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ABSTRACT7

Single-cell RNA sequencing thoroughly quantifies the individual cell transcriptomes but renounces the spatial structure. Conversely,

recently emerged spatial transcriptomics technologies capture the cellular spatial structure but skimp cell or gene resolutions.

Cell-cell affinity estimated by ligand-receptor interactions can partially reconstruct the quasi-structure of cells but falsely include

the pseudo affinities between distant or indirectly interacting cells. Here, we develop a software package, STORM, to reconstruct

the single-cell resolution quasi-structure from the spatial transcriptome with diminished pseudo affinities. STORM first curates the

representative single-cell profiles for each spatial spot from a candidate library, then reduces the pseudo affinities in the intercellular

affinity matrix by partial correlation, spectral graph sparsification, and spatial coordinates refinement. STORM embeds the estimated

interactions into a low-dimensional space with the cross-entropy objective to restore the intercellular quasi-structures, which

facilitates the discovery of dominant ligand-receptor pairs between neighboring cells at single-cell resolution. STORM reconstructed

structures achieved shape Pearson correlations ranging from 0.91 to 0.97 on the mouse hippocampus and human organ tumor

microenvironment datasets. Furthermore, STORM can solely de novo reconstruct the quasi-structures at single-cell resolution, i.e.,

reaching the cell-type proximity correlations 0.68 and 0.89 between reconstructed and immunohistochemistry-informed spatial

structures on a human developing heart dataset and a tumor microenvironment dataset, respectively.

8

Introduction9

Revealing the spatial context and molecular abundance of cells and tissue is critical for understanding the10

composition and functions of complex tissues. Single-cell RNA sequencing (scRNA-seq) technologies quantify the11

single-cell transcriptome by a high sequencing depth with whole-transcriptome coverage1. The thorough scope of12

single-cell transcriptome enables investigations on cell heterogeneities, subpopulations, and interactions2, 3. However,13

the isolation procedure renounces the spatial context of these cells.14

Spatial transcriptomics (ST) technologies have been developed to acquire spatial context and expression profiles15

simultaneously. High-plex RNA imaging technologies4–6 only localize dozens to hundreds of genes, and spatial16

barcoding technologies such as 10X Visium, Slide-Seq, and HDST7–9 yield a greater magnitude. However, they17
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have achieved unsatisfied abundances or inadequate cell resolution, which restricts the potential of ST data for18

downstream analyses.19

Except for wet-lab approaches, researchers also proposed computational methods to restore the spatial structure20

from the scRNA-seq data. NovoSpaRc10 assigns cells to tissue locations by probability. Its premise only considers21

the similarity in gene expression as the neighboring factor, neglecting the heterogeneity of, for instance, the transition22

areas11 or immune cell infiltration regions12. CSOmap reconstructs the intercellular proximity based on the contact-23

required ligand-receptor (LR) interactions13, 14. Specifically, CSOmap estimates the affinity of two cells by the24

mRNA expression summation of the interacting LR pairs, forming a k-nearest neighbor affinity graph simulating25

cell-cell interactions. However, the pseudo affinities in the affinity graph remain untended, leading to a defective26

reconstruction of spatial structure.27

Researchers also started to integrate the ST data with the scRNA-seq data. Early attempts for integration focus28

on reconstructing cellular spatial structure based on spatial references such as immunohistochemistry (IHC) or29

fluorescence in situ hybridization (FISH)15, 16. Spatial barcoding presents a new aspect for integrating scRNA-seq30

and spatial data, leading to two primary integration approaches: deconvolution and mapping17. One objective of31

deconvolution methods is to infer the proportion of cell types from each ST capture location or spot in the ST32

data. Provided with a labeled scRNA-seq dataset, non-negative least squares and dampened weighted least squares33

linear regression can deconvolute the captured spot mixtures18, 19. Alternatively, deconvolution can be accomplished34

by fitting a model of negative binomial distribution or Poisson distribution to the scRNA-seq expression with35

the empirical data of ST spot as a prior. Subsequently, maximized posterior yields an estimation of the cell-type36

distribution20–22. Moreover, several studies on the tumor microenvironment (TME) map subgroups of single-cell37

to specific subregions in ST data by the enrichment score23, 24. These mappings improve the resolution on the38

subpopulation level but require prior clustering and annotation on both data types, which is inaccurate when39

mapping tissue regions comprised of mixed cell types. SpaOTsc25 maps cells by minimizing the gene expression40

dissimilarity between single-cell data and ST with the optimal transport distance, neglecting the heterogeneity in41

spot.42

Here, we present a software package, STORM, that recapitulates the single-cell resolution cell quasi-structure43

of the spatial transcriptome from a sparsified affinity graph where the pseudo affinities are reduced by partial44

correlation26, spectral sparsification27, and spatial coordinates refinement. Instead of solely delivering cell-type45

acknowledgment, STORM locates single-cell expression profiles in spots from a candidate library, hence enabling the46

exploration of the spatial intercellular communication mechanisms at single-cell resolution.47
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Results48

Overview of STORM algorithm: reconstructing spatial organization at single-cell resolution from the spatial49

transcriptome50

STORM provides a prepossessing module for ST datasets which select and aggregate single-cell profiles representing51

the expression profile of each spot. For a spot of the spatial data, the module derives the quantities of each cell type52

by deconvoluted cell type proportions produced by the stereoscope20 and a prespecified parameter ℓs representing53

the average number of cells in a spot (Figure 1a). The module then aggregates a set of single cells agreeing with54

the derived quantities and maximizing the correlation between the aggregated cell expression profile and the ST55

spot. Note that if the paired single-cell data are unavailable, we can use a labeled single-cell candidate library of the56

similar tissue to create aggregations (Figure 1b).57

Cells interact with proximal cells, and in this work, we use the term affinity as the measurement for the interaction58

strengths between interacting cells. We can build a cellular spatial configuration, termed quasi-structure, from the59

affinity values. We first assume that the cell-cell affinity can be estimated by the concentration of LR complexes60

which can be approximated by their mRNA abundance. Furthermore, we assume that cells compete for space because61

of the limitation of biological constraints. STORM has no prior knowledge of cell proximity when forming the initial62

affinity matrix. It calculates the affinity value between any two cells. Therefore, the approximated affinities based63

on the first assumption contain pseudo affinities between distant or indirect interacting cells. Following the above64

assumptions, STORM reconstructs the quasi-structure from scRNA-seq data with four steps: (a) establishing the65

initial affinity matrix by the LR expression profiles, which falsely includes the pseudo affinities between distant or66

indirect interacting cells; (b) constructing an affinity graph regards cells as vertices and the initial affinity matrix as67

the adjacency matrix; (c) reducing the underlying pseudo affinities in the initial affinity graph by partial correlation,68

spectral graph sparsification, and spatial coordinates refinement; and (d) embedding the sparsified affinity graph69

into a low-dimensional space as the quasi-structure in the single-cell resolution.70

STORM approximates the cell-cell affinity by the mRNA abundance of interacting LR pairs (Figure 1c). For71

initial affinities of high variances, STORM replaces the initial cell-cell affinity matrix with the precision matrix72

to reduce the indirect correlations for subsequent procedures (Figure 1d). STORM reduces the pseudo affinities73

from the initial affinity matrix by imposing spectral graph sparsification and spatial coordinates refinement on the74

affinity matrix (Figure 1d). STORM adopts a local fuzzy set (LFS) embedding method to embed the processed75

affinity matrix to a low-dimensional space. The LFS step first builds a fuzzy topological representation from the76

processed affinity matrix, limiting the number of neighbors required by the second assumption (Figure 1e, top77

panel). Subsequently, the LFS step optimizes the representation in the low-dimensional space by minimizing the78

fuzzy set cross-entropy between the two representations (Figure 1e, bottom panel). STORM can take the curated79

single-cell aggregates, yielding the reconstructed quasi-structure for downstream analyses (Figure 1f). The embedding80
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result, that is, the reconstructed quasi-structure by STORM, facilitates further evaluation of discovering dominant81

ligand-receptor pairs between neighboring cells at single-cell resolution (Figure 1g). Furthermore, with proper82

sparsification, STORM is capable of de novo reconstruction from the single-cell transcriptome. In the head and neck83

cancer (HNC) scRNA-seq dataset, STORM recapitulates the quasi-structure features which are commonly observed84

in the partial epithelial to mesenchymal transition (p-EMT) process: (a) p-EMT cells locating at the interface85

between malignant cells and cancer-associated fibroblasts (CAF) cells; (b) CAF-1 cells presenting at closer proximity86

to the p-EMT cells compared to CAF-2 cells; (c) malignant cells showing minimum interactions with immune cells87

due to immune evasion (Figure 1h).88

Assessing the performance of STORM in processing ST datasets89

We demonstrate the performance of STORM on simulated and real-world ST datasets.90

In silico evaluation of STORM on processing the ST datasets91

We assess the validity of STORM in processing ST data coupled datasets by simulated datasets generated from92

the scRNA-seq data of the mouse hippocampus28. Since neurons, oligodendrocytes, and astrocytes are the main93

constituents of the hippocampus, we prepare two distinct scRNA-seq candidate libraries and coupled ST data94

for the simulated datasets: library A consisting of astrocytes and neuron cluster 1, and library B consisting of95

oligodendrocytes and neuron cluster 2. Moreover, the average number of cells per spot varies according to the96

tissue density and the spot diameter23, 29, 30. Therefore, we simulate ST data with the parameter number of cells97

per spot set as 10, 20, 30, and 40 to test the adaptability of the preprocessing module. Meanwhile, we perform98

five simulations for each parameter and candidate library to assess the robustness of STORM. Every simulated ST99

dataset consists of 30 spots. For each spot in the dataset, we arbitrarily sample the designated number of cells from100

each candidate library and regard the aggregated expression profile of these selected cells as the spot expression101

simulating the ST profile.102

The preprocessing module of STORM selects 300 (ℓs = 10), 600 (ℓs = 20), 900 (ℓs = 30) and 1200 (ℓs = 40) cells103

respectively from each candidate library, constituting 30 single-cell aggregates to represent the expression profile of104

ST spots. The aggregated expression profiles of each single-cell aggregate regarding various parameters ℓs achieve105

an average Pearson correlation coefficient r = 0.97 with their corresponding ST profiles (Figure 2a). Moreover,106

we perform a paired t-test on the expression correlation of simulations across different cell-number parameters in107

each candidate library. In the best simulation of each candidate library, that is, the simulation with the highest108

average expression correlation, we observe that in candidate library A, the expression correlation differences between109

parameter ten and other parameters are significant. Yet, in candidate library B, the differences between parameters110

are not statistically significant (Figure 2b).111

Subsequently, STORM reconstructs the quasi-structure from the selected single-cell aggregates. The quasi-112

structure of each simulation reached a high shape correlation of r = 0.94, ℓs = 10 with the simulated spot organization113
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(Figure 2c). The quasi-structure has a coincidental interspot organization as the cells originating from the same114

spot remain in the same compartment as illustrated by the Voronoi partition (Figure 2c, right). Furthermore, we115

compare the shape correlation between various parameters, and the average correlations decrease with the increase116

in cell number per spot (Figure 2d).117

We also calculate the expression correlation of each gene between ST and single-cell aggregates. Nckap5l and118

Smdt1, achieve high expression correlations, r = 0.82, r = 0.67, between ST spots and single-cell aggregates (Figure 2e).119

The high-quality single-cell aggregates and the quasi-structure demonstrate the accuracy and robustness of the120

preprocessing module of STORM.121

STORM reconstructed a high-quality quasi-structure for the mouse hippocampus dataset122

We apply STORM to reconstruct the single-cell resolution quasi-structure for the mouse hippocampus dataset.123

The spatial data provided by stereoscope20 contains 609 spots, and the single-cell library from the mousebrain.org124

contains 8,449 cells, re-clustered and annotated by stereoscope, covering 56 subtypes across seven major groups.125

The preprocessing module of STORM selects 6,071 cells that constitute 609 single-cell aggregates (ℓs = 10) from126

the single-cell candidate library to represent the expression profile of ST spots. Then STORM reconstructs the127

quasi-structure from the selected single-cell aggregates (Figure 3a). The reconstructed quasi-structure of STORM128

achieves a 0.97 Pearson correlation with its coupling ST spots in the pairwise distance (Supplementary information,129

Table S1).130

Furthermore, we calculate the expression correlation of each gene between ST and single-cell aggregates. Cnp,131

Plp1 and Ppp3ca, achieve high expression correlations, r = 0.71, r = 0.70, r = 0.65, between ST spots and single-cell132

aggregates (Figure 3b, Supplementary information, Table S3). Meanwhile, the aggregated expression profile of each133

single-cell aggregate achieves a median Pearson correlation coefficient r = 0.66 with their corresponding ST profiles134

(Supplementary information, Fig. S1).135

The cell-type proximity summarized by cell locations is vital for downstream analyses. Thus, the recapitulation136

of such information should also be a metric for evaluating the reconstructed quasi-structure. Specifically, we137

use Kullback-Liebler (KL) divergence to assess the difference of the cell-type proximity between the original and138

quasi-structure. The quasi-structure achieves a low KL divergence, 0.067, in the cell-type proximity (Figure 3c,139

Supplementary information, Table S2). Moreover, we assess the effectiveness of each step in STORM by comparing140

the KL divergence with different combinations of embedding and sparsification methods (Figure 3c). Comparing the141

LFS embedding that STORM utilizes with constrained t-SNE used by CSOmap, the lower median KL divergence142

in the combination of LFS embedding with a sparsification method is demonstrated. For sparsification methods,143

spectral graph sparsification partially reduces the pseudo affinities in the cell-cell affinity matrix, hence achieving a144

smaller median KL divergence compared to the hard-filtering method of keeping the top fifty high-affinity edges for145

each node. The additional distance metric provided by spatial information effectively reduces more pseudo affinities146
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in the cell-cell affinity graph, leading to a smaller median KL divergence. The smallest KL divergence, 0.067, is147

acquired in the combination of LFS embedding and dual sparsification, which suggests the validity of each step in148

STORM.149

The well-captured neighboring information in the reconstructed quasi-structure enables identifying the driver LR150

pairs mediating interactions between cell types. In the reconstructed quasi-structure, we observe that the interactions151

between lipoprotein receptor-related protein 1 (Lrp1 ) and apolipoprotein E (apoE) is the leading interactions152

among neurons, vascular cells, and astrocytes (Figure 3d, Supplementary information, Fig. S2). LRP1 mediates153

the metabolism of Amyloid-beta (Aβ), whose accumulation is a vital pathogenic element of Alzheimer’s disease.154

Yet apoE can block the LRP1-mediated pathway in astrocytes, hindering the clearance of Aβ31. Hence, certain155

immunotherapy targeting apoE has been applied on APP/PS1 mice to meliorate the accumulation of Aβ32. The156

reveal of the fundamental interaction between Lrp1 and apoE in our quasi-structure consolidates the validity of157

STORM and, therefore, its capability of providing valuable biological insights.158

STORM uncovers the metastasis-promoting effect of HMGB1-SDC1 interaction in the human squamous cell carcinoma159

dataset160

High-quality reconstructions of STORM help reveal the underlying molecular mechanisms of human diseases. We161

apply STORM on the human squamous cell carcinoma (SCC) dataset of patient 02 in Andrew et al.’s work24. The162

ST and scRNA-seq data are collected from the same malignant skin tissue. The spatial data contains 666 spots, and163

the matching scRNA-seq data contains 2,689 cells across 14 cell types.164

The preprocessing module of STORM curates 6,625 cells with replacement regarding the SCC scRNA-seq data165

as the candidate library (ℓs = 10), forming single-cell aggregates to represent the expression profile of 666 spots in166

the spatial data. Subsequently, STORM rebuilds the quasi-structure from the curated single-cell aggregates. The167

reconstructed quasi-structure has high consistency, r = 0.91, with its coupling ST spot structure, regarding the168

pairwise distance (Figure 4a, Supplementary information, Table S1).169

Furthermore, we calculated the expression correlation of each gene between ST and single-cell aggregates170

(Supplementary information, Table S3). Several cell-type marker genes annotated in Andrew et al.’s work, e.g.,171

CALML5, SPRR1B, KRT2, achieve high expression correlations, r = 0.79, r = 0.65, r = 0.61, between ST spots and172

single-cell aggregates (Figure 4b). Moreover, the aggregated expression profile of each single-cell aggregate has a173

median Pearson correlation coefficient r = 0.72 with their corresponding ST profiles (Supplementary information,174

Fig. S1).175

The quasi-structure achieves a low KL divergence of 0.42 in the cell-type proximity between the original and the176

quasi-structure (Figure 4c, Supplementary information, Table S2). When comparing across different combinations of177

embedding and sparsification methods, STORM also achieves the smallest median KL divergence while combining178

dual sparsification and LFS embedding, which emphasizes the stability of STORM on cancer datasets.179
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Leveraging the high-quality quasi-structure STORM reconstructed, we identify the LR pair HLA-B-CANX as180

a driving force behind the interaction of T cells, constituting about 29% of the T cell affinities. Our finding is181

supported by a report regarding an impaired CD8+ T cell-mediated immune response due to the disturbance in182

HLA-B-CANX interaction in colorectal cancer33. We investigate the dominating LR pairs facilitating the crosstalk183

between T and epithelial cells. We identify that the interaction between HMGB1 and SDC1 contributes around184

30% to the affinity between T and epithelial cells. HMGB1 and SDC1 have been reported to associate with the185

drug resistance in glioma34. Furthermore, the increase in HMGB1 promotes tissue invasion and metastasis of186

cancer35, and SDC1 influences the migration of mouse keratinocytes36. Our finding connects HMGB1 with SDC1,187

indicating that the reported promotion of metastasis may result from the interaction between HMGB1 and SDC1.188

The discovery demonstrates that the high-quality quasi-structure reconstructed by STORM facilitates disclosing the189

decisive LR interaction underneath the cell-cell communications.190

STORM reveals different dominating LR pairs in two types of cancer cells from the high-quality quasi-structure191

Tumor heterogeneity has been an obstacle to cancer therapy since mutant clones escape and thrive from the targeted192

therapy. Our spatially informed single-cell transcriptome can characterize the driver interactions between distinct193

subpopulations. We apply STORM on the patient PDAC-A of the pancreatic ductal adenocarcinoma (PDAC)194

dataset in Moncada et al.’s work23. Three tissue sections of PDAC-A were sequenced. We use the spatial data of195

replica 1. The ST and scRNA-seq data are processed from the same malignant tissue. The spatial data contains 428196

spots, and the scRNA-seq data contains 1,926 cells annotated by 17 cell types.197

Regarding the PDAC scRNA-seq data as the candidate library, the preprocessing module of STORM curates198

4,289 cells with replacement (ℓs = 10), constructing single-cell aggregates to represent the expression profile of 428199

spots in the spatial data. Given the high variance in the affinity values of the PDAC dataset, STORM reconstructs200

the quasi-structure of the curated single-cell aggregates with the precision matrix form of affinity matrix. The201

reconstructed quasi-structure achieves high similarity, r = 0.93, of the pairwise distance with its coupling spatial202

data (Figure 5a, Supplementary information, Table S1).203

Moreover, we calculated the expression correlation of each gene between ST and single-cell aggregates (Supple-204

mentary information, Table S3). The feature gene of the main regions identified in Moncada et al.’s work, CRISP3,205

PRSS1, TM4SF1, also express in the corresponding regions in the quasi-structure (Figure 5b).206

Furthermore, the quasi-structure achieves a low KL divergence of 0.13 in the cell-type proximity between the207

original and the quasi-structure (Figure 5c, Supplementary information, Table S2). The KL-divergence between208

ST and reconstructed quasi-structure decreases after progressively reducing the pseudo affinities by spectral graph209

sparsification and spatial coordinates refinement. The smallest median KL divergence is also achieved with the210

combination of LFS embedding and dual sparsification.211

Subsequently, by evaluating the LR contribution to the cell-cell affinity, we observe that the interaction between212
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HLA-A and APLP2 contributes around 16% to the overall interaction potential in both TM4SF1 - and S100A4 -213

expressing cancer cells (Figure 5d). APLP2 can cause a reduction in the expression of the total cell surface major214

histocompatibility complex (MHC) class I37, which is a crucial molecule for cancer cell recognition and elimination.215

The high interaction between HLA-A and APLP2 observed in the quasi-structure indicates a potential immune216

escape mechanism adopted by both TM4SF1 - and S100A4 -expressing cancer cells. Expect for the mutual LR217

interactions, we also found distinct dominating LR pairs in these two cancer types (Figure 5d). The LR pair218

ITGB1-SPP1 is a major contributing factor to the interaction between TM4SF1 -expressing cancer cells between219

myeloid dendritic cell (mDC) and macrophage (Figure 5e). SPP1 has been proved to abet immune escape in220

lung adenocarcinoma through its mediation on macrophage polarization38. Experiments have also revealed how221

ITGB1-SPP1 interaction incites the cancer progression in ovarian cancer39. Our finding suggests that the interaction222

between ITGB1 and SPP1 potentially triggers the immune escape of PDAC. However, in S100A4 -expressing cancer223

cells, the interaction between ITGA3 and CALR is more prevalent (Figure 5d, right). ITGA3 has been identified224

as a biomarker for diagnosing and prognostic predicting pancreatic cancer40. The LR pair ITGA3-CALR has also225

been predicted as a poor-prognostic LR pair by other datasets from the same tissue in the recent work of Suzuki et226

al.41. These discoveries demonstrate that researchers can characterize the tumor heterogeneity with the high-quality227

quasi-structure by revealing the driver interactions between distinct subpopulations.228

Evaluating the effectiveness of STORM on de novo reconstruction of single-cell datasets229

We have demonstrated that the quasi-structure can be reconstructed from cell-cell affinity with proper sparsification.230

Therefore, we further evaluate the validity of STORM in reconstructing the spatial organization of scRNA-seq data231

without prior spatial structure.232

STORM outperforms CSOmap on the hepatocellular carcinoma (HCC) dataset233

We apply STORM on the HCC dataset consisting of 1,329 cells from Ren et al.’s work, for which the reconstruction234

of CSOmap obtains a Spearman correlation of r = 0.69 in the cell-type proximity with the IHC image of the same235

tumor sample. Given the large variance in the initial affinity values of the HCC dataset, STORM rebuilds the236

quasi-structure with the precision matrix form of affinity matrix. Compared with CSOmap, the reconstructed237

quasi-structure of STORM is visually less compact (Figure 6a) and achieves higher cell-type proximity, that is, a238

Spearman correlation of r = 0.89, with its IHC image reference (Figure 6b).239

Subsequently, we evaluate the performance of combinations in embedding and sparsification methods regarding the240

cell-type proximity similarity (Figure 6b, Supplementary information, Table S4). A higher correlation is observed in241

the combination of LFS embedding and any sparsification method when comparing LFS embedding with constrained242

t-SNE. Moreover, spectral graph sparsification reduces the pseudo affinities, achieving a higher correlation than the243

hard-filtering method. The comparison between different combinations reveals the collaborative contribution of LFS244

embedding and spectral graph sparsification for reconstruction.245
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The high-quality reconstructed structure enables investigations on intercellular regulatory mechanisms. The246

interaction between regulatory T cells (Tregs) and CD8+ T cells suggests an ongoing suppression of the immune247

response42, during which Treg cells induce the p38 and ERK1/2 signaling pathways in effective T cells, which248

initiate DNA damage, resulting in cell senescence43. Consistent with the previous study, we observe an increase in249

the mRNA expression of ERK1 in the Treg-CD8+ T cell interacting area, indicating the potential of STORM in250

discovering the immune response signals hidden in the scRNA-seq data.251

Furthermore, the well-captured cell-type proximity in the quasi-structure enables the analysis of the dominating252

LR pairs contributing to the cell-cell affinity. We analyze the main LR pairs between any two cell types. Specifically,253

we identified the difference in the dominating LR pair between Tregs and CD8+ T cells as well as between Treg and254

exhausted T cells, which indicates a distinct regulation mechanism of Treg in these two types of cells.CCL5 is one of255

the signature genes identified in exhausted T cells44. The contribution of CXCR3-CCL5 increases in the interaction256

between Treg and exhausted T cells compared with CD8+ T cells. Indicating that the Tregs originated expression257

of CXCR3 may trigger the exhaustion.258

The discovery demonstrates that the high-quality quasi-structure reconstructed de novo by STORM promotes259

the reveal of the LR interaction underneath the cell-cell regulatory mechanism.260

STORM recapitulates the signal transmission process in the developing human heart.261

We apply STORM on a human developing heart dataset consisting of 3,717 cells from the 6.5 post-conception weeks262

(PCW) heart45. We apply STORM to reconstruct the quasi-structure of the heart dataset. The 3D quasi-structure263

of the developing human heart demonstrates a compact structure (Figure 7a, left). The atrial cardiomyocytes are264

spatially segregated from ventricular cardiomyocytes (Figure 7a, middle), which is consistent with the separation of265

the atrium and the ventricle in anatomy (Figure 7a, right). Moreover, we evaluate the cell-type proximity similarity266

between the quasi-structure and the in situ sequencing data. The quasi-structure achieves a high normalized267

Spearman correlation of r = 0.68 in the cell-type proximity.268

When comparing the different combinations of embedding and sparsification methods, Figure 7b demonstrates that269

the reconstructed quasi-structure rebuilt by the combination of spectral sparsification and LFS embedding achieves270

the highest resemblance in cell-type proximity (Supplementary information, Table S4). The cell-type proximity271

STORM recapitulated includes fibroblasts and cardiac cells (Figure 7c), enabling fibroblasts to modify gene and272

protein expression, and ultimately cardiac function46. Ang II activates the paracrine secretion of TGF-β1 (TGFB1,273

transforming growth factor-β) and endothelin-1 (EDN1 ) in fibroblasts, leading to the cardiac myocyte hypertrophy274

(Figure 7d)47. Angiotensinogen (AGT) is a precursor for angiotensin I, which will be eventually converted to275

Ang II for further activities48. Therefore, we inspect the proximity of AGT high-express cell and TGFB1, EDN1276

high-express cell through the neighboring cell pair numbers between these cells in the quasi-structure(Figure 7d).277

We consider a pair of cells are neighboring if the distance is less than the median distance between any cell to278
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its third-nearest neighbor. The proximity between cells that express critical signaling genes provides conditions279

for signaling through paracrine, consistent with the experimentally validated signaling pathway. This consistency280

indicates the effectiveness of the quasi-structure rebuild by STORM to reveal the local signal transmission process in281

the tissue.282

Discussion283

The combination of the spatial context and expression profile of each cell enables our understanding of the284

intercellular regulation mechanism of tissue homeostasis and pathogenesis. The scRNA-seq discards the spatial285

context, and ST technologies skimp the cell resolution. Therefore, current technologies are inadequate to produce286

the spatial structure of tissues with single-cell resolution. In this work, we presented STORM to reconstruct the287

single-cell resolution spatial structure from the spatial and/or single-cell transcriptome. STORM rebuilds the288

quasi-structure of cells by embedding the sparsified affinity graph to a low-dimensional space. The reconstruction289

accuracy of STORM has been demonstrated in the mouse hippocampus, human heart, and tumor microenvironment290

of different organs in expression similarity, shape similarity, and cell-type proximity.291

Although STORM relies on a comprehensive and valid LR pair database, extensive tests across different organisms292

and diseases demonstrate a consistent performance of STORM. The recapitulation of literature-supported major LR293

interactions in TMEs and immune responses also shows the effectiveness of the default LR datasets in providing valid294

biological observations. However, STORM can delineate a broader range of interactions with a higher accuracy if a295

more extensive LR pair network is expected with future developments. In addition, the prepossessing module benefits296

from a comprehensive single-cell candidate library. It is therefore subjected to the influence of sequencing depth of297

ST data, the imbalanced sizes, inconsistent cell-type constitution, and batch effects between ST and scRNA-seq298

data, and the accuracy of the estimated cell numbers per spot. Nevertheless, our evaluations consistently show that299

STORM produces high-correlation quasi-structures across various paired and unpaired datasets with different library300

sizes. In particular, we recommend using paired datasets for disease studies to ensure an accurate reconstruction301

against high heterogeneity among samples. In contrast, unpaired datasets have little influence on normal tissues302

with smaller divergence in mRNA expression across different samples.303

Previous deconvolution methods18–22 failed to achieve a single-cell resolution, integrative methods either fall304

short in dealing with heterogeneous tissue10, 23, 24 or omit single-cell datasets without spatial reference25, and305

LR-based reconstruction13 neglected the pseudo affinities of distant or indirect interacting cells. Unlike previous306

methods, STORM utilizes the single-cell transcriptome, spatial transcriptome, and LR interactions to reconstruct307

a quasi-structure of cells in single-cell resolution by a curated affinity graph. A limitation of the preprocessing308

module is that the actual number of cells in each spot varies according to spots and tissues. For instance, tissue like309

the lung, which contains many alveoli, leaves plenty of cavities in the tissue section49. Therefore hard to estimate310

the cell number in each spot accurately. For future development, we intend to include an algorithm for accurate311
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quantification of cell numbers per spot by the high-resolution histological image of the tissue section.312

STORM reconstructs the spatial structure in single-cell resolution, utilizing the spatial context of each cell. The313

quasi-structure facilitates the acquisition of the dominating LR pairs in each cell pair, leading to the discovery of314

subpopulations based on dominating LR since cell talk subdivides cell functions. With a precise reconstruction,315

STORM reveals the co-occurrence of different types of cells and divergent colonization of subpopulations, which316

cannot be detected solely by scRNA-seq or ST technologies. Besides, STORM can acquire the dominating LR317

pairs in each cell pair, leading to the discovery of novel subpopulations based on dominating LR since cell talk318

subdivides cell functions. These abilities shed light on the studies on tumor heterogeneity and immune therapy.319

For instance, identifying the disparity of immune microenvironment around different cancer subpopulations could320

guide medication and metastatic evaluation. Furthermore, the quantification of intercellular interactions between321

the cancer cell and immune cell can predicate the prognosis of patients with clinical information.322

Materials and Methods323

Constructing the single-cell aggregates to reproduce ST expression profiles324

We propose a preprocessing module to integrate ST data with scRNA-seq data.The module takes two parameters,325

the cell number ℓs and cell proportion ps,t, t ∈ T for a ST spot s, T denotes the set of cell types. The parameter ℓs326

denotes the average number of cells in a spot. The number of cells captured in a spot varies according to sequencing327

methods and tissue density; our module allows users to specify it. The software package stereoscope20 can infer328

ps,t. Stereoscope assumes a negative binomial distribution model on single-cell and ST data, building a reference329

expression profile of each cell type from the scRNA-seq data, then maximizing the posterior estimation to obtain the330

approximate cell proportion at every spot of the ST dataset.331

Let ks,t denote the cell number of type t at ST spot s, then ks,t ≈ ℓs ×ps,t = fs,t. Note that fs,t can be fractional.332

Here, we round on fs,t randomly50 to acquire the integer number of ks,t while stabilizing the expectation of ℓs.333

Denoting the decimal part of fs,t as {fs,t} ∈ [0,1), fs,t randomly rounds up or down to ks,t according to the334

probability P (ks,t = ⌈fs,t⌉) = {fs,t}.335

The prepossessing module chooses cells from a predefined library to reproduce the single-cell resolution for the336

ST data. The summed expression profile of all chosen cells in Ms termed the aggregated expressions E(Ms). It337

curates the single-cell aggregates set Ms by maximizing the Pearson correlation between E(Ms) and the expression338

E(s) of spot s; that is, by the following objective function.339

maximize
∑

s∈S,Ms⊂L
ρ(E(Ms),E(s)) s.t. ks,t = |{c ∈ Ms|t(c) = t}| ∀t ∈ T (1)

The number of chosen cells from each type in Ms should be the same as the value of ks,t. where L ∈ Rm×n is the340

expression matrix of the single-cell library composed of m cells and n genes.341

The module adopts a heuristic method of two steps, initialization and swapping to optimize the objective function.342

The initialization selects top ks,t cells of type t for spot s according to the Pearson correlation coefficients between343
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the spot and the cell from the single-cell candidate library.344

If a better objective value is obtained, the swapping step swaps a cell in aggregates with a cell from the library.345

The process is repeated until convergence, or a predefined maximum number of iterations is achieved. The swapping346

process can be time-consuming, and we adopted a local sensitive hash (LSH) strategy to accelerate the swapping347

step51. During the swapping procedure, the module removes one cell from the aggregate Ms at spot s randomly,348

denoting the aggregate after the removal as Ms
′. The module chooses a new cell m in each iteration to further349

increases the ρ(E(Ms
′ ∪{m}),E(s)). It can be chosen by querying a cell in LSH that has the highest correlation350

with E(s)−E(Ms
′).351

The module performs feature selection52 on the single-cell candidates to reduce the noise introduced by sequencing352

and low variable genes by choosing the top 3,000 highly variable genes and 80% highly variable LR genes to maintain353

the capability to infer the intercellular affinity.354

Measuring the intercellular affinity by ligand-receptor interactions in single-cell profiles355

We denote the single-cell expression matrix as T ∈ Rr×n consisting of r cells and n genes. With nlr ligand-receptor356

(LR) pairs, we define the ligand and receptor expression matrices as TL and TR ∈ Rr×nlr , whose columns are the357

corresponding LR pairs’ ligand and receptor expressions, respectively. The multiplication of the two expression358

matrices yields the affinity between each pair of cells suggested by the co-expression of each LR pair. As a359

cell can simultaneously express both ligand and receptor genes, we have two symmetric terms A1 = TLTT
R and360

A2 = TRTT
L representing two possible LR orders in each cell pair. We formulate the initial affinity matrix W as361

A1 +A2 = TLTT
R +TRTT

L of size r × r.362

Reducing the pseudo affinities to refine the affinity matrix by sparsification363

The initial affinity matrix includes pseudo affinities between distant or indirectly interacting cells. Here we present364

three different approaches for diminishing the pseudo affinities, that is, partial correlation, spectral graph sparsification,365

and spatial coordinates refinement for ST coupled datasets.366

We first adopt partial correlation to reduce the pseudo affinities for initial affinities of high variance26. Partial367

correlation identifies the latent variables representing direct causation and removes indirect relationships among368

entities53, 54. While a covariance matrix represents the relations between any two entities, the inverse of a covariance369

matrix, also known as the precision matrix, approximates the partial correlations among entities55. For the block370

expression matrix TLR =
( TL

TR

)
, we denote its covariance matrix as K, that is, K = TLRTT

LR. In particular, we have371

the block form of K =
( SL A1

A2 SR

)
, where A1 = TLTT

R, A2 = TRTT
L, and SL = TLTT

L and SR = TRTT
R represent372

the ligand and receptor gene expression similarity between any two cells. We could distinguish direct and indirect373

LR interactions among cells and keep the direct ones by using the precision matrix of K, i.e., K−1 =
(K−1

11 K−1
12

K−1
21 K−1

22

)
.374

Therefore, we have W = K−1
11 +K−1

12 +K−1
21 +K−1

22 representing direct LR interactions.375
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We build the affinity graph G by regarding the cells as vertices and the cell-cell affinity as the edge weight. When376

the context is clear, we also refer W as the adjacency matrix for G for notation simplicity. We further denote the377

Laplacian matrix of G as L. Therefore, we apply the Spielman-Srivastava spectral graph sparsification algorithm56
378

to remove pseudo affinities. Spectral graph sparsification aims to find a sparse approximation of the original graph379

while maintaining high spectral similarity between two graphs27. In the Spielman-Srivastava algorithm, the effective380

resistance, i.e., the distance between two vertices connecting by an edge is proportional to the reciprocal of its edge381

weight. In the sparsification step, edges are sampled by the probabilities proportional to their effective resistances.382

The algorithm preserves the spectrum of the graph Laplacian, i.e. the eigenspaces spanned by eigenvalues, and their383

relations by requiring high similarity between the two Laplacian matrices, while some previous works only maintain384

the span of the dominant eigenvectors57, 58. We define the effective resistance between two cells u and v as385

Reff(u,v) = (δu − δv)T L−1(δu − δv) (2)

where δu ∈ {0,1}r is the indicator vector of vertex u. Following the definition, the sparse graph preserves the crucial386

edges of the original graph. We sample the edge (u,v) by the probability pu,v = min{1,C · (logr)Wu,v ·Reff(u,v)/ϵ2},387

where C is some constant and ϵ is the approximation parameter. We further adjust the weight of the sampled edge388

(u,v) as Wu,v/pu,v. We determine the value of the term C/ϵ2 by the user-defined proportion of preserved edges389

q = 2
∑

u,v pu,v/r(r −1). Since the expected number of chosen edges can be bounded by390 ∑
u,v

pu,v =
∑
u,v

min{1,C · (logr)Wu,v ·Reff(u,v)/ϵ2} ≤ Cr logr

ϵ2 (3)

where C
ϵ2 ≥

∑
u,v

pu,v

r logr = q(r−1)
2 logr , thus by adjusting the parameter q we can control the percentage of preserved edges.391

Moreover, we utilize the spot coordinates in the coupled spatial data as one sparsification approach. If two cells392

belong to nonadjacent spots, the affinity between them is considered to be pseudo affinities.393

Reconstructing the quasi-structure with fuzzy set cross-entropy embedding394

The embedding of a cell-cell affinity graph to a low-dimensional space consists of two stages: (a) forming a topological395

representation W of sparsified the cell-cell affinity W; and (b) finding an embedding E in the low-dimensional396

space of the topological representation to minimize the discrepancy between the embedding and the representation.397

A reliable topological representation of W should maintain the affinity relations while restricting the number of398

neighbors for each cell. Here, we maintain the top kn affinities in W for each cell while setting other values to399

be zeros. Subsequently, we perform min-max normalization on the remaining affinities to obtain the membership400

strength in the range of [0, 1], denoting the matrix as W. The fuzzy simplicial set expands the classical binary401

definition of membership by allowing continuous membership strength in the range of [0, 1]59, and the union of the402

fuzzy simplicial sets60 yields the fuzzy topological representation. Hence, W is the fuzzy topological representation403

of W.404

Subsequently, we apply strategies from UMAP61 to minimize the fuzzy set cross-entropy between the embedding405
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E and the topological representation W, that is,406

CE(E,W) = P (E)log
P (E)
Q(W) +(1−P (E))log

1−P (E)
1−Q(W) (4)

where P (E) and Q(W) represent the normalized adjacency matrices of E and W, respectively. We use a spectral407

layout, that is, the Laplacian matrix of W to as the initial Cartesian coordinates of E62. By regarding edges as408

attractive forces and vertices as repulsive forces, we alternatively apply the attractive and repulsive forces until409

CE(E,W) converges to a local minimum.410

Evaluating the reconstruction performance of STORM411

A major metric for assessing the quality of the reconstructed spatial structure is its reproduction of the spatial412

characteristics of the tissue. Given a spatial structure of cells, we construct a fixed-volume neighbor graph, where413

the radius is the median distance between any cell to its third-nearest neighbor. According to the fixed-volume414

neighbor graph, we quantify the spatial characteristics as the number of neighboring pairs between any two cell415

types, indicating whether the two are enriched or depleted near each other. Therefore, we evaluate the cell type416

enrichment or depletion discrepancy by the Kullback-Leibler (KL) divergence63 of the neighboring pair numbers for417

any two cell types between a given spatial structure and the embedding structure. To further evaluate the statistical418

significance of observed possible enrichment or depletion, we compare the number of neighboring pairs with 1000419

random permutations of the cell type labels. We test the enrichment hypothesis, that is, the observed number of420

neighboring pairs is larger than the random expectation by p-values from both the right-tailed and left-tailed tests.421

We further adjust the p-values following the Benjamini-Hochberg procedure64 and obtain the q-values with a cutoff422

of 0.05 for significance.423

Revealing the dominating LR pairs contributing to intercellular affinity424

Given a pair of cell expression profiles Ei and Ej , the contribution from the k-th LR pair to the total cell-cell425

interacting affinity can be formulated as:426

bij
k =

Ei
Lk

Ej
Rk

T
+Ei

Rk
Ej

Lk

T

Ei
LEj

R

T
+Ei

REj
L

T
(5)

The contribution of each LR pair between two cell types t1 and t2 is calculated by:427

bt1,t2
k = 1

N

∑
i∈t1,j∈t2

bij
k (6)

where N is the number of neighboring cell pairs between t1 and t2.428

Data availability429

The ST and scRNA-seq data we use has been previously published13, 20, 23, 24, 28, 45 and are available online430

mousebrain.org, https://github.com/almaan/stereoscope. The PDAC, HNC, and SCC datasets are deposited at the431

Gene Expression Omnibus under GSE111672, GSE103322, and GSE144240. The count matrix of the developing432

human heart is available at https://www.spatialresearch.org with the erythrocytes and immune cells removed, and433

the labels we use in this work remain consistent with the original publication. The HCC dataset CSOmap used is434
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deposited at EGA with accession number EGAS00001003449.435

Code availability436

The software implementation and analysis notebooks of STORM are available at https://github.com/deepomicslab/STORM.437
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Figure Legends587

Figure 1. Schematics of STORM. a-c, Workflow of the preprocessing module. a, The preprocessing module of
STORM adopts existing deconvolution software to decompose cell-type mixtures of ST profiles. b, The preprocessing
module selects a designated amount of cells from the single-cell candidate library, equal to the estimated cell number
per cell type in each spot. c-e, Workflow of the STORM. c, STORM derives the initial cell-cell affinity graph from
the single-cell profiles by the LR interactions. d, STORM applies partial correlation, spectral graph sparsification,
and spatial coordinates refinement on the cell-cell affinity graph to reduce pseudo affinities. e, STORM utilizes LFS
embedding to embed interactions into a low-dimensional space. f, The 2D embedding of the selected single cells
reconstructed by STORM. g, The determination of dominant ligand-receptor pairs between neighboring cells at
single-cell resolution. h, The 3D embedding of the HNC data reconstructed by STORM.

Figure 2. Evaluation of the validity and robustness of STORM on simulated datasets. a, The expression correlation
between each spot and its corresponding single-cell aggregate regarding four cell-number parameters across five
repeats of candidate libraries A and B. b, The best simulation of each cell-number parameter from libraries A and
B, annotated with the statistical significance. Asterisks indicate level of statistical significance: ** - significance
0.01, * - significance 0.05, ns - not significant. c, The simulated ST structure (left) and the quasi-structure
reconstructed by STORM (right). The color stands for each spot. d, The Pearson correlation of the pairwise
distance between the reconstructed quasi-structure of STORM and its coupling ST spots. e, The standardized gene
expression of exemplary genes in ST (left) and reconstructed quasi-structure (right).

Figure 3. The reconstructed quasi-structure of mouse hippocampus. a, The 2D visualization of the ST spots (left)
and the reconstructed quasi-structure of the mouse hippocampus (right), colored by cell types. b, The standardized
gene expression of exemplary genes in ST (top) and reconstructed quasi-structure (bottom). c, The cell-type
proximity KL divergence for the combinations of two different embedding methods and three sparsification methods.
d, The pie charts of the LR pair contributions to the interactions of astrocytes with all other cells (top) and with
only immune cells (bottom).

Figure 4. Performance of STORM on recapitulating the quasi-structure of SCC dataset. a, Spatial (top) and
reconstructed quasi-structure (bottom) visualization of SCC, labeled by cell type. b, The standardized expression of
cell-type marker genes in ST (left) and reconstructed quasi-structure (right). c, The cell-type proximity KL
divergence of combining two embedding methods and three sparsification methods between ST and reconstructed
quasi-structure. d, The pie charts of the LR pair contributions to the interaction of T cell and other cells (top), T
cell and epithelial cells in particular (bottom).

Figure 5. Performance of STORM in rebuilding quasi-structure from PDAC dataset. a, ST (top) and reconstructed
quasi-structure colored by all cell types (bottom). b, The standardized expression of three genes in ST (left) and
single-cell aggregates (right). c, The cell-type proximity KL divergence for the combination of three sparsification
methods and two different embedding methods. d, The pie chart of LR pair contributions in TM4SF1 - and
S100A4 -expressing cells. e, The pie chart of LR pair contributions between TM4SF1 -expressing cells with
macrophages (left) and mDC (right).
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Figure 6. Application of STORM in restoring the quasi-structure of HCC. a, The 3D embedding of the
reconstructed quasi-structure of STORM (left) and the prediction of CSOmap (right) on the HCC scRNA-seq data.
b, Spearman correlation between IHC image-based cell connections (X-axis) and STORM reconstruction (Y-axis).
CD8: CD8+ T cells; Tex: exhausted T cell; Treg: Foxp3+ regulatory T cells; M: macrophages; cDC1: CLEC9A+
dendritic cells; O: other cells. c, Comparison of cell-type proximity (Spearman) between different embedding and
sparsification methods. The green dotted line represents the best Spearman correlation of the CSOmap prediction.
d, CD8+ T cell and Treg cells in the quasi-structure of STORM colored by cell types (left) and standardized
expressions (right). e, The pie charts of dominating LR pairs in the interaction of regulatory T cells with CD8+ T
cells and exhausted T cells, respectively.

Figure 7. STORM recapitulates the quasi-structure of the developing human heart. a, 3D visualization of the
reconstructed quasi-structure of developing human heart (left). Ventricular and atrial cardiomyocytes are separately
displayed (middle). The tissue section of 6.5 PCW (scale bar: 1 mm), where the ventricular and atrial
cardiomyocytes are manually labeled (right). Cell type label is the same as the original data: (0): Capillary
endothelium; (1): Ventricular cardiomyocytes; (2): Fibroblast-like (related to cardiac skeleton connective tissue); (3):
Epicardium-derived cells; (4): Fibroblast-like (smaller vascular development); (5): Smooth muscle cells /
fibroblast-like; (7): Atrial cardiomyocytes; (8): Fibroblast-like (larger vascular development); (9): Epicardial cells;
(10): Endohelium / pericytes / adventia; (12): Myoz2-enriched Cardiomyocytes; (14): Cardiac neural crest cells &
Schwann progenitor cells. b, The normalized Spearman correlation of cell-type proximity in the result of
hard-filtering and sparsified graphs embedded by constrained t-SNE (orange) and LFS embedding (blue). c, The
normalized Spearman correlation between cell-type connections based on spots in the ST section (X-axis) and the
quasi-structure reconstructed by STORM (Y-axis), with biases introduced by uneven cell counts among different cell
types reduced after normalization. d, Mechanism illustration and evaluation of the regulation network between
fibroblast and cardiomyocyte. Top-left: schematic diagram of molecular mediation between fibroblast and
cardiomyocyte. Bottom-left: standardized expression of above intermediate genes. Right: heatmap of the numbers
of neighboring pairs of cells expressing different marker genes.
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