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Abstract  

Iron is essential to the virulence of Aspergillus species, and restricting iron availability is a 

critical mechanism of antimicrobial host defense. Macrophages recruited to the site of infection 

are at the crux of this process, employing multiple intersecting mechanisms to orchestrate iron 

sequestration from pathogens. To gain an integrated understanding of how this is achieved in 

invasive aspergillosis, we generated a transcriptomic time-series of the response of human 

monocyte-derived macrophages to Aspergillus and used this and the available literature to 

construct a mechanistic computational model of iron handling of macrophages during this 

infection. We found an overwhelming macrophage response beginning 2-4 hours after exposure 

to the fungus, which included upregulated transcription of iron import proteins transferrin receptor-

1, divalent metal transporter-1, and ZIP family transporters, and downregulated transcription of 

the iron exporter ferroportin. The computational model, based on a discrete dynamical systems 

framework, consisted of 21 3-state nodes, and was validated with additional experimental data 

that were not used in model generation. The model accurately captures the steady state and the 

trajectories of most of the quantitatively measured nodes. In the experimental data, we 

surprisingly found that transferrin receptor-1 upregulation preceded the induction of inflammatory 

cytokines, a feature that deviated from model predictions. Model simulations suggested that direct 

induction of TfR1 after fungal recognition, independent of the Iron Regulatory Protein - Labile Iron 

Pool system, explains this finding. We anticipate that this model will contribute to a quantitative 

understanding of iron regulation as a fundamental host defense mechanism during aspergillosis.  

 

Importance: Invasive pulmonary aspergillosis is a major cause of death among 

immunosuppressed individuals despite the best available therapy. Depriving the pathogen of iron 

is an essential component of host defense in this infection, but the mechanisms by which the host 

achieves this are complex. To understand how recruited macrophages mediate iron deprivation 

during the infection, we developed and validated a mechanistic computational model that 
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integrates the available information in the field. The insights provided by this approach can help 

in designing iron modulation therapies as anti-fungal treatments. 

 

 Keywords: Iron regulation, Aspergillus fumigatus, macrophage, mathematical model. 
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Introduction  

The incidence of invasive aspergillosis continues to grow in tandem with the increasing 

use of immunosuppressive therapies (1, 2). Despite advances in diagnosis and therapy, mortality 

of invasive aspergillosis remains 30-60%, with most deaths occurring in patients on the best 

available therapy (3–5). The increasing prevalence of triazole resistance in this infection (6, 7) 

has raised the specter of a “perfect storm” due to a growing population of susceptible individuals 

with a diminished repertoire of treatment options (8). 

 Nutritional immunity, broadly defined as the restriction of essential nutrients from invading 

pathogens (9, 10), is an important component of antimicrobial host defenses (11, 12). The battle 

over iron represents the best-defined example of nutritional immunity (13–17), and is highly 

relevant to aspergillosis: Iron overload is an independent risk factor for invasive aspergillosis (18), 

and iron acquisition is essential to virulence of Aspergillus species (19, 20). The host 

sequestration of iron during the infection is implemented via multiple inter-related dynamic 

mechanisms, including cellular uptake of iron and heme, intracellular iron storage, and systemic 

suppression of iron availability, but the interplay of these host mechanisms during the infection is 

highly complex and poorly defined.  

Mathematical modeling is a powerful tool for a principled integration of biological data and 

mechanisms, and the generation of novel hypotheses. While the response of activated 

macrophages to other lung infections has been studied using mathematical models (21–25), the 

published models do not address iron-related nutritional immunity in the setting of infection. 

Similarly, mathematical models of systemic iron regulation, macrophage iron-handling, and iron 

metabolism during erythropoiesis (26–28) are not specific to infections. Our group previously built 

a computational model of the competition of host immune cells and Aspergillus for access to iron 

during invasive infection (29), but this model did not include the intracellular handling of iron in 

macrophages in response to the infection. The focus of the current study is therefore to construct 
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such a model and use it as a tool to integrate macrophage iron homeostasis upon contact with 

the fungus. 

Here, we report the development of a novel mechanistic model of macrophage iron-

handling during aspergillosis that quantitatively captures the molecular events in macrophage iron 

regulatory pathways over time. We generated a longitudinal transcriptomics data set from human 

monocyte-derived macrophages infected with Aspergillus fumigatus conidia and used it, together 

with available information from the literature, to construct a mathematical model that integrates 

pathogen recognition, transcriptional and post-transcriptional regulation, and autocrine/paracrine 

feedback loops influencing macrophage iron import, export, and storage. We validated this model 

with independent experimental data. The model was found to reproduce the dynamic changes in 

macrophage iron handling that were observed experimentally, which work in concert to limit the 

extracellular iron pool.  

 

 

Results 

Transcriptomic analysis of macrophage-Aspergillus interaction shows activation of major innate 

immune pathways, including iron regulation.  

We began with a time series experiment to measure the transcriptional landscape of 

human monocyte-derived macrophages that were incubated alone or with A. fumigatus conidia 

over 8h. We observed a time-dependent increase in the number of differentially expressed genes 

between macrophages incubated alone as compared to those co-cultured with A. fumigatus, 

beginning 4h after incubation (Figure 1A-B), consistent with the timing of shedding of the conidial 

rodlet layer (30). Principal component analysis of normalized read counts of the top 500 

differentially expressed genes showed separation of infected and uninfected samples at 6 and 8h 

time points (Figure 1C).  
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We next performed enrichment analysis of differentially expressed genes at 4, 6, and 8h 

to obtain enriched Gene Ontology terms for biological processes, molecular functions and cellular 

components, and to identify related Reactome pathways. At 4h, we observed gene sets enriched 

for biological processes relating to phagocytosis (such as “phagosome acidification,” 

“endocytosis”, “regulation of intracellular pH”) and, notably, “transferrin transport” (Figure 2A). 

Consistent with these observations, “transferrin endocytosis and recycling” and “ROS and RNS 

production in phagocytosis” pathways were enriched for Reactome analysis at 4h (Figure 2B). 

Differential genes at 6 and 8h were enriched for Gene Ontology terms relating to multiple immune 

processes (e.g., “cellular response to lipopolysaccharides”, “response to tumor necrosis factor”, 

“cellular response to interleukin-1”, “neutrophil chemotaxis”, and “cell-cell signaling”; Figure 2B-

C) and iron transport processes (eg., “transferrin transport” and “iron transport”). Reactome 

pathways analysis further confirmed activation of immune pathways with the enrichment of “NF-

kappaB signaling pathway”, “TNF signaling pathway”, “cytokine-cytokine receptor pathway”, and 

“chemokine signaling pathway” at 6 and 8h (Figure 2E-F). We also observed that the “Iron uptake 

and transport” pathway was enriched at 8h, with 16 differentially regulated genes present in the 

pathway (Figure 2F). 

We next focused on enrichment of iron-related genes. Using Gene Ontology and 

Reactome analyses, we observed pathways operational in iron regulation, including transferrin 

transport, iron transport, TNF- and IL-1-signaling. Ingenuity Pathway Analysis also indicated that, 

out of all "iron homeostasis" network molecules present in the IPA database, 26 genes involved 

in iron import/storage/export/transport pathways were differentially expressed. Unsupervised 

clustering of average expression data of iron-related genes obtained from AmiGO-2 revealed 

markedly different expression patterns for the 4, 6, and 8h infected culture groups, as compared 

to control and 2h infected samples (Figure 3). Overall, these data indicated early and robust 

activation of iron regulatory mechanisms in macrophages after fungal detection.  
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Mathematical model of iron regulation in macrophages 

We next integrated the RNA-seq results above with known biology to construct a 

mathematical model of iron regulation in monocyte-derived macrophages during an encounter 

with Aspergillus conidia. We reviewed the literature on each of the iron-related genes identified in 

our data and assessed their relevance to iron regulation and handling during fungal infections. 

We then established a set of molecules to include in the model (Table 1), based on our data and 

known literature (described below and depicted in Figure 4A). These molecules were incorporated 

into a static network (Figure 4B), which formed the basis for a discrete dynamical model, with 

each node in the model taking on three possible discrete states: 0, 1, 2. Hence, a model state is 

described as a vector of length 21 (the number of variables in the model), with entries 0, 1, or 2, 

representing different levels of each molecule. From a given initial state, the model evolves in 

discrete time steps by applying the regulatory rules in Table 2.  

Macrophages recognize fungal pathogen-associated molecular patterns via surface 

pathogen-recognition receptors (31–34), leading to the production and secretion of TNF and IL-6 

(33, 35). We represent this recognition by the presence of FUNGUS and activation of SIGNAL 

(Figure 4B). IL-6 induces the synthesis of hepcidin in the liver, a key iron regulatory hormone that 

is highly sensitive to systemic iron levels and, independently, inflammation (15, 36). TNF induces 

transcription of ferritin heavy chain-1 (FTH1), DMT1, and Zip14 via an autocrine/paracrine loop 

(37–41). Iron export occurs via the membrane protein ferroportin (42). Extracellular hepcidin binds 

to membrane ferroportin, mediating its internalization and subsequent proteolysis in endosomes, 

thereby lowering the efflux of iron to the extracellular environment (43, 44). We did not implement 

hepcidin production by macrophages in the model, because the effect has been reported to be 

comparatively negligible (45).  

We incorporated three forms of extracellular iron import: Transferrin-bound iron (Fe3+), 

free labile iron (Fe2+), and heme-associated iron. The extracellular labile iron concentration will be 

exceedingly low (46), and is therefore not included. The concentrations of Fe3+, Fe2+, and heme-
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associated iron serve as external inputs, i.e., they are not regulated by other components of the 

model. Transferrin, the principal extracellular iron transport protein, binds ferric iron ions with high 

affinity and is internalized by receptor-mediated endocytosis via the transferrin receptor (47–50). 

Iron molecules then dissociate from transferrin and are shuttled into the cytosolic labile iron pool 

by endosomal membrane DMT1 (51). Similarly, labile iron can be taken up by the membrane 

proteins DMT1 or Zip14 from the extracellular environment and imported into the cytoplasm (40, 

41, 52–55). With catabolism of hemoglobin (cell-free hemoglobin, resulting from infection-induced 

hemorrhage), there will be an increase in free iron and heme-bound iron (55–57). Free heme is 

complexed to hemopexin and taken up via CD91 (58, 59). We have represented this source of 

heme-associated iron as exHEME. Once imported, heme iron is converted to free iron by heme 

oxygenase-1 (HO1) and added to the labile iron pool, a redox-active form of iron present in the 

cytosolic environment (60, 61). 

Excess iron in the cytosol is stored in ferritin, a 24-mer protein composed of light- and 

heavy-chain subunits (L- and H-ferritin, respectively) (62, 63). H-ferritin is also a ferroxidase 

enzyme, mediating the oxidation of ferrous to ferric iron for storage, and L-ferritin is important in 

the nucleation of ferric iron (64–66). We modeled FTH1 because it is transcriptionally regulated 

by inflammatory signals (39, 67). Cytosolic iron can also be bound by 2,5-dihydroxybenzoic acid 

(DHBA) molecules, also known as the mammalian siderophore (68, 69), represented in the model 

by BDH2, the enzyme that catalyzes the formation of 2,5-DHBA (69). The iron regulatory protein-

1 regulates the intracellular labile iron pool by binding to iron responsive elements (IRE) of the 

untranslated 3’ and 5’ regions of mRNA of TfR1, DMT1, FPN, FTH1, and BDH2, thereby 

modulating the translation of iron storage, importer, and exporter proteins (68, 70–73): under low 

intracellular iron conditions, IRP1-IRE binding activity is high, inhibiting the translation of ferritins 

and FPN, and promoting the translation of TfR1, DMT1, and BDH2, with the opposite effect under 

iron-replete conditions (68, 71, 74). 
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Computational model captures macrophage behavior during infection.  

We next used the computational model to simulate macrophage behavior under 

uninfected conditions. The external input parameters of the model were fixed to normal values of 

1, and model dynamics were explored through complete enumeration of all state transitions. The 

first row of Figure 5 shows that the model reached a steady state, corresponding to a 

physiologically normal state. To test the model behavior under infection, we next simulated the 

presence of A. fumigatus (FUNGUS=Present). This resulted in macrophage-activated intracellular 

signaling pathways and the production of IL6, TNF, hepcidin, FTH1, Zip14, and DMT1. During 

infection, the model predicted low FPN transcription, membrane FPN, and the intracellular labile 

iron pool (LIP) in the steady state. Model simulation of an infected macrophage, in the presence 

of high iron, showed activation of HO1, in addition to the other iron regulatory molecules (Figure 

5). HO1 catalyzes heme to ferrous iron, which adds to the intracellular labile iron pool (75–78), 

and is subsequently stored with ferritin.  

 

Validation of the computational model 

Model simulation showed that, for each of the three conditions we consider, uninfected, 

infected, and infected with high iron levels, the model reaches a distinct steady state. We 

experimentally validated the model and its dynamic behavior in two ways. First, we used the 

temporal evolution as exhibited by the RNA-seq data set described above, which was not used 

for model construction. There, we had only used a differential expression analysis over the entire 

time course. We compared the steady states obtained from model simulation with the 

experimental data at 8h (Figure 6A), and second, we compared the model trajectory to the 

temporal dynamics of our longitudinal transcriptomic datasets (Figure 6B-D).  

The model includes 11 intracellular nodes that are measurable at the transcription level, 

namely TNF, IL6, Zip14, TfR1, DMT1, FTH1, BDH2, IRP1, HO1, NRF2, and FPN. We found that 

the model steady state matched the experimental data for all nodes, with the exception of BDH2 
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and FTH1 (Figure 6A). BDH2 simulation shows increased expression whereas the experimental 

data shows decreased expression, as previously reported in (79). This suggests that the model 

does not accurately capture BDH2 regulation, and that BDH2 is likely regulated by mechanisms 

independent of the known IRP regulation. 

The model trajectory (Figure 6B) matched the experimental data from the RNA-seq 

dataset (Figure 6C) for 10 of 12 nodes: The induction of IL6 and NRF2 were observed in the 

simulation in earlier time steps and remained elevated until the steady state was reached, and 

both were differentially expressed from 4-8h in the experiment. Similarly, the iron importers DMT1 

and Zip14 were activated at early stages in model simulations, and differentially upregulated from 

4-8h in our experiment, suggesting induction of the iron import pathway post fungal recognition. 

Iron export, on the other hand, was inhibited upon the onset of infection in both simulation and in 

experimental data. The model indicated that membrane FPN is degraded at earlier time points 

whereas cytoplasmic FPN downregulation starts at later time steps in the simulation, suggesting 

that hepcidin regulation of FPN occurs prior to transcriptional regulation of FPN (Figure 6B). 

Concurring with the simulation data, measured FPN transcripts (cytFPN) also showed 

downregulation only at 8h in the experiment (Figure 6C). We also simulated molecules relevant 

to iron storage and chelation, ferritin and BDH2, respectively (Figure 6B). We observed a slight 

change in FTH1 expression with no statistical significance and no change in FTL expression 

(Figure 6C).  

As a second step, experimental validation for these model predictions was performed on 

Aspergillus-infected macrophages using qRT-PCR (Figure 6D). These measurements matched 

the model trajectory (Figure 6B) for 8 out of 10 measured nodes and matched longitudinal 

transcriptome data (Figure 6C) for all nodes.   

 

Mathematical modeling suggests macrophage iron regulatory responses precede, and are 

independent of, generation of inflammatory cytokines. 
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Mechanistic modeling can be used to assess whether known biology adequately accounts 

for observed behaviors. In our experimental data, we noted that the model accurately predicted 

the steady-state and temporal trajectory of TNF production, but while the model correctly 

predicted the steady-state TfR1 expression, it did not predict its trajectory correctly: In both the 

RNA-seq and qRT-PCR datasets, the upregulation of TfR1 occurred at 2-4h, preceding that of 

TNF at 8h, whereas the model predicted activation of TfR1 after the activation of IRP, indicating 

that the mechanisms incorporated into the model are not complete.  

 To assess this discordance, we tested different modifications of the model that would 

capture the trajectory of TfR1 expression matching the experimental observations. During fungal 

infections, nitric oxide has been reported to regulate TfR1, but our experimental data did not show 

expression of the iNOS gene, which is required for NO production in macrophages (80). We found 

that the only modification in the model that resulted in a steady state that reflected expected 

macrophage behavior during infection while maintaining all other trajectories and steady states 

was an additional regulation of TfR1 directly by the fungal node SIGNAL. With this modification, 

the model captures the observed phenotypic behavior in the experimental data. While TNF is one 

of the main cytokines operational in iron regulation during infection, early activation of TfR1, 

independent of IRP, suggests a separate activation pathway for enhancing iron import. The 

phenomenological regulation from SIGNAL to TfR1 suggests that further study of TfR1 regulation 

is needed to understand the mechanism of TfR1 induction during infection.  

 

 

Discussion 

 Multicellular hosts have evolved an evolutionarily ancient system of iron regulation in order 

to deprive invading pathogens of this essential nutrient: in response to diverse inflammatory and 

infectious stimuli, this system mediates iron sequestration within macrophages, a precipitous fall 

in plasma iron, plasma transferrin and transferrin saturation, and increase in plasma ferritin (10). 
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Monocyte-derived macrophages recruited to the site of infection are at the crux of this system, 

controlling both the intra- and extra-cellular iron availability via modulation of iron import, storage, 

and export mechanisms, in response to a combination of signals from iron availability, pathogen 

recognition, inflammatory cytokines, and systemic hormones. These processes are intricately 

interdependent and are thus difficult to study in isolation, but can be integrated and understood 

using mechanistic computational modeling. We integrated the existing literature on macrophage 

iron control during fungal infection and transcriptional data obtained from co-culturing human 

monocyte-derived macrophages with fungal cells to develop such a model as related to 

aspergillosis.  

The differential gene expression analysis of macrophages co-cultured with A. fumigatus 

revealed a transcriptional response that began between 2 and 4h after exposure to the fungus, 

consistent with prior work (81–84). Activated genes included those related to iron transport, 

storage, binding, and reductases, indicating the activation of iron regulatory mechanisms. In our 

experimental system, Aspergillus had access only to the small concentration of iron contained in 

the culture media and intracellular iron of killed macrophages. Analogously, inhaled Aspergillus 

conidia only have access to the iron-poor alveolar fluid and iron released from necrotic cells (85). 

But as the infection progresses, Aspergillus gains access to iron from tissue hemorrhage and 

hemoglobin catabolism in the host – a circumstance not represented in the experimental co-

culture system, which models only the first 8h of the infection. Our model simulations were 

validated with experimental data and reflect the expected biology of Aspergillus-infected 

macrophages under different extracellular iron levels. 

 Macrophages can sequester iron via three mechanisms: increased iron import, increased 

iron storage, and decreased iron export. Regulation of iron export from macrophages (as well as 

duodenal enterocytes), mediated by the hepcidin-ferroportin axis, has been extensively 

documented in the literature in the context of normal iron homeostasis and during infections (86, 

87). Our model shows that upregulation of iron importers in response to fungal detection plays an 
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essential role in macrophage iron sequestration during infection, independent of iron export. The 

induction of transferrin receptor-1 and DMT1 in the experimental data validated this finding. In 

this context, iron regulation in macrophages was previously studied with a co-culture experiment 

of a RAW264.7 immortalized murine macrophage cell line (88). These cells showed an induction 

of ferritin, and a reduction of ferroportin expression after 7h of co-culture, but no change in TfR1 

expression. The discrepancy between our findings and these results is likely due to differences 

between the murine cell line and primary human monocyte-derived macrophages, particularly the 

fact that RAW264.7 cells, derived from Balb/c mice, carry a homozygous non-functional NRAMP1 

mutation, blocking iron shuttling between the phagosome and cytosol and impairing their iron 

homeostasis (89, 90). 

Infection has been shown to result in reduction of extracellular iron to extremely low 

concentrations and in sequestration of iron inside macrophages (91–93). Our model simulation 

suggests that during infection, regardless of extracellular iron levels, the intracellular iron is stored 

by ferritin (Figure 5 and supplemental Figure 3). Our experimental data (Figure 6C-D), however, 

showed a small upregulation of FTH1 and no change in FTL. Of note, the baseline expression of 

FTH1 in both the infected and uninfected conditions was high, and we speculate that a slight 

upregulation in expression is enough to store a large quantity of iron, since one ferritin molecule 

can store up to 4500 iron ions (94). The model also elucidates the interplay between immune 

activation and the IRP-LIP axis of iron regulation: In Figure 5, the model indicated that normal 

iron-homeostasis under physiologic conditions is perturbed during infection, with high expression 

of DMT1, Zip14, TfR1, and ferritin mediated by inflammatory signals – IL6 and TNF – and 

independently of the IRP-LIP axis, resulting in augmented uptake and storage of iron in 

macrophages during infection. Consistent with this model prediction, the overriding influence of 

pro-inflammatory cytokines on iron regulation has been reported in other disease models. During 

inflammation in neuronal cells, the IL-6/JAK2/STAT3 pathway overrides iron homeostasis by 

dysregulation of hepcidin expression (95). In a study of the human monocytic cell line U937, TNF, 
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IFN-ɑ, and IL-1β modulate iron metabolism by affecting macrophage iron uptake, TfR1 

expression, intracellular iron handling, and ferritin mRNA levels (96).  

Our computational model allowed us to capture the steady states of most model 

constituent molecules. Further analysis, however, indicated that the model did not capture some 

of the experimental observations. In particular, it did not capture the surprising biological 

observation of the activation of TfR1 at an earlier time point than TNF, both in the RNA-seq 

experiment and qRT-PCR. We modified the model to capture this feature through the inclusion of 

a hypothetical mechanism that activated TfR1 from a fungal signal. With this modification, the 

model agreed with the experimental data, suggesting a new hypothesis of TfR1 activation by an 

unknown molecule upstream of TNF. The transcriptional and post-transcriptional regulation of 

TfR1 by cellular iron deficiency and hypoxia, via the HIF-HRE and the IRP-IRE systems, is well-

described (97), but its direct regulation by infectious stimuli has not, to our knowledge, been 

documented. Interestingly, TfR1 has been shown to localize to the early endosome of 

macrophages within minutes after phagocytosis of Aspergillus conidia (98), a timeline consistent 

with our experimental results and revised model predictions on the transcriptional activation of 

TfR1.  

We recognize several limitations of our work: First, our computational model is based on 

data both from the literature and an in vitro co-culture system. It is likely that some aspects of 

macrophage behavior during the infection, such as extracellular signals relevant to iron regulation, 

are not captured by an in vitro experimental system. Second, the data we collected from the 

experimental co-culture system is limited to transcriptional changes, thus not capturing events 

such as protein phosphorylation or translocation. Both are partially addressed by supplementing 

the experimental data with extensive data from the literature. Third, the present work only pertains 

to the behavior of monocyte-derived macrophages recruited to the site of infection and does not 

capture the behavior of other cells (for example, alveolar macrophages and epithelial cells) 
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relevant to iron handling during aspergillosis – and, as such, represents only part of the complex 

landscape of iron regulation during aspergillosis.  

The current work has several implications for future studies, including suggesting several 

hypotheses for further exploration: First, as noted above, the mechanisms by which TfR1 is 

induced in macrophages independent of inflammatory cytokines, and the relevance of this 

induction to antifungal host defenses, are of interest. Second, the model simulation of BDH2 

predicted an increased expression at the steady state due to its regulation by IRP, whereas 

experimental data showed BDH2 to be downregulated during infection (Figure 6C-D), suggesting 

that the known biology of regulation of BDH2 – and, by extrapolation, the role of the mammalian 

siderophore 2,5-DHBA – during fungal infection is incomplete. Third, the model that we have 

generated may be useful for predicting outcomes of iron-centered therapeutics, such as 

pharmacologic iron chelation (15, 99), by providing a better understanding of tissue macrophage 

iron handling during invasive aspergillosis. Finally, the current model can be incorporated into a 

multiscale computational model that incorporates the responses of other cell types with the 

fungus, synthesizing the available data in a systematic way and serving as an in silico laboratory. 

 

 

Materials and Methods 

Ethics statement 

This study was conducted in accordance with the Declaration of Helsinki under a protocol 

approved by University of Florida Institutional Review Board. 

 

Fungal culture and harvest 

Aspergillus fumigatus strain 13073 (American Type Culture Collection, Manassas, 

Virginia) was cultured on Sabouraud’s dextrose agar plates at 37°C for 14 days. Conidia were 
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collected in PBS containing 0.1% Tween-80, filtered through sterile gauze, centrifuged at 700g, 

and resuspended in PBS, and concentration determined under a hemacytometer.  

 

Monocyte isolation, culture, and RNA extraction 

Buffy coats from healthy volunteers (ages 21-78, 3 male and 3 female) were purchased 

(LifeSouth Community Blood Center, Gainesville, Florida). Mononuclear cells were isolated using 

Ficoll gradients and stored at -80°C degrees. CD14+ CD16- monocytes were isolated using 

magnetic negative selection (EasySep Human Monocyte Isolation Kit, StemCell Technologies, 

Cambridge, Massachusetts) and differentiated into macrophages by culture in  RPMI 1640 

(Lonza, Morristown, NJ) supplemented with 2mM L-glutamine, 1mM Sodium Pyruvate Solution, 

0.1mM nonessential amino-acids, 1% penicillin-streptomycin, 10% fetal bovine serum (Hyclone, 

Logan, UT), and 10ng/mL recombinant human macrophage colony-stimulating factor (Peprotech, 

East Windsor NJ) for 7 days. Flow cytometry was used to assess the purity of macrophages after 

7 days of culture were assessed by flow cytometry (Supplemental Figure 1), according to a 

previously published protocol (100), using antibodies against CD68-BV711 (clone Y1/82A) and 

CD163-FITC (clone GHI/61), purchased from BD Biosciences (San Jose, California). 

Macrophages were co-cultured with Aspergillus conidia at a 1:1 ratio. At the beginning of the co-

culture (time 0) and after 2, 4, 6, and 8h, cells were lysed (RLT buffer, Qiagen, Valencia, 

California) and RNA was extracted (RNeasy Plus mini kit, Qiagen) following the manufacturer’s 

instructions.  

 

RNA-seq library preparation, sequencing, and analysis 

RNA-seq libraries were prepared and sequenced at the Jackson Laboratory for Genomic 

Medicine. Libraries were generated with KAPA-Stranded mRNA-seq kit (Roche Sequencing, 

Wilmington, Massachusetts) according to manufacturer’s instructions. Briefly, poly-A RNA was 

isolated from 300ng total RNA using oligo-dT magnetic beads. Purified RNA was then fragmented 
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at 85°C for 6 mins, targeting fragments ranging 250-300bp. Fragmented RNA was reverse 

transcribed with an incubation of 25°C for 10 minutes, 42°C for 15 minutes and an inactivation 

step at 70°C for 15 minutes, followed by second strand synthesis at 16°C for 60mins. Double 

stranded cDNA fragments were purified using Ampure XP beads (Beckman Coulter Life Sciences, 

Indianapolis, Indiana). The dscDNA were then A-tailed, and ligated with Illumina unique adaptors 

(Illumina, San Diego, California). Adaptor-ligated DNA was purified using Ampure XP beads, 10 

cycles of PCR amplification, and impurities were eliminated (Ampure XP beads, Beckman 

Coulter). RNA sequencing was performed on a HiSeq 4000 instrument (Illumina).  

The sequenced raw RNA-seq reads were processed to generate read counts for 

alignment. In brief, the reads were checked for quality control using FASTQC v0.11.8 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/), and trimmed using Trimmomatic v0.39 

using LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 and a predefined adapter list 

to be clipped from reads (101). FastQC and Trimmomatic were repeated until desired reads were 

obtained. MultiQC v1.7 was used to combine individual FastQC results for visualization (102). 

The trimmed reads were then aligned to the Ensembl GRCh38v96 reference genome using STAR 

v2.7.2b, and Qualimap v2.2.1 was used to check the quality of alignment (103, 104). Read-count 

matrix was created by using the column with reads for reverse strandedness (i.e. column 4) from 

readspergene.tab STAR output files. Samples from one donor were excluded from further 

analysis based on principal component analysis (PCA) performed on all samples, showing that 

this donor’s cells whether incubated alone or with conidia, formed a separate cluster from all other 

samples, with high biological variation (PC1 38%) relative to other donors and little response (PC2 

20%) to the fungus (Supplemental Figure 2). PCA was performed on the top 500 variable genes 

in the datasets using the “prcomp()” function in R. Only genes expressed at 10 read counts or 

higher in at least 5 samples were processed further for differential expression analysis. DESeq 2 

v1.24.0 was used to compute differentially expressed genes. The design matrix was created with 

5 donors, 1 baseline, and 4 timepoints for control and co-culture groups each. Pairwise 
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comparisons with Wald test (alpha=0.05) were performed for differential expression analysis. For 

computational validation of the model using RNA-seq data, RNA-seq read-counts were 

normalized by the library size and a value of 0.5 was added to the normalized counts to generate 

pseudo counts, which were then transformed with a Log2 scale. Log scaled reads are plotted 

against time and actual raw read counts, and the line was fitted with loess regression. 

Gene Ontology analysis (105, 106) and Reactome (107) enrichment analysis was 

performed using the clusterProfiler (108, 109) package in R. These analyses were performed with 

top differentially expressed genes (adjusted p value <0.001 and |Log 2-Fold Change| >= 0.5) 

against Homo sapiens background separately for each time point. Gene Ontology terms and 

Reactome pathways at Benjamini-Hochberg-adjusted p values < 0.05 threshold were considered 

enriched. Ingenuity Pathway Analysis (www.qiagenbio- informatics.com/products/ingenuity-

pathway-analysis) was performed to evaluate differentially expressed genes involved in major 

immune pathways in macrophages with the differentially expressed gene set (4h, 6h, 8h 

combined). To identify genes involved in iron regulation, we obtained “genes and gene 

predictions” from AmiGO2 (110) (amigo.geneontology.org/amigo), selecting “iron”.  

 

Quantitative reverse-transcription PCR   

Macrophages were generated and co-incubated with Aspergillus as detailed above. After 

the incubation period, cells were suspended in RLT buffer (Qiagen, Valencia, CA), homogenized, 

passed through Qiashredder (Qiagen), and total RNA extracted using the RNAeasy mini kit 

(Qiagen) following the manufacturer’s instructions. Then, 1-0.2 μg of RNA was used to synthesize 

cDNA using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA). The cDNA template was 

mixed with iTAQ SYBR green universal super mix (Bio-Rad), and quantitative PCR was carried 

out on a CFX Connect system (Bio-Rad). Pre-designed human gene primers were purchased 

from Bio-Rad (supplemental Table). Human PPIA was amplified in parallel and used as the 
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reference gene in quantification. Data are expressed as relative gene expression and were 

calculated using the 2!""#$ method. 

 

Mathematical model formulation and simulation 

From the AmiGO2 database, known iron-related genes were extracted. Only differentially 

expressed iron genes from our transcriptional analysis from this list were taken into further 

consideration. A select few molecules that were not detected as differentially regulated in our 

transcriptional analysis but are reported as important in macrophage iron regulation in the 

literature were also considered. We reviewed literature on these molecules and built a static 

network depicting the relationship (regulatory edges of the network) between the molecules 

(nodes of the network) in Figure 4B. The static network is the basis for a time- and state-discrete 

dynamic model, with each node taking on three possible states: 0 (low), 1 (medium), 2 (high). We 

constructed transition functions encoding regulation of nodes and their evolution in discrete time 

steps (Table 2). Simulation code, in Python 3, is available at 

https://github.com/NutritionalLungImmunity/NLI_macrophage_iron_regulation. This model was 

our key discovery tool.  

A possible model artifact is a variable change of more than one level per time step, e.g., 

from low to high without passing through medium. To avoid this, we applied a standard correction 

that forces this “continuity” property (111), which is known to not affect model features relevant to 

this study.  

 

Statistical analyses 

Statistical analyses of RNA-seq data are described above. Other data were analyzed 

using the Prism software package (version 9.2.0, GraphPad Software, San Diego, California). 

The area-proportional Euler diagram was generated with EulerAPE (version 3.0.0; open source, 
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http://www.eulerdiagrams.org/eulerAPE/). Comparisons of two groups over time or range of 

inocula was achieved using two-way ANOVA with Sidak multiple comparison test. A p value of 

<0.05 was considered statistically significant. In multiple comparison tests, multiplicity adjusted p 

values are reported. 
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Table 1: Biological description of variables and their possible states in the computational model. 

Extracellular, membrane, cytoplasm and intracellular molecules are indicated by ex-, mem-, cyt- 

and in- prefixes, respectively. 

 

Node Name Type Location Model States 

0 1 2 

BDH2 3-hydroxybutyrate 
dehydrogenase-2 

Protein Intracellula
r 

Low 
expression 

Normal High 
expression 

cytFPN Cytoplasmic 
ferroportin 

RNA Intracellula
r 

Low 
expression 

Normal High 
expression 

DMT1  Divalent metal 
transporter-1 

Protein, 
Importer 

Membrane Low activity Normal High activity 

exIL6 Interleukin-6 Cytokine Extracellul
ar 

Low 
expression 

Normal High 
expression 

exHeme  Heme Compound
, Molecule  

Extracellul
ar 

Low 
concentratio
n 

Normal High 
concentratio
n 

exTNF Tumor necrosis 
factor 

Cytokine Extracellul
ar 

Low 
expression 

Normal High 
expression 

 Fe2+  Labile ferrous iron 
ions 

Ion Extracellul
ar 

Low 
concentratio
n 

Normal High 
concentratio
n 

Fe3+  Transferrin-bound 
ferric iron ions 

Ion Extracellul
ar 

Low 
concentratio
n 

Normal High 
concentratio
n 

FTH1 Ferritin heavy 
chain 

Protein Intracellula
r 

Low 
expression 

Normal High 
expression 

FUNGUS A. fumigatus Pathogen Extracellul
ar 

Absent Presen
t 

Present 

HAMP Hepcidin Protein Extracellul
ar 

Low 
concentratio
n 

Normal High 
concentratio
n 
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HO1 Heme 
oxygenase-1 

Enzyme Intracellula
r 

Low 
expression 

Normal High 
expression 

inIL6 Interleukin-6 Cytokine Intracellula
r 

Low 
expression 

Normal High 
expression 

inTNF Tumor necrosis 
factor 

Cytokine Intracellula
r 

Low 
expression 

Normal High 
expression 

IRP1 Iron regulatory 
protein  

Protein Intracellula
r 

Low activity Normal High activity 

LIP Labile iron pool Molecules Intracellula
r 

Low 
concentratio
n 

Normal High 
concentratio
n 

memFPN Membrane-bound 
ferroportin 

Protein, 
Exporter 

Membrane Low 
expression 

Normal High 
expression 

Nrf2 Nuclear factor 
erythroid factor 2-
related factor 2  

Transcripti
on factor 

Intracellula
r 

Low 
concentratio
n 

Normal High 
concentratio
n 

TfR1 Transferrin 
receptor-1 

Protein, 
Importer 

Membrane Low activity 
 

Normal High activity 

SIGNAL PAMP signaling 
after recognition 
of pathogen 

Pathway Intracellula
r 

Low activity High 
activity  

High activity 

Zip14  Zrt- and Irt-like 
protein-14 

Protein, 
Importer 

Membrane Low activity Normal High activity 
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Table 2: Update rules of model species and supporting literature citations. Continuity 

function accounts for the previous state of the target molecule when changing the state of the 

target molecule from a high to low level. Extracellular, membrane, cytoplasm and intracellular 

molecules are indicated by ex-, mem-, cyt- and in- prefixes, respectively. min, minimum; max, 

maximum; cont, continuity function.  

 

Target  Update Rules Description 

BDH2  IRP  BDH2 has an IRE motif on its 
3' end. This interaction can 
lead to stabilization and 
increase in BDH2 (68). 

cytFPN cont(not(IRP1)) IRP1 can bind to the IRE 
present on the 5' of 
ferroportin RNA inhibiting the 
translation of FPN (112). 

DMT1  max(cont(exTNF), 
cont(IRP1)) 

TNF induces the expression 
of DMT1 during infection, and 
DMT1 has an IRE element on 
3'end of its mRNA (37, 113). 

exIL6 cont(inIL6) IL6 is secreted into the 
extracellular environment 
(114). 

exHeme  External Parameter  

exTNF cont(inTNF) TNF is secreted into the 
extracellular environment 
(114). 

Fe2+  External Parameter  

Fe3+  External Parameter  

FTH1 max(cont(exTNF), 
cont(not(IRP)))  

TNF induces the expression 
of FTH1, and FTH1 has an 
IRE element on the 5' end of 
its mRNA for IRP regulation 
(37, 112, 115). 

FUNGUS Source Node  

HAMP cont(exIL6)  Hepcidin is produced by the 
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liver in response to the IL-6 
(36, 87).  

HO1 min(exHEME, cont(Nrf2)) Heme and NRF2 can activate 
expression of HO1 (116, 
117). 

inIL6 SIGNAL IL6 is produced in response 
to fungus (31–33, 118, 119). 

inTNF SIGNAL TNF is produced in response 
to fungus (32, 33, 35, 118, 
119). 

IRP1 cont(not(LIP)) IRE-binding activity of IRP1 is 
high in iron-deplete 
conditions (120). 

LIP cont(min(max(min(Fe3+, 
TfR1), min(Fe2+, DMT1, 
Zip14), 
HO1),min(not(memFPN), 
not(BDH2), not(FTH1))) 

Import of transferrin-bound 
iron, free iron, and heme-iron 
increases intracellular iron. 
Storage of iron in ferritin, 
export of iron through 
ferroportin, and sequestration 
of iron by BDH2 decrease the 
labile iron pool in the cytosol 
(44).  

memFPN min(cont(cytFPN), 
not(HAMP))  

Translated ferroportin locates 
to cell membranes. 
Membrane ferroportin can be 
targeted by hepcidin for 
degradation (43).  

Nrf2 SIGNAL NRF2 is produced in 
response to fungal beta-
glucan (116). 

TfR1 max(cont(IRP1), SIGNAL) IRP1 stabilizes TfR1 mRNA 
by binding to the IRE element 
on the 3’ end of its mRNA 
thereby increasing total TfR1 
(71, 121, 122). 

SIGNAL SIGNAL = low  
if FUNGUS =0,  
else SIGNAL = high 

SIGNAL represents the 
activation of macrophages by 
the fungus (31). 

Zip14 cont(exTNF) TNF induces expression of 
Zip14 (37). 
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Figures and figure legends: 

 

 

 

Figure 1. Differential expression analysis of macrophages infected with Aspergillus. A-B: 

Volcano plots! "#$! %&'()! $*"+)",! -.! +(#(/! 0*12! 345.-'$! $*..()(#1*"'! (67)(//*-#! *#! *#.(81($! "/!

8-,7")($! 1-!&#*#.(81($!,"8)-72"+(/!0*12!"$9&/1($!p value < 0.001. C: Principal component 

analysis plots of read counts of differentially expressed genes at each timepoint, after variance 

stabilizing transformation. Open and filled symbols indicate uninfected and infected cells, 

respectively, and the color of symbols denotes the donor.  
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Figure 2. Enrichment analysis of differentially expressed genes in macrophages infected 

with Aspergillus. GO terms (A-C) and Reactome pathways (D-F) at 4, 6, and 8h after infection, 

respectively. Enrichment analysis was performed with differentially expressed genes (adjusted p 

value <0.001 and |Log25.-'$! 82"#+(:! 3! ;<=><! %nriched terms for Gene ontology (top 20 for 
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biological processes, and top 5 for cellular components and molecular functions) and Reactome 

pathways (top 20) are reported. Cell. comp., cellular component; Molec. funct., molecular function.   
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Figure 3. Heatmap of differentially regulated iron-associated genes after unsupervised 

clustering. Heatmap showing treatment groups on the x-axis and differentially regulated iron-

associated genes with a |Log25.-'$!82"#+(:!3!?!-#!12(!@5"6*/<!%"82!8(''!)(7)(/(#1/!12(!median 

expression value of 5 biological replicates after variance stabilizing transformation on size factor 

normalized count data. 
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Figure 4. Computational model. A. Diagrammatic representation of key processes in iron 

regulation in macrophages during invasive pulmonary aspergillosis. B: Wiring diagram of 
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macrophage iron regulation during invasive pulmonary aspergillosis. Pointed arrows represent 

activation and blunt arrows represent inhibition. Some arrows are colored for better visualization. 

Extracellular, membrane, cytoplasm and intracellular molecules are indicated by ex-, mem-, cyt- 

and in- prefixes. BDH2, 3-hydroxybutyrate dehydrogenase-2; DMT1, divalent metal transporter-

1; Fe2+, ferrous iron forms; Fe3+, ferric iron forms; FPN, ferroportin; FTH1, ferritin heavy-chain-1; 

HAMP, hepcidin; HO1, heme oxygenase-1; IL6, interleukin-6; LIP, labile iron pool; IRP1, iron-

regulatory protein-1; PAMP, pathogen-associated molecular pattern; TfR1, transferrin receptor-1; 

TNF, tumor necrosis factor; Zip14, zinc transporter-14. A-B, Created with BioRender.com.  
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Figure 5. Different states of the computation model. A: Steady state simulations for the model 

under the conditions defined in Table 1 – uninfected macrophages in normal extracellular iron 

condition, infected macrophages in normal extracellular iron condition, and infected macrophages 

in high extracellular iron condition. 0, low; 1, medium/normal; 2, high.  
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Figure 6. Validation of the computational model. A.  Simulated steady states for infected 

macrophages under normal extracellular iron level and the RNA-seq data at 8h. Top row shows 

model output under conditions of exposure to the fungus and normal extracellular iron. Bottom 

row shows RNA-seq data discretized based on differential expression. B. Simulated time-series 

of the model output under conditions of exposure to the fungus and absent extracellular iron. C: 

RNA-seq experimental data was obtained from macrophage-Aspergillus co-cultures without 

external iron source. Read-counts were normalized by the library size and a value of 0.5 was 

added to the normalized counts to generate pseudo counts, which were then transformed with a 

Log2 scale. Log-scaled reads are plotted against time and actual raw read counts, and the line 

was fitted with loess regression. Counts were plotted using DESeq2 function plotCounts() method. 

*, p value < 0.05, and the line was fitted to the data with loess regression. D. Mean and SEM of 
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qRT-PCR measurements from macrophages infected with Aspergillus. 0, down-regulated; 1, no 

change; 2, up-regulated.  *, p value < 0.05; dotted lines, macrophage:fungus co-culture group; 

solid lines, control macrophage culture group. 
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Supplemental Table:  PCR primer sequences used in the study.  

Gene Unique Assay ID  (BioRad Prime PCR) 

BDH2 qHSACED0046162 

FtH1 qHsaCED0038139 

FTL qHsaCED0057482 

IL-6 qHsaCED0044677 

PPIA qHsaCED0038620 

Slc11a2 qHsaCID0012864 

Slc39a8 qHsaCID0008870 

Slc39a14 qHsaCED0002314 

Slc40a1 qHsaCED0005662 

Tfr1 qHsaCID0022106 

TNF qHsaCED0037461 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2022.01.24.477648doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477648
http://creativecommons.org/licenses/by/4.0/


 

50 
 

 

 

 

 

Supplemental Figure 1: Representative flow cytometry plots showing purity of macrophages 

after culture for 7 days. 
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Supplemental Figure 2: Principal component analysis plot of read counts after variance 

stabilizing transformation. Conditions are denoted by symbol color and donors by symbol type.  
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Supplemental Figure 3: Simulated steady state of the model output under conditions of exposure 

to the fungus and absent extracellular iron. 
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