept is in an acceptable range, the attenuation ratio typically ranges 232 

from 0-20%. As the LDSC intercept exceeds 1.05, attenuation ratios in this range indicates the presence 233 

of confounding, typically attributed to unaccounted-for ancestry diversity. Two-sided Z-tests were used 234 

to compare the statistical difference in LDSC intercepts and attenuation ratios between groups. Multiple 235 

testing correction was applied to these results using the false discovery rate (FDR < 5%). 236 

 237 

Results 238 

Birth Cohort Description 239 
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 Birth years among MVP participants span 96 years (1904-1999). Five birth cohorts were defined, 240 

each consisting of approximately 130,000 participants: BC1 1904-1942 (N=131,587), BC2 1943-1947 241 

(N=123,888), BC3 1948-1953 (N=136,699), BC4 1954-1963 (N=127,414), BC5 1964-1999 (N=133,513). 242 

The distribution of HARE superpopulations and service era descriptive statistics are shown in Tables S1 243 

and S2. In line with US military population demographic shifts, more contemporary birth cohorts 244 

included more females and members of non-European ancestry.  245 

 246 

Longitudinal Changes in Ancestry Diversity 247 

 Using PCs calculated within HARE superpopulations, observational changes are seen in the two-248 

dimensional projections of participants’ genetic diversity. Consistent with conventional expectations of 249 

two-dimensional PC space, clustering of the first two HARE PCs separates EUR, EAS, and AFR continental 250 

ancestry groups. When projected as independent birth cohorts (Figure 1), we show that over time, areas 251 

of two-dimensional feature space occupied by genetically heterogeneous individuals become more 252 

populous while continental population clusters become more heterogeneous. In other words, admixture 253 

increased over time and the younger cohorts were more genetically heterogenous than the older ones 254 

Across different projections of feature space (Figure 1), the most recent cohort (BC5 1964-1999) clearly 255 

shows a greater separation of continental groupings and a larger number of Hispanic and unclassified 256 

participants.  257 

 We compared ancestry proportions across birth cohorts. Among HARE-EUR participants, there 258 

was a decrease in GBR ancestry from oldest to most recent birth cohort while YRI and CHB ancestry 259 

proportions increased. While significant due to the large MVP sample size (FDR Q < 0.05), the effect size 260 

of these changes among HARE-EUR participants were relatively small (0.01 ≤ |Cohen’s d| ≤ 0.14; Figure 261 

2). HARE-AFR and HARE-HIS groups demonstrated similar significant changes in ancestry proportion 262 

across birth cohorts, but these differences also were relatively small. Conversely, HARE-EAS showed a 263 
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significant decrease in CHB ancestry proportion and an increase in GBR ancestry proportion across birth 264 

cohorts. The mean GBR ancestry proportion among HARE-EAS was 3.04% ± 10.2 (BC1 1904-1942), 6.17% 265 

± 14.7 (BC2 1943-1947), 7.76% ± 16.4 (BC3 1948-1953), 8.95% ± 17.0 (BC4 1954-1963), and 9.66% ± 18.1 266 

(BC5 1964-1999). These observations translate to large standardized effect sizes (1.69 ≤ |Cohen’s d| ≤ 267 

3.43). All ancestry proportions and effect sizes are shown in Table S3.  268 

 269 

Height Changes over Time 270 

 There were relatively small changes in height across birth cohorts (Table S4). Compared to the 271 

oldest birth cohort, more contemporary HARE-AFR individuals were shorter (difference in means = 0.83 272 

inches, Cohen’s d=0.23, p=4.26x10
-127

), HARE-ASN individuals were taller (difference in means = 0.96 273 

inches, Cohen’s d=0.31, p=4.84x10
-23

), HARE-EUR individuals were taller (difference in means = 0.08 274 

inches, Cohen’s d=0.03, p=2.73x10
-7

), and HARE-HIS individuals were taller (difference in means = 0.34 275 

inches, Cohen’s d=0.11, p=1.34x10
-14

). In the MVP, the change in GBR ancestry proportion between two 276 

birth cohorts, dGBR (beta=0.856, p=0.001), was a significant independent correlate of the change in 277 

height between the same two birth cohorts (dheight; Figure S1). No significant correlation was observed 278 

with respect to other ancestry proportions (p>0.05). 279 

 280 

Distribution of MVP Participants across Ancestry Groups 281 

 Using a random forest assignment of ancestry based on the high-resolution reference panel 282 

composed of the 1kGP+HGDP (N=3,284 unrelated reference individuals from 77 populations across six 283 

continental ancestries), the MVP was stratified into six distinct ancestries (Figure 3). Table 1 shows 284 

negligible differences in the numbers of European, African, and Admixed American MVP participants 285 

applying the two classification methods. Relative to HARE, the higher diversity ancestry panel applied 286 

here permitted the statistical resolution of East Asian, Central/South Asian, and Middle Eastern 287 
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ancestries. We report a 31.3% increase in the sample size of MVP participants with genetically 288 

homogeneous East Asian ancestry. Additionally, the 1kGP+HGDP-based ancestry reduced the number of 289 

unclassified individuals compared to the HARE method (4,750 vs. 9,989, respectively). 290 

 291 

Table 1. Sample size for each superpopulation of the Million Veteran Program cohort using HARE and a 292 

high-resolution ancestry panel from the 1000 Genomes Project and Human Genome Diversity Project 293 

(1kGP+HGDP).  294 

Superpopulation group 1kGP+HGDP-based Random 

Forest classification  

HARE 

 

European  459,697 464,961 

Central/South Asian 709 - 

African 123,687 123,120 

Admixed American (referred 

to as “Hispanic/HIS” by HARE) 

58,034 52,183  

East Asian (referred to as 

“Asian/ASN” by HARE) 

10,942 8,329 

Middle Eastern 763 - 

Unclassified 4,750 9,989 

Total 658,582 658,582 

 295 

GWAS of Height 296 

 We performed GWASs of height in the MVP stratified by BC, ancestry, and ancestry-assignment 297 

methods (5 BCs x 4 superpopulations x 2 superpopulation-assignment methods). Due to the lack of a 298 

HARE comparator group, height was not assessed in the 1kGP+HGDP Central/South Asian or Middle 299 

Eastern ancestries. There were no significant differences in SNP-heritability across methods (Figure S2 300 

and Tables S5 and S6). Among HARE superpopulations, 14 of 20 LDSC intercepts from GWAS of height 301 

were greater than 1.05 (HARE-EUR mean intercept=1.13±0.02, HARE-AFR mean=1.07±0.04, HARE-ASN 302 

mean=1.06±0.03, and HARE-HIS mean=1.05±0.02; Figure 4). Accounting for population stratification 303 

using the high-resolution 1kGP+HGDP ancestry reference panel reduced the LDSC intercept of 18 of 20 304 

GWAS, reflecting lower effects of confounding by population stratification on these GWAS relative to 305 
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HARE assignments. In four analyses, the LDSC intercept of height GWAS was significantly lower (p < 0.05) 306 

in the 1kGP+HGDP population relative to the HARE superpopulation assignment: EUR 1954-1963 (HARE 307 

intercept = 1.12 ± 0.017, 1kGP+HGDP intercept = 1.07 ± 0.016, pdiff = 0.033), EUR 1964-1999 (HARE 308 

intercept = 1.11 ± 0.018, 1kGP+HGDP intercept = 1.06 ± 0.016, pdiff = 0.034), EAS 1964-1999 (HARE 309 

intercept = 1.10 ± 0.010, 1kGP+HGDP intercept = 1.05 ± 0.010, pdiff = 0.003), and HIS 1943-1947 (HARE 310 

intercept = 1.07 ± 0.010, 1kGP+HGDP intercept =1.03 ± 0.010 , pdiff = 0.008). There was no difference in 311 

attenuation ratio across methods suggesting that the proportion of test statistic inflation attributable to 312 

ancestry stratification has not changed although the high-resolution reference panel accounts for this 313 

ancestry diversity significantly better than HARE assignments (Figure S3). 314 

 315 

Discussion 316 

 People of diverse backgrounds have been historically excluded from genetic studies of health 317 

and disease stemming from several social, political, ideological, scientific, and practical factors.
20

 318 

Because of this disproportionate recruitment of study participants, many efforts are now being 319 

employed to diversify genetic data collection and make better use of existing data from genetically 320 

diverse populations.
21-23

 However, accurate modeling of human genetic variation is essential for 321 

unbiased gene discovery in diverse populations.
5; 24-26

 One approach to accomplish this goal this is 322 

HARE.
3
 Using machine learning, HARE blends SIRE with genetic data to classify individuals for which 323 

these measures of identity and ancestry align. Based on the notion that self-identified race/ethnicity 324 

generally correlates with genetically determined ancestry,
3
 an individual’s HARE and SIRE are identical 325 

when SIRE is unambiguous; however, SIRE in the MVP is culturally tuned to the demographics of the 326 

United States and may not permit generalization of HARE outside genetics research in the United States. 327 

Here, we demonstrated that the use of SIRE by the HARE approach captures population dynamics that 328 

do not reflect the ancestry of the participants investigated. Most notably, we quantify a longitudinal 329 
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reduction in East Asian ancestry among HARE-ASN individuals which likely reflects (i) recent admixture in 330 

the most contemporary birth cohort that was not present in the oldest birth cohort and/or (ii) the 331 

known inclusion of South Asian participants in the HARE-ASN group.
3
 332 

 To evaluate HARE, we used a more objective comparator that did not rely on self-report at all: a 333 

different approach to cluster MVP participants according to their genetically defined ancestry with a 334 

high-resolution reference panel. In GWAS of height based on 1kGP+HGDP ancestry assignment, we 335 

identified significant reductions in LDSC intercepts when compared to intercepts obtained from the 336 

GWAS conducted using HARE superpopulation assignments. The differences were most pronounced 337 

among more recent EUR and EAS populations and may be due to longitudinal changes in ancestry 338 

proportion over the five birth cohorts spanning almost 100 years. MVP participants in HARE-EUR and 339 

HARE-EAS superpopulations who were born between 1964 and 1999 had a lower proportion of EUR 340 

ancestry than earlier birth years. These differences in recent birth cohorts likely indicate that more 341 

granular modeling is important to account for recent demographic changes that occurred in the United 342 

States. Our results highlight that genetic studies in more genetically diverse cohorts may be more 343 

confounded by population stratification when using very broad definitions of ancestry, such as HARE, 344 

and that this increased genetic diversity can be modeled better using a high-resolution ancestry 345 

reference panel.  346 

 A major pitfall to including SIRE categories is that they are based on historical population 347 

classifications that are specific to the country(s) where the recruitment and the assessment are 348 

performed. MVP SIRE information is based on the classification used by the US Census. This can be very 349 

different from those used in other countries and do not reflect the continuum of genetic diversity across 350 

human populations. The strongest example is the fact that MVP HARE classification groups together all 351 

Asian populations. In the MVP, these include individuals who identify as “Chinese,” “Japanese,” “Asian 352 

Indian,” “Other Asian,” or “Filipino,” but Asian populations are extremely heterogeneous, with the 353 
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largest genetic differences between Central/South Asia and East Asia. Another important difference is 354 

the classification of ethnicity, which is specifically related to Hispanic or Latin origin in the US census 355 

while in other countries the term “ethnicity” is a much broader concept encompassing social and 356 

cultural characteristics of human populations. Accordingly, applying the HARE approach to international 357 

settings or combining cohorts modeled using HARE assignment with others modeled with genetically 358 

inferred ancestry groups can create harmonization issues. For instance, meta-analyzing MVP HARE Asian 359 

(including Central/South and East Asian in the same population) with Biobank Japan (i.e., East Asian 360 

individuals) can lead to a reduction of statistical power. Similarly, applying the HARE assignment to the 361 

UK Biobank cohort will lead to a different classification than the ones obtained when applying HARE to 362 

the MVP cohort, because of the differences in the SIRE classification in UK and US. The 1kGP+HGDP-363 

based ancestry assignment is based only on genetic information and therefore serves as an international 364 

reference panel that can be applied for harmonized classification of cohorts recruited in different parts 365 

of the world. Indeed, our 1kGP+HGDP-based ancestry assignment perfectly overlaps with that 366 

performed by the Pan-Ancestry analysis recently done in the UK Biobank (see 367 

https://pan.ukbb.broadinstitute.org/). The consistent ancestry assignment performed in these cohorts 368 

therefore permit valid meta-analysis across two of the largest genetic data repositories in the world in a 369 

harmonized fashion. A harmonized definition of ancestry across datasets reduces heterogeneity across 370 

the meta-analyzed datasets, increasing the statistical power of the gene discovery analysis.
27; 28

 371 

However, population stratification among the recently-admixed American groups (e.g., African 372 

Americans and Latin Americans) still requires careful consideration for within-population adjustment of 373 

ancestry diversity.
4-6

 374 

 We demonstrated statistically significant improvements in the modeling of ancestry diversity in 375 

the MVP cohort, but our study has limitations to consider. First, the MVP is a unique cohort whose 376 

diversity reflects many cultural changes through US history filtered through a lens of military service. 377 
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Over the 20
th

 century, legislation and military policies gradually expanded opportunities for participation 378 

in the US military for women, people of color, and people with different sexual orientations and gender 379 

identities. Though demographics of the US military correspond broadly to similar changes in the general 380 

population of the US, it remains unclear if they are truly representative, and if our observations reflect 381 

directly comparable changes in ancestry proportions across the United States. Second, our findings rely 382 

on height as a model phenotype to investigate population stratification biases. Accordingly, the 383 

scenarios investigated may differ from those that would be seen for other phenotypes such as medical 384 

outcomes that are associated with cultural characteristics and shifts in their recognition, diagnosis, and 385 

treatment, possibly introducing additional opportunities for confounding by birth cohort. Third, our 386 

study applies a standard set of covariates to adjust for population stratification within each GWAS (e.g., 387 

10 PCs). The inclusion of additional PCs on a case-by-case basis may further reduce evidence of 388 

unaccounted-for population stratification, but this may be a costly adjustment resulting in over-389 

correction of test statistics in the GWAS model. 390 

 Despite these limitations, our study quantifies the ancestry diversity of MVP HARE 391 

superpopulations and demonstrates clear changes in ancestry proportions over time. We further 392 

demonstrate the effects of this unaccounted-for ancestry diversity on GWAS and propose one feasible 393 

approach to mitigate these effects while still boosting diversity in genetics research. These data are 394 

critical for large genetic and meta-analytic studies of health and disease.  395 
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Figures  410 

 411 

Figure 1. Observational changes in HARE superpopulation heterogeneity across birth cohort in the MVP. 412 
Each plot represents an independent birth cohort of approximately 130,000 participants. Panel (a) 413 
projects PCs 1 and 2 into two-dimensional space for each birth cohort. In panels (b) and (c), the oldest 414 
and youngest birth cohorts are projected on PC1-versus-PC3 and PC2-versus-PC3, respectively, 415 
demonstrating comparable observations when using different combinations of PCs. Clusters of 416 
participants are circled to draw attention to observational changes in population heterogeneity across 417 
birth cohort. The colors differences used to identify these regions are arbitrary but permit easy tracking 418 
of highlighted regions across plots. Abbreviations: African (AFR); Asian (ASN); European (EUR); Hispanic 419 
(HIS). 420 
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 421 

Figure 2. Statistical changes in ancestry diversity in four HARE superpopulations. Each facet per row 422 
shows the ancestry proportion for three major continental populations (CHB is an East Asian reference 423 
population of Han Chinese in Beijing, China; GBR is a European reference population from Great Britain; 424 
YRI is a West African reference population of Yoruba in Ibadan, Nigeria). Birth cohorts are shown across 425 
the x-axis and are arranged from oldest (BC1) to most recent (BC5). Black lines connecting colored bars 426 
designate significant differences in ancestry proportion between those two birth cohorts (p < 2.0x10

-4
 427 

based on five birth cohorts, five ancestry proportion references, and ten birth cohort pairwise 428 
comparisons). All proportions, specific p-values from comparisons, and HARE assignments are shown in 429 
Table S3. Abbreviations: African (AFR); Asian (ASN); European (EUR); Hispanic (HIS). 430 
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 431 

 432 

433 
Figure 3. Principal components analysis for genetic ancestry of MVP participants using the random forest434 
classifier method and the 1kGP+HGDP reference panel. Abbreviations: African (AFR), Central/South 435 
Asian (CSA), East Asian (EAS), European (EUR), Middle Eastern (MID), and Admixed American (AMR). 436 

 437 

t 
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 438 

Figure 4. LDSC intercept comparisons across GWAS of height performed in HARE superpopulations and 439 
populations assigned using a high-resolution ancestry reference panel composed of 1000 Genomes 440 
Project plus Human Genome Diversity Project individuals (1kGP+HGDP). Red asterisks indicate 441 
significant difference in intercept estimates (P < 0.05). Each GWAS was performed in unrelated 442 
participants of the indicated ancestry with age, sex, and 10 within-population principal components as 443 
covariates. Abbreviations: European (EUR); African (AFR); East Asian (EAS); Hispanic (HIS).  444 
 445 

  446 
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Supplementary Figures 538 

 539 

Figure S1. Height across birth cohorts. (A) small changes in height exist across birth cohorts in the MVP. 540 
(B) The change in height between two birth cohorts correlates with change in mean GBR ancestry 541 
proportion. Each data point is a pairwise comparison of GBR ancestry proportion within each HARE 542 
superpopulation. Abbreviations: European (EUR); African (AFR); East Asian (EAS); Hispanic (HIS). 543 
 544 
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 546 

Figure S2. SNP-heritability (h
2
) comparisons across GWAS of height performed in HARE superpopulations547 

and populations assigned using a high-resolution ancestry reference panel composed of 1000 Genomes 548 
Project plus Human Genome Diversity Project individuals (1kGP+HGDP). Each GWAS was performed in 549 
unrelated participants of the indicated ancestry with age, sex, and 10 withing-population principal 550 
components as covariates. Abbreviations: European (EUR); African (AFR); East Asian (EAS); Hispanic 551 
(HIS). 552 
 553 
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 554 

Figure S3. Attenuation ratio comparisons across GWAS of height performed in HARE superpopulations 555 
and populations assigned using a high-resolution ancestry reference panel composed of 1000 Genomes 556 
Project plus Human Genome Diversity Project individuals (1kGP+HGDP). Each GWAS was performed in 557 
unrelated participants of the indicated ancestry with age, sex, and 10 withing-population principal 558 
components as covariates. Abbreviations: European (EUR); African (AFR); East Asian (EAS); Hispanic 559 
(HIS). 560 
  561 
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Supplementary Tables 562 

Table S1. Patterns of service era per birth cohort ("Era") and across all MVP participants stratified by sex 563 

and HARE superpopulations. Each row represents a distinct pattern of service across nine service eras; 564 

the frequency of each is calculated by birth cohort and for all MVP participants. Service patterns with 565 

less than 11 participants were omitted to preserve data privacy of the participant so HARE total 566 

population sample sizes are slightly lower than those reported in Table 1. 567 

 568 

Table S2. Sample size per birth cohort derived from cumulative distribution function of year of birth. 569 

 570 

Table S3. Mean ancestry proportion of five 1kGP reference populations in all birth cohorts and HARE 571 

superpopulations. Two-sided Z-tests were used to compare the statistical difference in means between 572 

groups and the corresponding p-values reflect this difference. Standardized mean differences (Cohen's 573 

d) reflects the magnitude of effect size difference between two groups. 574 

 575 

Table S4. Comparison of height across birth cohorts in each MVP HARE superpopulations. 576 

 577 

Table S5. Metrics for GWAS of height in each ancestry per birth cohort using both methods of 578 

population assignment. Heritability (h2), LDSC intercepts, and attenuation ratios were compared across 579 

birth cohorts, within each method, using two-sided Z-tests. Multiple testing correction was applied using 580 

a false discovery rate of 5%; differences surviving multiple testing correction are highlighted in yellow. 581 

 582 

Table S6. Metrics for GWAS of height compared across method used to define superpopulations. Two-583 

sided Z-tests were used to compare heritability (h2), LDSC intercepts, and attenuation ratios between 584 
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HARE and 1kGP+HGDP superpopulation assignments. Multiple testing correction was applied using a 585 

false discovery rate of 5%. 586 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477583doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477583

