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Abstract8

1. The ever-increasing threats to riverine biodiversity call for the development of novel approaches for a9

complete assessment of biodiversity across highly resolved spatial, temporal and taxonomic scales.10

Past studies on riverine biodiversity patterns were often restricted to spatially scattered data, focused11

on specific taxonomic groups, and disregarded the temporal dimension, preventing a universal12

understanding of relationships between biodiversity and stream size across spatial, temporal and13

taxonomic scales. Recent advances in the joint use of environmental DNA (eDNA) data and novel14

mechanistic models for eDNA transport in river networks have the potential to uncover the full15

structure of riverine biodiversity at an unprecedented spatial resolution, hence providing fundamental16

insights into ecosystem processes and offering a basis for targeted conservation measures.17

2. Here, we applied a mechanistic model (i.e., the eDITH model) to a metabarcoding dataset covering18

three taxonomic groups (fish, invertebrates and bacteria) and three seasons (spring, summer and19

autumn) for a 740-km2 Swiss catchment, sampled for eDNA at 73 sites.20

3. Using the mechanistic model, we upscaled eDNA-based biodiversity predictions to more than 190021

individual reaches, allowing an assessment of patterns of α- and β-diversity across seasons and22

taxonomic groups at a space-filling, fine scale over the whole network.23

4. We found that both predicted α- and β-diversity varied considerably depending on both season and24

taxonomic group. Predicted fish α-diversity increased in the downstream direction at all seasons,25

while invertebrate and bacteria α-diversity either decreased downstream or was not significantly26

related to position within network, depending on the season. Spatial β-diversity was mostly found27

to be decreasing in the downstream direction, and this was the case for all seasons for bacteria.28

Temporal β-diversity was mostly found to be increasing downstream. In general, genus richness29

values predicted by the model were found to be higher than those obtained by directly analyzing30

the eDNA data. Overall, stream size (subsumed by drainage area) was generally a poor predictor of31

patterns of predicted α- and β-diversities. Conversely, riverine biodiversity is shaped by a complex32

interplay of environmental variables, abiotic and biotic factors, which need be taken into account for33

a correct assessment of its structure.34

Keywords: eDITH model | aquatic biodiversity | environmental DNA | alpha diversity | beta diversity35

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2022.01.25.475970doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.475970
http://creativecommons.org/licenses/by/4.0/


1 Introduction36

Freshwater ecosystems are among the most biodiverse ecosystems worldwide, in relation to their area37

[Dudgeon, 2020; Vörösmarty et al., 2010], but also among the most threatened with respect to loss of38

biodiversity [Darwall et al., 2018; Reid et al., 2019]. Strategies for conservation of biodiversity should be39

based on complete biodiversity assessments across spatial and temporal scales, as well as taxonomic groups40

in order to fully understand and preserve ecosystem functioning [Altermatt et al., 2020]. However, this is41

often not the case for river systems, due to the spatial structure of riverine metacommunities, the coarse42

spatio-temporal resolution of biodiversity data, a limited taxonomic coverage, and the difficulty to transfer43

knowledge from one taxonomic group to another [Barbour, 1999; Altermatt, 2013; Altermatt et al., 2020;44

Darwall et al., 2011].45

A seminal model for ecological communities in rivers, the river continuum concept [Vannote et al., 1980],46

predicted species diversity to have a unimodal patterns in very large rivers (up to 12th Strahler order), with47

the highest richness observed in mid-order reaches. For most rivers of intermediate size, this translates into48

an increasing pattern of α-diversity in the downstream direction, which has been validated empirically49

[Ward, 1998], in particular for fish [Muneepeerakul et al., 2008] and macroinvertebrates [Altermatt et al.,50

2013; Tonkin et al., 2015; Blackman et al., 2021b]. Conversely, bacteria richness was generally found to51

follow a decreasing trend in the downstream direction [Besemer et al., 2013; Ruiz-González et al., 2015;52

Savio et al., 2015]. The other component of total (γ-) diversity, namely β-diversity, has been less often53

investigated, although Finn et al. [2011] observed decreasing β-diversity with increasing stream size in54

macroinvertebrates. However, universal relationships between biodiversity and stream size appear to be55

elusive [Vander Vorste et al., 2017]. Crucially, most of the studies investigating biodiversity patterns in rivers56

only focused on specific taxonomic groups, or neglected the temporal dimension of biodiversity, either57

by considering a snapshot of data collected at a single time point, or by analyzing temporally averaged58

data. Moreover, most biodiversity studies have been based on spatially scattered, pointwise data, hence59

preventing a spatially highly resolved and/or space filling assessment of biodiversity.60

In this perspective, environmental DNA (eDNA, i.e. DNA isolated from environmental samples [Taberlet61

et al., 2012; Pawlowski et al., 2020]) has opened new avenues for fast, cost-effective and taxonomically62

broad biodiversity assessments [Thomsen and Willerslev, 2015; Valentini et al., 2016; Deiner et al., 2017;63

Beng and Corlett, 2020]. In particular, eDNA increases our understanding of biodiversity structure and64

related ecosystem processes in riverine ecosystems [Altermatt et al., 2020], especially considering that,65

due to downstream transportation of DNA molecules with streamflow, eDNA constitutes an aggregated66

measure of biodiversity across large drainage areas [Deiner and Altermatt, 2014; Barnes and Turner,67

2015; Deiner et al., 2016; Shogren et al., 2017; Seymour et al., 2021]. Correct interpretation of eDNA data68

collected in rivers hence requires consideration of the role of hydrological transport and decay of genetic69
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material. The recently developed eDITH model (eDNA Integrating Transport and Hydrology) couples a70

geomorphological and hydrological characterization of a catchment, eDNA transport and decay dynamics,71

and a species distribution model, and allows transforming pointwise eDNA data collected at a catchment72

into predicted maps of taxon density [Carraro et al., 2017, 2018, 2020b, 2021]. The eDITH model has hitherto73

been successfully applied to predict the distribution of single species, i.e. a fish parasite and its primary74

host [Carraro et al., 2017, 2018], as well as biodiversity of aquatic insects at a given point in time [Carraro75

et al., 2020b]. Given its generality and the basic assumptions on eDNA shedding and decay processes76

underpinning its formulation [Carraro et al., 2018], the eDITH model can in principle be applied to any77

taxonomic group, and can also be used to identify temporal variations in biodiversity patterns in river78

networks.79

Here, we applied the eDITH model to an eDNA metabarcoding dataset covering three taxonomic groups80

relevant to freshwater communities (fish, invertebrates and bacteria), and three seasons (spring, summer81

and autumn), providing predictions of patterns of α- and β-diversity, and changes thereof with respect to82

season and taxonomic groups, at an unprecedented space-filling, highly resolved spatial scale (∼500-m83

long river reaches) covering a 740-km2 Swiss catchment [Blackman et al., 2021a].84

2 Methods85

2.1 Study area86
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Figure 1: Map of the Thur catchment displaying the locations of eDNA sampling sites (red dots) and hydrological
stations (white squares). The three main tributaries (rivers Thur, Glatt and Necker) are also identified.
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The Thur (Fig. 1) is a pre-alpine river located in northeastern Switzerland, draining an area of 740 km2,87

for which extensive data on hydrology and biodiversity are available [Abbaspour et al., 2007; Mächler et al.,88

2019; Carraro et al., 2020b; Blackman et al., 2021a]. Here, eDNA samples were collected at 73 sites in three89

different seasons in 2018: spring (17th-24th May), summer (20th Aug-5th Sep), and autumn (2nd-8th Oct). In90

summer, 4 sites were not sampled because their respective reaches were temporarily dry. Hydrological data91

on the catchment were available at four gauging stations (Fig. 1) operated by the Swiss Federal Office for92

the Environment, while landscape data on elevation, land cover types and geology were provided by the93

Swiss Federal Office for Topography (see Carraro et al. [2020b] for details).94

The river network was extracted by using a TauDEM implementation of the D8 method [O’Callaghan95

and Mark, 1984] on a 25-m digital elevation model of the region. A threshold drainage area of 0.25 km2
96

was used to identify the sources of the river network, resulting in a total river length of 1034 km. Such97

threshold area value was chosen as the maximum one such that all 73 sampling sites effectively belonged to98

the resulting river network. The river was partitioned into reaches of maximum length 1 km, by following99

Carraro et al. [2020a], which resulted in a total of 1908 reaches, with mean length 542 m.100

2.2 eDNA data collection and sequencing101

Details on eDNA data collection and sequencing are elucidated in Blackman et al. [2021a], but are here102

briefly recapitulated in order for this work to be self contained.103

Environmental DNA samples were collected and filtered on site using disposable 50 mL syringes and104

0.22 µm sterivex filters (Merck Millipore, Merck KgaA, Darmstadt, Germany). At each site 1 L of water105

was filtered. Samples were extracted in clean lab facilities using the DNeasy PowerWater Sterivex Kit106

(Qiagen, Hilden, Germany) following the manufacturer’s protocol. Three libraries were constructed for107

the following markers: 12S, COI and 16S using a two-step (12S and COI) and three-step (16S) library108

preparation method, where clean amplicons were indexed using unique combinations of the Illumina109

Nextera XT Index Kit A, C and D in the last PCR, following the manufacturer’s protocol (Illumina, Inc.,110

San Diego, CA, USA). Paired-end sequencing was performed on an Illumina MiSeq (Illumina, Inc. San111

Diego, CA, USA) at the Genetic Diversity Centre at ETH, Zurich (see Blackman et al. [2021a] for full details112

of each library preparation). After each of the libraries were sequenced, the data was demultiplexed and113

reads were quality checked. Raw reads were end-trimmed, merged and quality filtered, additional reads114

were clustered at 99% identity to obtain error corrected and chimera-filtered sequence variants ZOTUs.115

The final ZOTUs were then clustered using a 97% similarity approach and taxonomic assignment with a116

0.85 confidence threshold. Taxonomic assignment was carried out with the following databases: 12S: NCBI117

BLAST (v200416), COI: Custom reference database (Including MIDORI un-trimmed (V20180221) and 16S:118

SILVA (V128). Prior to data analysis a 0.1% contamination threshold was applied to each sample, species119
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with a non-aquatic life stage were removed from the data set and the data was merged at genus level.120

Overall, we detected 12 fish, 80 invertebrate and 282 bacterial genera. The three fish genera Barbus, Gobio121

and Phoxinus were detected with both the 12S and COI barcode regions. To avoid duplicated coverage, we122

removed from the database the read numbers corresponding to these three genera from the COI library, as123

the corresponding read numbers in the 12S library were higher and the latter marker region was used to124

target fish. Fig. S1 displays the total number of reads observed and the total number of genera detected for125

each barcode region, taxonomic group and season, pooled over all sampling sites.126

2.3 eDITH model127

The eDITH model implementation essentially follows Carraro et al. [2020b], and is here summarized for128

the specific study setting. For each genus the expected eDNA concentration Cj at a sampling site j of the129

network reads:130

Cj =
1

Qj
∑

i∈γ(j)
pi AS,i exp

(
−

Lij

vijτ

)
, (1)131

where Qj is the water discharge at reach j (i.e., the reach where sampling site j is located), γ(j) identifies132

the set of reaches upstream of j (with j included), pi the eDNA production rate at reach i, AS,i the source133

area of reach i (namely its open water surface), Lij the along-stream path from i to j, vij the average water134

velocity along such path, τ a characteristic decay time. eDNA production rates are expressed via a Poisson135

generalized linear model as pi = p0 exp
(

βTX(i)
)

, where X(i) is a vector of environmental covariates, β136

a vector of covariate effects and p0 a baseline production rate. We utilized 35 covariates, representing137

morphological, land cover, geological and geographical characteristics of the catchment. These covariates138

correspond exactly to those used in Carraro et al. [2020b]. Observed read data from each genus at a given139

site j and a given season were assumed to follow a geometric distribution, with mean proportional to Cj.140

Following Carraro et al. [2020b], reach width was evaluated via aerial images in correspondence to141

the four hydrological stations, and a power-law relationship with drainage area was derived. Width142

values were then extrapolated to all 1908 reaches via the so-obtained power-law relationship. The same143

procedure was performed for the three different seasons for discharge and water depth, whose data values144

were taken as the averages of the mean daily measured values at the hydrological stations during the145

respective sampling periods. A power-law relationship on drainage area was then fitted separately for146

each hydrological variable (i.e., discharge, water depth) and season, and then extrapolated to the whole147

catchment. Finally, we calculated water velocity values at all reaches for all seasons under the hypothesis of148

rectangular river cross-sections (i.e., v = Q/(wd), where v is velocity, Q is discharge, w is width and d is149

depth).150

The posterior distributions of the 37 unknown parameters (i.e., vector β containing effect sizes for 35151
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covariates, decay time τ and baseline production rate p0) were inferred independently for each season and152

genus, by using the DREAMZS [Vrugt et al., 2009] algorithm, implemented via the BayesianTools R-package153

[Hartig et al., 2019]. Three independent Markov chains were run, with a total chain length of 3 · 106 (plus154

a burn-in length of 5 · 105). A normal prior distribution with null mean and standard deviation of 3 was155

adopted for all β components; p0 had a uniform prior bound between 0 and 1; a log-normal prior for τ was156

chosen, with a median of 5 h and a mode of 4 h. The so-obtained maximum a posteriori parameter estimates157

were used to produce maps of relative species density (i.e., pi). These were subsequently translated into158

detection probability maps by evaluating the expected read number that would be observed at a reach if159

the reach were disconnected from the river network, and by assessing the probability that the measured160

read number therein would be larger than 0 according to the assumption of geometric distribution of161

read numbers (see Carraro et al. [2020b] for details). Finally, presence/absence maps for each genus were162

derived by imposing a threshold of 0.5 on detection probability.163

2.4 Evaluation of α- and β-diversity patterns164

For each taxonomic group and season, the number of genera predicted by the eDITH model to be present165

in each of the 1908 reaches was taken as a measure of α-diversity. We then performed a linear regression to166

assess the effect of drainage area on genus richness. Given that values of genus richness at the different167

reaches are in principle not independent (i.e., due to the spatial structure of the covariates used to predict168

the taxon patterns, predicted α-richness values for nearby reaches tend to be correlated), we refrained from169

performing classic statistical tests on the slope of the linear regression. Instead, we assessed the significance170

of the effect of drainage area via a bootstrapping approach: we subsampled 500 out of 1908 reaches in a171

quasi-random fashion (i.e., by splitting reaches into 10 bins according to the drainage area deciles, and172

randomly sampling (with replacement) 50 reaches within each bin), and linearly regressed genus richness173

on drainage area for the subsampled reaches. We repeated this procedure 100 times, and considered a174

positive (respectively negative) significant effect of drainage area if, in at least 95 out of 100 cases, the fitted175

slope of the linear regression was positive (respectively negative). The 2.5th-97.5th percentile range of the176

so-obtained 100 linear regression lines was used as confidence interval of the linear model fit. Moreover,177

we also computed genus richness from the raw eDNA data at the 73 sampling sites across seasons and178

taxonomic groups.179

In order to evaluate spatial patterns of β-diversity with respect to each taxonomic group, the 1908180

reaches were partitioned into two location groups, i.e. upstream, if their drainage area was lower than181

the median value across all reaches, or downstream, otherwise. Within each location group, we picked182

pairs of flow-unconnected sites such that each site appeared in only one pair; the choice of pairs was183

operated randomly, and was stopped when no other pair could be formed from the sites that had not been184
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Table 1: Summary of the effect of drainage area (i.e. position within network) on α- and β-diversity patterns. ↗:
increasing in the downstream direction;↘: decreasing in the downstream direction;→: invariant relationship; ∗:
significant relationship; NS: non-significant relationship. Approaches to detect significance are detailed in the
Methods.

α diversity Spatial β diversity Temporal β diversity
spring summer autumn spring summer autumn spr.-sum. spr.-aut.

Fish ↗∗ ↗∗ ↗∗ → ↘∗ ↗∗ ↗∗ ↗∗
Invertebrates ↘∗ ↘∗ ↗NS → → ↘∗ ↗∗ ↗∗

Bacteria ↗NS ↘∗ ↗NS ↘∗ ↘∗ ↘∗ ↗∗ ↗NS

picked yet. Note that we chose to limit our attention to β-diversity of flow-unconnected sites in order to185

correct for the fact that downstream sites are more likely to be connected by flow than upstream sites (and186

hence inherently more prone to show similar community compositions), since the latter mostly consist187

of headwater reaches. Moreover, picking each site only once ensures that measures of β-diversity among188

all pairs are mutually independent. For each so-obtained pair, Jaccard distance was evaluated via the189

betapart R-package [Baselga and Orme, 2012], which also allowed partitioning of nestedness and turnover190

components of total β-diversity. We accounted for the stochasticity in the choice of pairs by repeating191

the pair selection process 100 times. The effect of location was deemed significant if the equal-tailed 95%192

confidence interval of the mean Jaccard distance across one location group did not overlap with that of the193

other group. Given the relatively limited number (73) of sampling sites available, we found it unfeasible to194

repeat the aforementioned procedure to evaluate spatial β-diversity patterns for the raw eDNA data.195

Finally, temporal patterns of β-diversity were evaluated by comparing, within each taxonomic group,196

predicted presence/absence for all taxa at different seasons via the Jaccard distance evaluated at every reach.197

In particular, we treated the spring season as a benchmark and focused on patterns of spring-to-summer198

and spring-to-autumn temporal β-diversity. We then linearly regressed these patterns against drainage199

area to possibly detect an upstream/downstream gradient on temporal β-diversity. In order to assess the200

significance of such trends, we adopted the same bootstrapping procedure that was earlier described with201

respect to α-diversity. Moreover, we computed temporal β-diversity (expressed as Jaccard distance) for the202

raw eDNA data across seasons and taxonomic groups.203

3 Results204

3.1 α-diversity patterns205

Overall, patterns of α-diversity across the different taxonomic groups and seasons show weak, and often206

non-significant relationships with drainage area (Table 1, Fig. 2). Indeed, the proportion of variance207

in α-diversity explained by drainage area is in all cases lower than 4%, with the exception of fish in208
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Figure 2: Patterns of α-diversity as a function of drainage area. Colored, closed dots represent eDITH model
results; for comparison, values inferred from eDNA data are displayed with black, open dots. Black solid lines
represent linear model fits on modelled genus richness (R2 values are reported on the top-left corner). Shaded
areas represent 95% confidence intervals on linear model fit (obtained via a bootstrapping technique detailed in
the Methods). Note that linear models were fitted on natural values on drainage area, hence the trend lines are
exponential in these semi-logarithmic plots. Inset: frequency distribution of genus richness values as predicted by
eDITH (colored bars) vs. inferred from eDNA data (grey bars).

spring, where drainage area explains 16.6% of the variance in α-diversity (Fig. 2). Conversely, patterns of209

α-diversity appear to be driven by clusters of neighbouring reaches (Fig. 3), which is reflected by the role of210

environmental covariates in explaining the spatial patterns of taxa (see Fig. S2 for a summary of significant211

covariates depending on taxonomic groups and seasons). In general, genus richness values predicted by the212

eDITH model are higher than those obtained by directly analyzing the eDNA data (Fig. 2, insets) especially213

for invertebrates (irrespective of the season), and in summer also for fish and bacteria. Moreover, for fish214

and invertebrates and irrespective of the season, the eDITH model predicts higher α-diversity with respect215

to the raw data for low drainage areas (Fig. 2).216

Predicted fish α-diversity is significantly correlated with drainage area at all seasons (Table 1, Fig. 2).217
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Figure 3: Spatial patterns of predicted α-diversity (expressed in terms of genus richness) for the different taxonomic
groups and seasons. Displayed values correspond to colored, closed dots in Fig. 2.

While fish genus richness in spring and autumn is mostly concentrated in the downstream reaches of the218

watershed, richness in summer is highest at small tributaries at intermediate distance from the river outlet219

(Fig. 3). For invertebrates, the trend of predicted α-diversity decreases significantly in the downstream220

direction in spring and summer, while it increases non-significantly in autumn (Table 1, Fig. 2). Clusters of221

high invertebrate α-diversity are predicted in the mid-Thur and Necker reaches, which is in qualitative222

agreement with the patterns found by Carraro et al. [2020b] for the orders Ephemeroptera, Plecoptera and223

Trichoptera in late June (note that, in the data set here analyzed, 29 invertebrate genera out of 80 belong224
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Figure 4: Effect of drainage area on predicted spatial β-diversity of fish, invertebrates (”Invert.”) and bacteria,
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replicated choices of pairs within a group of reaches (”U”: upstream; ”D”: downstream - see Methods). Boxes’
extent corresponds to interquantile range; whiskers’ extent to 2.5th-97.5th percentile range.

to one of these three orders). Invertebrate genus richness in autumn tends to be lower as compared to225

spring and summer (Figs. 2, 3). This finding is reflected by the sensibly lower number of reads observed226

in autumn for invertebrates as compared to the other seasons, although the total number of invertebrate227

genera detected in autumn (56) is comparable to that of spring (62) and summer (57) (see Fig. S1). Predicted228

bacteria α-diversity shows a flat distribution across the catchment for all seasons, with a significant decrease229

in the downstream direction observed only in summer, while the effect of drainage area is not significant in230

spring and autumn. Summer values of bacterial α-diversity are considerably lower with respect to spring231

and autumn (Figs. 2, 3).232

Patterns of predicted α-diversity for any taxonomic group are positively correlated across seasons,233

with spring-autumn correlations being higher than spring-summer correlations for all taxonomic groups234

(Fig. S3). Moreover, invertebrate α-diversity is strongly correlated with bacteria α-diversity at all seasons,235

suggesting a link between these contiguous trophic levels; fish α-diversity also shows positive correlations236

with invertebrate α-diversity for all seasons, although the effect is in this case less strong (Fig. S4).237

3.2 β-diversity patterns238

The effect of drainage area on predicted spatial β-diversity patterns depends greatly on the taxonomic239

group and the season (Table 1, Fig. 4). For fish, spatial β-diversity decreases in the downstream direction in240

summer, while the pattern is reversed in autumn, and no effect of drainage area is observed in spring; for241

invertebrates, there is no significant trend of drainage area on spatial β-diversity in spring and summer,242

while a decreasing trend is observed in autumn; finally, spatial β-diversity of bacteria decreases significantly243
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Figure 5: Patterns of predicted temporal β-diversity as a function of drainage area. Figure construction is as in
Fig. 2.

with drainage area for all seasons. Importantly, across all seasons, values of the Jaccard distance for244

invertebrates are much larger than those for fish and bacteria. Analysis of the relative contribution of245

nestedness and turnover components to the total Jaccard distance shows the predominant role of turnover246

in β-diversity for invertebrates and bacteria across all seasons, while a larger role of nestedness is observed247

for fish (Table S1).248

Patterns of predicted temporal β-diversity are significantly and positively related to drainage area249

for all taxonomic groups and seasons, with the exception of bacteria in the spring-autumn comparison,250

where the postive trend is not significant (Table 1, Fig. 5). However, the proportion of variance in Jaccard251

distance explained by drainage area is low (i.e., consistently lower than 8%). Interestingly, for all taxonomic252

groups, higher values of predicted temporal β-diversity are observed in the spring-summer, than in the253

spring-autumn comparison (Table S2). This reflects the fact that patterns of spring α-diversity are better254

correlated to patterns of autumn, than summer α-diversity (Fig. S3). Moreover, values of temporal β-255
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Figure 6: Spatial patterns of predicted temporal β-diversity (expressed via the Jaccard distance).

diversity for invertebrates are higher than those for fish and bacteria, thus showing that predicted patterns256

of invertebrate communities (or their detectability, see Discussion) are much more diverse in both spatial257

and temporal dimensions than other taxonomic groups. For fish, larger values of Jaccard distance in the258

spring-summer comparison are observed at the downstream reaches, while the highest temporal β-diversity259

is found at the mid-to-upper Thur reaches (Fig. 6). Regarding invertebrates, the predicted spatial trends of260

temporal β-diversity tend to be more constant across seasons, with larger values observed along the main261

Thur stem, and more stable communities in the Necker and Glatt tributaries (Fig. 6). Bacteria temporal262

β-diversity shows a less pronounced spatial variability, with all values being larger than 0.4 at all seasons263

(Fig. 5). As it was the case for spatial β-diversity, temporal β-diversity of fish is mostly driven by nestedness,264

while turnover plays a major role in the temporal β-diversity of invertebrates and bacteria (Table S2). Finally,265

bacteria temporal β-diversity evaluated on the raw eDNA data is considerably lower with respect to that266

evaluated via the eDITH model (Fig. 5, insets). As for fish and invertebrates, differences between the two267

approaches are less marked, although data-based temporal β-diversity tends to assume more extreme (both268

low and high) values.269
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4 Discussion270

The combined use of the eDITH model and a spatially and temporally replicated multimarker eDNA data271

set allowed the assessment of patterns of α- and β-diversity across a river catchment with approximately a272

30-fold increased resolution compared to the initial sampling sites. Specifically, using data from 73 sampling273

sites across the whole catchment, diversity patterns across all taxonomic groups were extrapolated at a274

genus level to cover a total of 1908 river reaches (of mean length ∼500 m) along the complete river network,275

giving unprecedented spatially covered information on fish, invertebrates and bacteria. Comparison of276

these α- and temporal β-diversity patterns obtained via the eDITH model vs. the raw eDNA data revealed277

substantial differences between the two approaches for several taxonomic groups and seasons. As for278

spatial β-patterns, a proper comparison with the raw data could not even be done due to the (inevitably)279

limited number of eDNA sampling sites available. It is widely acknowledged that performing richness and280

diversity studies on raw eDNA data is problematic due to the large number of false negatives arising from281

the multiple steps of the metabarcoding procedure [Fukaya et al., 2022]. In eDITH, this aspect is accounted282

for via the assumption of geometric distribution of observed read number values for a given site and taxon.283

This allows detecting components of richness and diversity that would be otherwise overseen. Indeed, we284

found genus richness values estimated via eDITH to be often higher than those assessed from the raw data285

(Fig. 2).286

Importantly, we found patterns of predicted α- and β-diversity to be strongly dependent both on the287

taxonomic group and season, which is in contrast with the predictions of Vannote et al. [1980] and Finn288

et al. [2011] of seasonally invariant and increasing α-diversity and decreasing β-diversity in the downstream289

direction, respectively. The only taxonomic groups for which patterns were found to be in accordance with290

these predictions are fish for α-diversity and bacteria for β-diversity. Overall, however, drainage area was291

found to be a poor (and often even non-significant) predictor of patterns of both diversity types. Indeed,292

occurrence of genera resulted to be correlated to a variety of environmental covariates, with considerable293

variation in importance and direction of the effect across seasons and taxonomic groups (see Fig. S2). On294

the same data set, Blackman et al. [2021a] assessed effect of drainage area and season on genus richness via295

mixed models (applied on the raw eDNA data), finding a positive, significant effect of drainage area for296

fish, and a significant effect for bacteria whose direction depended on the season. Our modelling approach297

came to a similar conclusion with respect to these groups, but additional negative, significant effects of298

drainage area for invertebrates in spring and summer were observed (Table 1).299

Predicted patterns of invertebrates were found to be highly variant in both space and time, as spatial300

and temporal β-diversity values were the highest with respect to other taxonomic groups (Figs. 4, 5,301

Tables S1, S2). Indeed, most invertebrate genera were predicted to be located only in limited parts of the302

catchment and showed a marked temporal variability. Only 2.5% of the invertebrate genera (i.e., 2 out of303
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80, Baetis and Eiseniella) were predicted to be present in at least 25% of the same reaches across the three304

seasons (Fig. S5). In contrast, bacteria communities showed lower variability in both space and time, with305

a core group of genera that were found to be present in large portions of the catchment irrespective of306

the season: 9.6% of the detected genera (i.e. 27 out of 282) occupied at least 25% of the same reaches at307

all seasons (Fig. S5). Plausible explanations for limited variability in bacteria patterns are their limited308

dispersal abilities, and the fact that bacteria genera generally consist of a higher number of species than is309

the case for the other taxonomic groups, hence possible turnover at the species level is here hidden. Higher310

variability of invertebrate patterns as compared to bacteria is also supported by the fact that predicted311

invertebrate richness in spring explains less variation in richness in the other seasons as compared to312

bacteria (and partially to fish, see Fig. S4). Fish were found to be the most stable taxonomic group, with313

temporal β-diversity values much lower than those for invertebrates and bacteria (Fig. 5, Table S2), and314

spatial values lower than those for invertebrates and comparable to those for bacteria (Fig. 4, Table S1). This315

result is likely influenced by the limited number (12) of fish genera detected, and the ubiquity of the genus316

Salmo, which was predicted to be present in > 80% of the same reaches across the three seasons (Figs. S5,317

S6).318

Overall, we see two main mutually non-exclusive explanations for these patterns and their limited319

overlap with previous models and findings [Vannote et al., 1980; Finn et al., 2011]. First, past predictions of320

riverine diversity patterns were often based on a small number of sites, often situated in a linear line-up321

along the main river stem. Thereby, these studies did not consider contributions of small-scale spatial322

dynamics from the dendritic river network, nor temporally fluctuating dynamics in organisms’ abundance323

and occurrence. Such time-invariant assumptions may be adequate for some groups, yet are likely not324

realistic for systems with a pronounced seasonality, including alternation between high and low flows325

or even desiccation, resulting in complex population dynamics. Second, our approach assumes an even326

detectability across space for the taxa considered. Likely, this strong assumption is at least to some degree327

violated, as eDNA-based data are known to be highly affected by stochasticity [Deagle et al., 2014; Elbrecht328

and Leese, 2015; Kelly et al., 2019] or may not be totally replicable, especially with generic primers as used329

here. Thus, some of the observed patterns may also reflect heterogeneity in the sampling procedure itself.330

While we cannot separate these processes, we are confident that the latter (uneven detectability) does not331

play a dominant role. Note also that possible temporal differences in detectability have been accounted for332

by the modeling procedure, since taxon distribution patterns were obtained separately for each season,333

and by using time-specific values for the hydrological variables. Therefore, despite eDNA shedding rates334

being dependent on environmental factors such as water temperature and metabolic activity [Jo et al., 2019;335

Thalinger et al., 2021] and hence arguably on season, these aspects do not affect our predictions.336

In particular, seasonal differences in diversity patterns could be related to biological (when taxa actually337
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change their abundance and/or spatial distribution across seasons) or methodological (when the likelihood338

to detect taxa changes across seasons) aspects. In the latter case, absence data may not be indicative of339

a true absence, but may be interpreted as an ”ecological absence” (i.e. not ecologically relevant at that340

time point due to low density [Blackman et al., 2021a]). In our results, several observed patterns have341

a plausible biological explanation. First, the higher α-diversity of fish in low size reaches in summer as342

compared to the other seasons (Fig. 3) is possibly due to the migrating behaviour of several fish taxa343

during the spawning season, which, for widely found species in European temperate rivers, such as the344

gudgeon (Gobio gobio) and the common minnow (Phoxinus csikii), happens in late spring and early summer345

(see the predicted presence/absence maps for genera Gobio and Phoxinus in Fig. S6). Second, the lower346

α-diversity of invertebrates in autumn (Fig. 3) is likely related to the fact that many aquatic insects have347

already completed the aquatic part of their life cycle in autumn. Instead, the observed lower bacteria348

richness in summer compared to spring and autumn could have a methodological explanation: indeed,349

the total number of reads observed for bacteria in summer is intermediate with respect to those for spring350

and autumn, resulting however in a lower number of detected genera (198) with respect to spring (220)351

and autumn (214) (Fig. S1). This apparent mismatch between read number count and number of detected352

genera could be explained by the proliferation of some bacterial taxa in summer following temperature353

increase, which could mask the DNA from rarer taxa in the sequencing procedure, such that most (or all)354

amplification is biased towards the dominant taxa. Such patterns, similarly to primer bias, are well-known355

in metabarcoding studies [Kelly et al., 2019], and we acknowledge that the relatively low volume of water356

sampled may not have resulted in sufficiently saturated species accumulation curves.357

The use of the eDITH model allowed an enhancement of our capability of interpreting eDNA data,358

enabling the extraction of patterns of α- and β-diversity at a much higher spatial resolution than what359

could be achieved by analyzing the eDNA data alone. Indeed, the spatial resolution at which model360

predictions are produced can be tuned freely, and this choice does not add any complexity to the model361

fitting procedure, as long as eDNA production rates pi are expressed as a function of environmental362

covariates. In this application, we imposed a maximum reach length of 1 km, which resulted in a total363

of 1908 reaches, more than double than the number of reaches (760) used in a previous application in364

the same catchment [Carraro et al., 2020b]. However, it is important to note that a finer discretization of365

the river network would result in predicted richness values at the different reaches that would be more366

interdependent, which would require adequate tools (such as the ad-hoc statistical tests performed here)367

to analyze the resulting patterns. Another caveat in this respect, pointing at an opposite direction, is368

that too fine of a discretization might result in unrealistic small-scale differences in taxon patterns (e.g.,369

presence-absence-presence predicted at a sequence of short, flow-connected reaches); a potential solution is370

offered by roughness-minimizing approaches borrowed by fluvial geochemistry in the analogous problem371
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of predicting geochemical maps in catchments based on downstream water samples [Lipp et al., 2021].372

In the present analysis, we used drainage area as the variable defining the spatial position of local373

communities (reaches) in the river network. Drainage area is the master variable controlling the bulk374

of hydrological and geomorphological features that shape a fluvial landscape (such as water discharge,375

velocity, river width and depth [Rodriguez-Iturbe and Rinaldo, 2001]) but also organic matter and nutrient376

availability [Bertuzzo et al., 2017; Helton et al., 2018; Jacquet et al., 2021], and hence also determine local377

habitat conditions. Thus, its use is, both from a hydrological as well as ecological perspective, highly378

suitable. Importantly, however, increasing α- and decreasing β-diversity patterns in river networks had379

previously been described mostly with respect to stream order [Vannote et al., 1980; Finn et al., 2011;380

Altermatt, 2013]; our choice of using drainage area is consistent with previous studies, as this variable381

varies predictably with stream order according to Horton’s law on drainage areas [Schumm, 1956]. It is382

likely, however, that our approach might have an impact on estimation of trends of spatial β-diversity.383

The partitioning of reaches into an ”upstream” and a ”downstream” group was roughly equivalent to384

comparing headwaters (i.e., reaches with stream order equal to 1) to all other reaches (Fig. S7). While385

pairwise Jaccard distances for reaches of stream order 4 or 5 could be lower with respect to those for more386

upstream reaches, it is unfeasible to statistically assess the magnitude of this trend for the different stream387

order values, because of the paucity of reaches with stream order ≥ 4 in the river network, and the fact that388

these tend to be connected by flow (which is likely to bias conclusions on β-diversity, see Methods). Note389

also that the predominance of headwaters with respect to reaches of high stream order is not limited to the390

catchment studied here, but is rather a universal feature of river networks [Horton, 1945].391

We acknowledge that the herein assessed riverine biodiversity patterns do not cover sampling variability392

at the site level; it is indeed known that read number values vary substantially as a result of stochasticity393

in the sequencing process [Deagle et al., 2014; Deiner et al., 2015; Elbrecht and Leese, 2015], and thus our394

results contain some level of stochastic variation that we cannot control for. Higher robustness of eDITH395

predictions would be possible by incorporating true sampling replicates of the eDNA water samples, upon396

which the model fitting procedure is applied. Moreover, the predicted biodiversity patterns could be397

validated by comparing them with abundance estimates from direct observation of organisms. While this398

is feasible for fish (e.g. via electrofishing) and invertebrate (via kicknet sampling) groups, validation of399

bacterial patterns would be more complicated, as it would rely again on metabarcoding approaches from400

different supports (e.g. biofilm, although free floating bacteria communities can arguably not fully overlap401

with communities growing in benthic biofilm). In this respect, a possible improvement of the eDITH model402

would consist in the merging of eDNA and direct organismal observation data via joint-likelihood data403

integration methods [Miller et al., 2019]. Another conceivable expansion of the current analysis regards404

the use of taxon richness predictions provided by eDITH to foster food web analysis at an unprecedented405
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spatial resolution (see Blackman et al. [2021a] for assessment of food web characteristic and functional406

diversity based on the raw eDNA data). This analysis seems particularly promising in the case study at407

hand, given the clear link that we observed between richness patterns of contiguous trophic level (Fig. S3).408

In conclusion, the eDITH approach, which transforms eDNA data into space-filling predictions of409

biodiversity, is generally applicable to any taxonomic group in riverine ecosystems and any temporal410

window, providing biodiversity predictions that can be used in the analysis of ecosystem processes, as well411

as to implement targeted (both spatially and temporally) conservation interventions. Predicted patterns of412

α- and β-diversity across taxonomic groups and seasons were not generally amenable to a simple increasing413

or decreasing trend in the downstream direction, but rather to a complex interplay of environmental414

variables, abiotic and biotic factors, highlighting the need for differentiated conservation approaches in415

riverine systems. A thorough assessment of biological communities in rivers cannot forego the integration416

of these aspects, and the eDITH model can be an adequate tool for such integrated analyses.417
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