1	Impact of various vaccine boosters on neutralization against Omicron following
2	prime vaccinations with inactivated or adenovirus-vectored vaccine
3	Authors: Qingrui Huang ^{1*} , Jiawei Zeng ^{1,2*} , Qingyun Lang ^{1,3*} , Feng Gao ^{4*} , Dejun
4	Liu ^{4*} , Siyu Tian ^{1,2} , Rui Shi ¹ , Ling Luo ^{1,3} , Hao Wang ^{1,2} , Liping Hu ^{1,5} , Linrui Jiang ¹ ,
5	Yawei Liu ⁴ , Kailiang Li ⁴ , Yunbo Wu ⁴ , Junjie Xu ⁴ , Wenxi Jiang ⁴ , Ning Guo ³ , Zhihai
6	Chen ⁶ , Xiaohua Hao ⁶ , Ronghua Jin ^{6†} , Jinghua Yan ^{1,2†} and Yufa Sun ^{4†}
7	Affiliations:
8	¹ CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of
9	Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
10	² University of Chinese Academy of Sciences, Beijing 101408, China.
11	³ College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
12	⁴ Health Service Department of the Guard Bureau of the General Office of the Central
13	Committee of the Communist Party of China, Beijing, China
14	⁵ Institute of Physical Science and Information, Anhui University, Hefei 230039, China
15	⁶ National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical
16	University, Beijing 100015, China
17	[†] Correspondence to: dafa20136725@163.com (Yufa Sun); yanjh@im.ac.cn (Jinghua
18	Yan); ronghuajin@ccmu.edu.cn (Ronghua Jin).
19	*These authors contributed equally to this work.
20	

21 Abstract

22	Since the first report on November 24, 2021, the Omicron SARS-CoV-2 variant is
23	now overwhelmingly spreading across the world. Two SARS-CoV-2 inactivated
24	vaccines (IAVs), one recombinant protein subunit vaccine (PRV), and one adenovirus-
25	vectored vaccine (AdV) have been widely administrated in many countries including
26	China to pursue herd immunity. Here we investigated cross-neutralizing activities in
27	341 human serum specimens elicited by full-course vaccinations with IAV, PRV and
28	AdV, and by various vaccine boosters following prime IAV and AdV vaccinations. We
29	found that all types of vaccines induced significantly lower neutralizing antibody
30	titers against the Omicron variant than against the prototype strain. For prime
31	vaccinations with IAV and AdV, heterologous boosters with AdV and PRV,
32	respectively, elevated serum Omicron-neutralizing activities to the highest degrees. In
33	a mouse model, we further demonstrated that among a series of variant-derived RBD-
34	encoding mRNA vaccine boosters, it is only the Omicron booster that significantly
35	enhanced Omicron neutralizing antibody titers compared with the prototype booster
36	following a prime immunization with a prototype S-encoding mRNA vaccine
37	candidate. In summary, our systematical investigations of various vaccine boosters
38	inform potential booster administrations in the future to combat the Omicron variant.

39 Introduction

40	SARS-CoV-2 variant B.1.1.529, first reported on November 24, 2021, is now rapidly
41	spreading across the world, especially in regions where the Delta variant is
42	circulating, suggesting its potential of overtaking Delta to become the next dominant
43	variant. This variant bears up to 37 mutations in the spike protein including 15 within
44	the receptor binding domain (RBD) (1) , the primary target of SARS-CoV-2
45	neutralizing antibodies (2-4), which raises immense concern on immune evasion. On
46	November 26, 2021, the World Health Organization (WHO) designated B.1.1.529 as
47	the fifth variant of concern (VOC) and named it Omicron (5, 6). Two SARS-CoV-2
48	inactivated vaccines (IAVs, CoronaVac by Sinovac and BBIBP-CorV by Sinopharm)
49	with a two-dose vaccination regimen, one recombinant protein subunit vaccine (PRV,
50	ZF2001 by Anhui Zhifei Longcom) with a three-dose vaccination regimen, and one
51	single-dose recombinant adenovirus-vectored vaccine (AdV, Convidecia by CanSino)
52	have been given conditional approval for general public use or approved for
53	emergency use by China (7-11). These four vaccines form the core of China's
54	vaccination program. To date, several billion doses of those vaccines have been
55	widely administered in many countries, including China, with the aim of achieving
56	herd immunity against SARS-CoV-2. Moreover, to combat wanning vaccine-elicited
57	immunity with time and emerging variants, several clinical trials with homogenous or
58	heterogenous platform vaccine boosters have also been conducted (12-14).
59	Recent preliminary studies have reported that neutralization elicited by one mRNA
60	vaccine (BNT162b2 by BioNTech in collaboration with Pfizer) is substantially

61	reduced against the Omicron variant (15, 16). The Omicron variant also escapes the			
62	majority of current therapeutic monoclonal antibodies (17, 18). It is urgent to assess			
63	residual neutralization levels against the Omicron variant that are afforded by widely			
64	used vaccines in China, including IAV, PRV, and AdV; it is equally or even more			
65	important to investigate which vaccine booster strategy is able to maximize			
66	neutralization capacity against the Omicron variant. In this study, we systematically			
67	assessed cross-neutralization activity of human antisera against the Omicron variant			
68	elicited by infection or full-course vaccinations with IAV, PRV, or AdV, and by			
69	homologous or heterogenous vaccine boosters. All of the currently approved SARS-			
70	CoV-2 vaccines use the prototype strain-derived proteins as vaccine immunogens. In a			
71	mouse model, we further investigated Omicron-neutralizing activity increase in			
72	magnitude induced by various booster vaccine candidates that were developed based			
73	on different SARS-CoV-2 variants so as to yield key knowledge about guiding			
74	potential booster shots in the future.			
75	Results			
76	To investigate the Omicron variant's sensitivity to immunity elicited by infection or			
77	full-course vaccination, we measured the binding, blocking and neutralizing activities			
78	of serum specimens obtained from 25 convalescent individuals (one month since			
79	convalescence), from 30 recipients of two-dose IAV (one month since receipt of the			
80	second dose), from 30 recipients of one-dose AdV (one month since receipt of the			
81	injection), and from 28 recipients of three-dose PRV (six months since receipt of the			
82	third dose) (Table S1). For all of the serum specimens, the binding antibody titers			

83	were 5–15 times lower for the Omicron than variant for the prototype strain (Fig. 1A).
84	Notably, except for one specimen from an individual receiving PRV vaccinations
85	scored as positive, all of the other specimens lost the blocking activity against the
86	Omicron variant, whereas nearly all of the specimens exhibited positive blocking
87	activity against the prototype strain (Fig. 1B). Pseudovirus-based neutralization assays
88	demonstrated that the geometric mean NT_{50} titers against the Omicron variant were
89	20-, 10-, 6-, and 4-fold lower than those against the prototype strain in serum
90	specimens from convalescent patients, IAV recipients, AdV recipients, and PRV
91	recipients, respectively (Fig. 1C). In addition, despite being obtained six months
92	following full-course vaccination, the serum samples from individuals who had
93	received PRV vaccinations had the highest neutralizing NT50 titers against the
94	Omicron variant, but these titers were approximately 1/5 of the titer of convalescent
95	sera against the prototype strain (Fig. 1C). In contrast, the neutralizing activity against
96	the Omicron variant afforded by full-course vaccination with IAV or AdV was less
97	than 1/20 of the activity of convalescent sera against the prototype strain (Fig. 1C),
98	suggesting a potential of neutralizing insufficiency against Omicron infection.
99	To explore the impact of a homologous or heterologous booster at 4–8 months
100	following IAV full-course vaccination on vaccine-induced antibodies against the
101	Omicron variant, we obtained 42 serum specimens from participants receiving no
102	vaccine booster, 39 serum specimens from participants receiving homologous IAV
103	booster (IAV-b) and 45 serum specimens from participants receiving heterologous
104	PRV booster (PRV-b) (Table S1). The samples were from a single-center, open-label,

105	randomized controlled clinical trial at Beijing Ditan Hospital. An additional seven
106	specimens from individuals who had received heterologous AdV vaccine booster
107	following two doses of IAVs 4–8 months earlier from Peking Union Medical
108	University Hospital were also included (Table S1). Binding, blocking and neutralizing
109	antibodies titers in all of the groups were markedly higher against the prototype strain
110	than against the Omicron variant (Fig. 2). The booster dose with IAV, PRV, and AdV
111	vaccine induced 3-, 7-, and 40-fold increase in Omicron-binding antibody titers
112	compared with the no-booster control (Fig. 2A). At 4-8 months after full-course
113	vaccination with IAV, Omicron-blocking antibodies were close to or below the lower
114	limit of detection (4-fold dilution of plasma), and the blocking positive rate was only
115	2% (Fig. 2B and Fig. S1). The IAV, PRV, and AdV vaccine boosters led to an increase
116	of blocking positive rates to 54%, 71%, and 57%, respectively (Fig. 2B and Fig. S1).
117	For neutralizing antibodies against the Omicron variant, the genomic mean NT ₅₀ titers
118	were below the lower limit of detection (10-fold dilution of plasma) in the control
119	group, whereas the titers rose to 113, 207, and 709 in the IAV, PRV and AdV booster
120	groups, respectively (Fig. 2C and Fig. S2), indicating that the heterologous vaccine
121	booster with AdV was superior to the homologous IAV vaccine booster in improving
122	the neutralizing activity against the Omicron variant.
123	To examine the effect of various booster vaccinations following a single-dose prime
124	vaccination with AdV, we conducted similar tests with serum specimens from
125	individuals receiving no booster injection (control, n=30), IAV booster (n=30), PRV
126	booster (n=30), or AdV booster (n=30) at 4–8 months following the primary AdV

127	vaccination (Table S1). All of the samples were collected one month following
128	booster vaccine injection at Chinese PLA General Hospital. The Omicron-binding
129	antibody titers were boosted 4-, 25- and 16-fold by the booster injection of
130	heterologous IAV and PRV vaccines or homologous AdV vaccine, respectively,
131	compared with the no-booster control (Fig. 3A). For Omicron-blocking antibodies, the
132	PRV and AdV booster groups exhibited an identical blocking positive rate (80%),
133	which was higher than that of the control (3%) or IAV booster group (53%) (Fig. 3B
134	and Fig. S3). The neutralizing NT_{50} titers for the Omicron variant in the control group
135	and the IAV, PRV, and AdV booster groups were 15, 68, 313, and 228, respectively
136	(Fig. 3C and Fig. S4). Notably, a heterologous PRV booster induced the highest
137	degree of neutralizing immunity against both the prototype and the Omicron strains
138	compared with the no-booster control and the other two boosters (Fig. 3C and Fig.
139	S4).
140	All four of the above-mentioned vaccines have been developed based on the
141	prototype strain. It is possible to achieve a superior Omicron-neutralizing immunity
142	by variant vaccine boosters, especially when taking into account that some variants
143	such as Beta and Delta share some common key mutations with the Omicron variant.
144	Next, we developed various RBD-encoding mRNA vaccine candidates based on
145	prototype, Beta, Delta and Omicron strains as booster shots in BALB/c mice
146	following a single-dose prime injection with a prototype S-encoding mRNA vaccine
147	candidate, in order to assess the impact on humoral immunity against the Omicron
148	variant (Fig. 4A). Beta-Delta represents a vaccine combination of Beta and Delta

149	vaccine candidate with either half the other vaccine booster dose. The mice
150	immunized with a prime injection induced binding and neutralizing but no detectable
151	blocking antibodies against the Omicron variant, whereas all binding, neutralizing and
152	blocking antibodies against the prototype were detected in those mice (Fig. 4B-D).
153	The mice immunized with all types of booster shots had significantly elevated anti-
154	prototype strain binding, blocking, and neutralizing antibody titers, as well as anti-
155	Omicron binding and neutralizing antibody titers (Fig. 4B-D). In addition, all of the
156	booster groups induced significantly higher anti-Beta and anti-Delta binding antibody
157	titers compared with the no-booster control group (Fig. S5-6). However, only mice
158	immunized with Delta and Omicron boosters developed significantly higher anti-
159	Omicron blocking antibody titers compared with no booster control (Fig. 4C).
160	Notably, the prototype, Beta, Delta, Beta–Delta and Omicron vaccine boosters elicited
161	Omicron-neutralizing NT_{50} titers with values of 423, 1,202, 3,073, 1,548, and 7,710,
162	respectively, and only those elicited by Omicron booster were significantly higher
163	than those by the prototype booster (Fig. 4D), suggesting that Omicron-based mRNA
164	vaccine booster is superior to prototype-based mRNA vaccine booster in elevating
165	Omicron-neutralizing immunity.
166	Discussion
167	Since its emergence, the SARS-CoV-2 Omicron variant has been spreading at an
168	unprecedented speed. Consistent with its far more mutations in spike protein than
169	other variants, we demonstrated that the Omicron variant remarkedly escaped from

170 neutralizing antibody response elicited by full-course vaccinations of approved IAV

171	and AdV vaccines. To boost anti-Omicron response to sufficiently high titers so as to
172	provide some protection against Omicron infection, a booster shot may be necessary.
173	Here we showed that for prime vaccinations with IAV and AdV, a heterologous
174	vaccine booster with AdV and PRV, respectively, generated the highest increase in
175	Omicron-neutralizing antibody titers. Although the sample number in AdV booster
176	with prime IAV vaccinations was small (n=7), the robust increase in the Omicron-
177	neutralizing activity supports the heterologous AdV booster administration. Currently,
178	all of the approved vaccines have been developed based on the SARS-CoV-2
179	prototype strain. Using the mouse model, we further demonstrated that prototype
180	booster significantly increased the prototype vaccine-elicited Omicron-neutralizing
181	activity. Although the Beta and Delta variants harbor some identical or similar key
182	mutations to the Omicron variant, it is only the Omicron-based but not Beta- or Delta-
183	based vaccine booster that exhibited a significantly higher ability of improving
184	Omicron-neutralizing immunity. Taken together, our systematical investigation of
185	impact of various vaccine boosters on improving Omicron-neutralizing immune
186	response yielded important data to guide possible future booster shots to contain the
187	Omicron pandemic.
188	Structural comparisons have allowed us to classify RBD-targeted neutralizing
189	antibodies into four class groups (19). Class 1 and Class 2 antibodies bind on, or in
190	close proximity to the ACE2-binding footprint, and they can potently neutralize
191	viruses by blocking the interaction of RBD with ACE2, thereby preventing viral
192	attachment to host cells (20). As there are concentrated mutations on the ACE2-

193	binding footprint in Omicron RBD, these antibodies showed dramatic or complete
194	loss of the neutralizing activity against the Omicron variant (17). Thus, Omicron-
195	blocking titers of human serum specimens showed a substantial decrease compared
196	with the prototype-blocking titers. There are also class 3 and class 4 neutralizing
197	antibodies which bind distant from ACE2-binding site and do not block ACE2
198	interaction. These antibodies may destabilize the spike trimmer protein, and the
199	antibody epitopes are more conserved in the Omicron variant (17) . In theory, these
200	antibodies are the main contributors of cross-neutralization against the Omicron
201	variant in prototype-vaccinated human serum. That also leads to a moderate decrease
202	in Omicron-neutralizing antibody titers in comparison with Omicron-blocking
203	antibody titers.

205 Acknowledgments

206	We thank professor	Weijin Huang fro	m National Institutes	s for Food and D	rug Control
-----	--------------------	------------------	-----------------------	------------------	-------------

- 207 (NIFDC) for kindly providing SARS-CoV-2 prototype and Omicron pseudovirus.
- 208 Funding: This work was supported by the Strategic Priority Research Program of the
- 209 Chinese Academy of Sciences (XDB29040201) and the National Natural Science
- 210 Foundation of China (NSFC) (81901680). Author contributions: J.Y., Y.S., and
- 211 Q.H. designed the study; F.G., D.L., Y.L., K.L, Y.W., J.X., W.J., X.H., Z.C., and R.J.
- collected human serum specimens; J.Z, Q.L., S.T., L.L., H.W., L.H., and L.J.
- 213 conducted all assays. J.Y., Q.H., and N.G. analyzed and interpreted the data. Q.H.
- 214 wrote the manuscript. Q.H. and J.Y. discussed and edited manuscript. Competing
- 215 interests: The Institute of Microbiology, Chinese Academy of Sciences (IMCAS)
- 216 holds the patent on ZF2001 vaccine. Data and materials availability: All data are
- available in the main text or the supplementary materials.
- 218

Fig. 1. Serum binding, blocking and neutralizing antibody titers of convalescents 220 and vaccinated individuals were markedly lower against Omicron compared to 221 wild-type SARS-CoV-2. Samples included sera obtained from convalescents (n=25), 222 223 one month after two-dose vaccination with IAV (n=30) or a single-dose AdV (n=30), and six months after three-dose vaccination with PRV (n=28). (A) Serum binding 224 antibody titers were detected by ELISA assay. Coated antigen was wild type RBD or 225 226 Omicron RBD. Dotted line indicates the limit of detection (>8). (B) hACE2-blocking antibody titers were detected by ELISA using wild-type or Omicron spike protein, 227 which binds to human ACE2. The dotted line indicates the limit of detection (>4). (C) 228 229 Pseudovirus neutralization titers, expressed as 50% neutralization dilution (NT₅₀). The pseudoviruses used in the study included both wild-type strain and Omicron. The 230 dotted line indicates the limit of detection (>10). IAV represents inactivated vaccines 231 232 (CoronaVac and BBIBP-CorV). PRV represents recombinant protein subunit vaccine (ZF2001). AdV represents adenovirus-vectored vaccine (Convidecia). 233

Fig. 2. Serum binding, blocking and neutralizing antibody titers of no booster 235 control and various vaccine boosters following prime vaccination with two-dose 236 IAVs. Samples were obtained from participants without vaccine booster (n=42), with 237 IAV (IAV-b, n=39), AdV (AdV-b, n=7), or PRV (PRV-b, n=45) boosters following 238 two-dose prime vaccination with IAV 4-8 months earlier. (A) Serum binding antibody 239 titers were detected by ELISA. Coated antigen was wild type RBD or Omicron RBD. 240 241 Dotted line indicates the limit of detection (>8). (B) hACE2-blocking antibody titers were detected by ELISA using SARS-CoV-2 wild type and Omicron spike proteins 242 which bind to human ACE2. The dotted line indicates the limit of detection (>4). (C) 243 Pseudovirus neutralization titers, expressed as 50% neutralization dilutions (NT₅₀). 244 The pseudoviruses used in the study included wild-type strain and Omicron. The 245 dotted line indicates the limit of detection (>10). IAV represents inactivated vaccines 246 247 (CoronaVac and BBIBP-CorV). PRV represents recombinant protein subunit vaccine (ZF2001). AdV represents adenovirus-vectored vaccine (Convidecia). 248

249

250 Fig. 3. Serum binding, blocking and neutralizing antibody titers of no booster

251 control and various vaccine boosters following a single-dose prime vaccination

with AdV. Samples were obtained from participants without vaccine booster (n=30),

with IAV (IAV-b, n=30), AdV (AdV-b, n=30), or PRV (PRV-b, n=30) boosters

following a single-dose prime vaccination with IAV 4–8 months earlier. (A) Serum

255 binding antibody titers were detected by ELISA. Coated antigen was wild type RBD

or Omicron RBD. The dotted line indicates the limit of detection (>8). (B) hACE2-

257 blocking antibody titers were detected by ELISA using SARS-CoV-2 wild type and

258 Omicron spike proteins which bind to human ACE2. The dotted line indicates the

limit of detection (>4). (C) Pseudovirus neutralization titers, expressed as 50%

260 neutralization dilutions (NT₅₀). The pseudoviruses used in the study included wild-

type strain and Omicron. The dotted line indicates the limit of detection (>10). IAV

262 represents inactivated vaccines (CoronaVac and BBIBP-CorV). PRV represents

263 recombinant protein subunit vaccine (ZF2001). AdV represents adenovirus-vectored

264 vaccine (Convidecia).

265

Fig. 4. Investigation of various RBD-encoded mRNA vaccine boosters based on 266 SARS-CoV-2 prototype, Beta, Delta, Beta plus Delta and Omicron following a 267 single prime injection. Groups of BALB/c mice (n=6) received no booster or 268 different vaccine booster shot following a prime immunization with wild type S-269 270 encoding mRNA vaccine candidate via intramuscular route. Mouse serum were obtained at 10 days following the booster injection. (A) Mice immunization schedule. 271 (B) Mouse sera binding antibody titers were detected by ELISA. Coated antigen was 272 wild type RBD or Omicron RBD. The dotted line indicates the limit of detection 273 (>10). (C) hACE2-blocking antibody titers were detected by ELISA using SARS-274 CoV-2 wild type and Omicron spike proteins which bind to human ACE2. The dotted 275 line indicates the limit of detection (>10). (D) Pseudovirus neutralization titers, 276 expressed as 50% neutralization dilutions (NT_{50}). The pseudoviruses used in the study 277 included wild-type strain and Omicron. The dotted line indicates the limit of detection 278 (>10). P values were analyzed with One-Way ANOVA (ns, p>0.05, *p<0.05, 279 **p<0.01, ***p<0.001, and ****p<0.0001). 280

281 Reference

282	1.	E. Cameroni et al., Broadly neutralizing antibodies overcome SARS-CoV-2
283		Omicron antigenic shift. Nature, (2021).
284	2.	Q. Huang et al., A single-dose mRNA vaccine provides a long-term protection
285		for hACE2 transgenic mice from SARS-CoV-2. Nature communications 12,
286		776 (2021).
287	3.	Y. J. Park et al., Antibody-mediated broad sarbecovirus neutralization through
288		ACE2 molecular mimicry. Science (New York, N.Y.), eabm8143 (2022).
289	4.	R. Shi et al., A human neutralizing antibody targets the receptor-binding site of
290		SARS-CoV-2. Nature 584, 120-124 (2020).
291	5.	L. Liu et al., Striking Antibody Evasion Manifested by the Omicron Variant of
292		SARS-CoV-2. <i>Nature</i> , (2021).
293	6.	D. Planas et al., Considerable escape of SARS-CoV-2 Omicron to antibody
294		neutralization. Nature, (2021).
295	7.	M. Tanriover et al., Efficacy and safety of an inactivated whole-virion SARS-
296		CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised,
297		placebo-controlled, phase 3 trial in Turkey. Lancet (London, England) 398,
298		213-222 (2021).
299	8.	S. Xia et al., Safety and immunogenicity of an inactivated COVID-19 vaccine,
300		BBIBP-CorV, in people younger than 18 years: a randomised, double-blind,
301		controlled, phase 1/2 trial. Lancet Infect Dis, (2021).
302	9.	S. Yang et al., Safety and immunogenicity of a recombinant tandem-repeat

303		dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in
304		adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials.
305		Lancet Infect Dis, (2021).
306	10.	FC. Zhu et al., Immunogenicity and safety of a recombinant adenovirus type-
307		5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a
308		randomised, double-blind, placebo-controlled, phase 2 trial. Lancet (London,
309		England), (2020).
310	11.	L. Dai et al., A Universal Design of Betacoronavirus Vaccines against
311		COVID-19, MERS, and SARS. Cell 182, 722-733.e711 (2020).
312	12.	Y. Cao et al., Humoral immunogenicity and reactogenicity of CoronaVac or
313		ZF2001 booster after two doses of inactivated vaccine. Cell research 32, 107-
314		109 (2022).
315	13.	D. Hillus et al., Safety, reactogenicity, and immunogenicity of homologous
316		and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and
317		BNT162b2: a prospective cohort study. The Lancet. Respiratory medicine 9,
318		1255-1265 (2021).
319	14.	J. Ai et al., Recombinant protein subunit vaccine booster following two-dose
320		inactivated vaccines dramatically enhanced anti-RBD responses and
321		neutralizing titers against SARS-CoV-2 and Variants of Concern. Cell research
321 322		neutralizing titers against SARS-CoV-2 and Variants of Concern. <i>Cell research</i> 32 , 103-106 (2022).
321322323	15.	neutralizing titers against SARS-CoV-2 and Variants of Concern. <i>Cell research</i> 32 , 103-106 (2022). W. Dejnirattisai <i>et al.</i> , Reduced neutralisation of SARS-CoV-2 omicron

325	(2021)
	· · · · · · · · · · · · · · · · · · ·

- 16. S. Cele *et al.*, SARS-CoV-2 Omicron has extensive but incomplete escape of
- 327 Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection.
- 328 *medRxiv*, 2021.2012.2008.21267417 (2021).
- 329 17. W. Dejnirattisai *et al.*, Omicron-B.1.1.529 leads to widespread escape from
- neutralizing antibody responses. *bioRxiv*, (2021).
- 18. E. Cameroni *et al.*, Broadly neutralizing antibodies overcome SARS-CoV-2
- 332 Omicron antigenic shift. *bioRxiv*, (2021).
- 333 19. S. Tian *et al.*, Distinct BCR repertoires elicited by SARS-CoV-2 RBD and S
- 334 vaccinations in mice. *Cell discovery* **7**, 91 (2021).
- 20. C. Barnes *et al.*, SARS-CoV-2 neutralizing antibody structures inform
- therapeutic strategies. *Nature* **588**, 682-687 (2020).

338 Materials and Methods

339 <u>Human serum samples</u>

- 340 Human serum specimens were collected at Peking Union Medical College Hospital,
- 341 Beijing Ditan Hospital, 309 Hospital of the Chinese People's Liberation Army,
- 342 Fangzhuang Community Health Service Center, and the Institute of Microbiology of
- 343 the Chinese Academy of Sciences (IMCAS). The samples were selected based on
- 344 availability, and the specimens were obtained from individuals of different genders
- 345 with no specific inclusion/exclusion criteria. Participants included convalescents from
- 346 COVID-19, participants who had received full-course vaccination with inactivated
- 347 vaccines, recombinant protein subunit vaccines, and adenovirus-vectored vaccines, as
- 348 well as various types of vaccine boosters.
- 349 <u>Ethics statement</u>
- 350 This study was reviewed and approved by IMCAS (APIMCAS2021159). This study
- 351 was conducted in strict accordance with the recommendations in the "Guide for the
- 352 Care and Use of Laboratory Animals" issued by the Ethics Committee of IMCAS.
- 353 Informed consent was obtained from all of the participants.
- 354 <u>Cells, pseudoviruses, and animals</u>
- HEK293T (ATCC, CRL-1573) cells and Vero E6 cells (ATCC CRL-1586) were
- 356 cultured at 37°C in Dulbecco's modified Eagle's medium (DMEM) supplemented
- 357 with 10% fetal bovine serum (FBS). Pseudovirus of the SARS-CoV-2 wild type strain
- and the Omicron variant were provided by Professor Weijin Huang from National
- 359 Institutes for Food and Drug Control. Specific-pathogen-free (SPF) BALB/c 6-8-
- 360 week-old female mice were purchased from Beijing Vital River Animal Technology

|--|

362 housed and bred in a temperature-, humidity- and light cycle-controlled SPF mouse

```
363 facilities in IMCAS (20±2°C; 50±10%; light, 7:00-19:00; dark, 19:00-7:00).
```

- 364 <u>Protein expression and purification</u>
- 365 The objective recombinant protein sequences carried on the pCAGGS vector were
- 366 expressed via HEK293T cells. The supernatant of cell culture was collected five days
- 367 post-transfection. Initially, a Histrap excel 5 mL column (GE Healthcare) was used to
- 368 isolate proteins. The medium of samples collected from the Histrap columns was
- 369 substituted with PBS solution and then further purified with the Superdex 200 column
- 370 (GE Healthcare). Lastly, SDS-PAGE was performed to assess the purity of the
- 371 protein.

372 <u>ELISA</u>

373 SARS-CoV-2 RBD monomer proteins were coated with 50 mM carbonate-

bicarbonate buffer (pH 9.6) in Corning[®] 96-well Clear Polystyrene Microplates at 200

375 ng per well. The microplates were blocked by 5% skimmed milk at 37°C for one hour,

- and then the milk was discarded. The microplates were incubated with 100 μ L two-
- fold serially diluted mice serum at 37°C for one hour. The HRP-labeled anti-mouse Fc
- secondary antibody (Yeasen) was added after washing the microplates three times.
- Then, 50 µL of 3, 3', 5, 5'-tetramethylbenzidine (Beyotime Biotechnology) was used
- as a substrate and 50 μ L of 2 M sulphuric acid was used to stop the reactions. The
- absorbance was measured at 450 nm using a microplate reader (PerkinElmer). The
- 382 end-point antibody titers were defined as the highest dilution of the serum that

produced an optical absorption value (OD₄₅₀) 2.1 times higher than the background
value.

- 385 <u>hACE2-receptor-blocking assay</u>
- 386 hACE2-receptor-blocking antibodies were determined by ELISA. Corning® 96-well
- 387 Clear Polystyrene Microplates were coated with 20 µg/mL human ACE2 (hACE2)
- 388 protein overnight at 4°C. Serially diluted sera from groups of immunized mice or
- humans was added into coated wells and then 50 ng/mL of histidine-tagged SARS-
- 390 CoV-2 S proteins was added into wells for two hours at 37°C. Meanwhile, a set of
- 391 negative control without S protein and a set of positive control without serum were
- 392 necessary. After incubation and washing five times, Anti-His-tag-HRP was added and
- incubated for one hour. Then, 50 µL of 3, 3', 5, 5'-tetramethylbenzidine (Beyotime
- Biotechnology) was used as a substrate and 50µL of 2M sulphuric acid was used to
- stop the reactions. The absorbance was measured at 450 nm using a microplate reader
- 396 (Perkin Elmer). The reciprocal of the highest serum dilution that resulted in 50%
- inhibition of receptor binding was used as the titer of the serum.
- 398 <u>Pseudovirus neutralization assay</u>

399 96 Well White Plates (WHB) were used to detect the neutralization potency. Sera

- 400 from groups of mice and humans were serially diluted in DMEM medium
- 401 supplemented with 10% FBS. Pseudoviruses were diluted to 2×10^4 TCID₅₀/mL using
- 402 DMEM (10% FBS), and then 50 μ L of the diluted pseudoviruses was added to each
- 403 well. Meanwhile, a set of negative controls with only medium and a set of positive
- 404 controls with only pseudovirus were necessary. After incubation at 37°C for one

405	hour, 2×10^4 Vero E6 per cell were added to each well to make a final volume of
406	200 μ l, which was incubated for 24 hours in a 37°C, 5% CO2 incubator. After
407	incubation, the supernatant in the wells was discarded and 100 μ L of luciferase
408	detection reagent (PerkinElmer, Inc.) was added. The reaction was shaken at room
409	temperature for two minutes and the fluorescence values were read in a
410	chemiluminescence detector (Promega GloMax). The neutralization NT_{50} titer was
411	defined as the fold-dilution of serum necessary for 50% inhibition of luciferase
412	activity in comparison with virus control samples.
413	mRNA production
414	mRNA was produced using T7 RNA polymerase on linearized plasmids (synthesized
415	by Genescript) encoding codon-optimized SARS-CoV-2 S6P protein or prototype,
416	Beta, Delta, or Omicron RBD glycoprotein (residues 319-541). The mRNA was
417	transcribed to contain a 104 nucleotide-long poly(A) tail, and 1-methylpseudourine-
418	5'-triphosphate was used instead of UTP to generate modified nucleoside-containing
419	mRNA. The mRNA was purified by overnight LiCl precipitation at -20°C, centrifuged
420	at 18,800×g for 30 min at 4°C to pellet, washed with 75% EtOH, centrifuged at
421	18,800×g for 1 min at 4°C, and resuspended in RNase-free water. The purified mRNA
422	was analyzed by agarose gel electrophoresis and stored at -80°C until use.
423	Lipid-nanoparticle encapsulation of mRNA
424	mRNA was encapsulated in LNPs using a self-assembly process in which an aqueous
425	solution of mRNA at pH=4.0 was rapidly mixed with a solution of lipids dissolved in
426	ethanol. LNPs used in this study contained an ionizable cationic lipid,

427	phosphatidylcholine, cholesterol, and PEG-lipid at a ratio of 50:10:38.5:1.5 mol/mol
428	and were encapsulated at an mRNA to lipid ratio of around 0.05 (wt/wt). The
429	formulations were then diafiltrated against 100 x volume of Phosphate Buffered
430	Saline (PBS) through a tangential-flow filtration (TFF) membrane with 10 kD
431	molecular weight cut-offs (Sartorius Stedim Biotech), concentrated to a required
432	concentration, passed through a 0.22 μ m filter, and stored at 4°C with a concentration
433	of RNA of about 1 mg/mL.
434	Animal experiments
435	For immunization, 6-8-week-old female BALB/c mice were primarily vaccinated with
436	$4~\mu g$ S-encoding mRNA vaccine candidate via intramuscular (i.m.) route. At 10 days
437	following primary immunization, booster injections with PBS as negative control or
438	different variant RBD-encoding mRNA vaccine candidates were administered with a
439	dose of 4 μ g. Serum samples were collected at 10 days following booster vaccination,
440	inactivated at 56°C for 30 min, and stored at -80°C until use.
441	Statistical analysis
442	All of the data are expressed as the mean \pm standard error of the mean. For all of the
443	analyses, P values were obtained from Student's t-test (unpaired, two tailed) or One-
444	way ANOVA test. All of the graphs were generated with GraphPad Prism version 7.0
445	software.
446	

449

450 Fig. S1. Rate of positive samples for hACE2 blocking antibody detection against

- 451 **Omicron, relative to Fig. 2B.** Samples were obtained from participants without
- 452 vaccine booster (n=42), with IAV (IAV-b, n=39), AdV (AdV-b, n=7), or PRV (PRV-b,
- 453 n=45) boosters following two-dose prime vaccination with IAV 4–8 months earlier.

- 454
- 455 Fig. S2. Neutralization titers against Omicron pseudovirus of non-boosted and
- 456 **boosted with different vaccines following previously vaccinated with IAVs,**
- 457 relative to Fig. 2C.
- 458 Samples were obtained from participants without vaccine booster (n=42), with IAV

459 (IAV-b, n=39), AdV (AdV-b, n=7), or PRV (PRV-b, n=45) boosters following two-

- 460 dose prime vaccination with IAV 4–8 months earlier. The values were representative
- 461 of mean \pm SEM. P values were analyzed with Student's t-test (ns, p>0.05, *p<0.05,
- 462 **p<0.01, ***p<0.001, and ****p<0.0001).

463

464 Fig. S3. Rate of positive samples for hACE2 blocking antibody detection against
465 Omicron, relative to Fig. 3B. Samples were obtained from participants without
466 vaccine booster (n=30), with IAV (IAV-b, n=30), AdV (AdV-b, n=30), or PRV (PRV467 b, n=30) boosters following a single-dose prime vaccination with IAV 4–8 months
468 earlier.

469

470 Fig. S4. Neutralization titers against Omicron pseudovirus of non-boosted and

471 boosted with different vaccines following previous vaccination with AdV, relative

472 to Fig. 3C.

473 Samples were obtained from participants without vaccine booster (n=30), with IAV

474 (IAV-b, n=30), AdV (AdV-b, n=30), or PRV (PRV-b, n=30) boosters following a

475 single-dose prime vaccination with IAV 4–8 months earlier. The values represent

476 mean \pm SEM. P values were analyzed with t-test (ns, p>0.05, *p<0.05, *p<0.01,

477 ***p<0.001, and ****p<0.0001).

- 479 Fig. S5. Beta-binding titers of various RBD-encoded mRNA vaccine boosters
- 480 based on SARS-CoV-2 prototype, Beta, Delta, Beta plus Delta and Omicron

following a single prime injection, relative to Fig. 4. The dotted line indicates the

- 482 limit of detection (>10). P values were analyzed with One-Way ANOVA (ns, p>0.05,
- 483 *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001).


```
485 Fig. S6. Delta-binding titers of various RBD-encoded mRNA vaccine boosters
```

486 based on SARS-CoV-2 prototype, Beta, Delta, Beta plus Delta and Omicron

487 following a single prime injection, relative to Fig. 4. The dotted line indicates the

- limit of detection (>10). P values were analyzed with One-Way ANOVA (ns, p>0.05,
- 489 *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001).
- 490

Table S1 Characteristics of participants

	Group	Number	Male (%)	Female (%)	Age years mean (SD)	Immunization Regimen
Infection	Convalescent	25	15 (60%)	10 (40%)	37.3 (14.4)	No
	IAV	30	13 (43%)	17 (57%)	67.8 (7.5)	0, 1 month
Full-course vaccinations	AdV	30	9 (30%)	21 (70%)	37.5 (7.6)	0 month
	PRV	28	10 (36%)	18 (64%)	32.0 (8.0)	0, 1, 2 months
	no booster	42	12 (29%)	30 (71%)	37.1 (8.0)	0, 1 month
Prime vaccinations with two	IAV booster	39	10 (26%)	29 (74%)	37.9 (11.0)	0, 1, 4-8 months
doses of IAV	PRV booster	45	13 (29%)	32 (71%)	41.1 (8.2)	0, 1, 4-8 months
	AdV booster	7	3 (43%)	4 (57%)	33.1 (4.5)	0, 1, 4-8 months
	no booster	30	6 (20%)	24 (80%)	36.0 (7.2)	0 month
Prime vaccinations with one	IAV booster	30	6 (20%)	24 (80%)	35.0 (4.2)	0, 4-8 months
dose of AdV	PRV booster	30	7 (23%)	23 (77%)	38.7 (1.5)	0, 4-8 months
	AdV booster	30	7 (23%)	23 (77%)	35.8 (8.9)	0, 4-8 months