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Abstract Pathogen evolution of drug resistance often occurs in a stepwise manner via the12

accumulation of multiple mutations that in combination have a non-additive impact on fitness, a13

phenomenon known as epistasis. The evolution of resistance via the accumulation of point14

mutations in the DHFR genes of Plasmodium falciparum (Pf ) and Plasmodium vivax (Pv) has been15

studied extensively and multiple studies have shown epistatic interactions between these16

mutations determine the accessible evolutionary trajectories to highly resistant multiple17

mutations. Here, we simulated these evolutionary trajectories using a model of molecular18

evolution, parameterized using Rosetta Flex ddG predictions, where selection acts to reduce the19

target-drug binding affinity. We observe strong agreement with pathways determined using20

experimentally measured IC50 values of pyrimethamine binding, which suggests binding affinity21

is strongly predictive of resistance and epistasis in binding affinity strongly influences the order of22

fixation of resistance mutations. We also infer pathways directly from the frequency of mutations23

found in isolate data, and observe remarkable agreement with the most likely pathways24

predicted by our mechanistic model, as well as those determined experimentally. This suggests25

mutation frequency data can be used to intuitively infer evolutionary pathways, provided26

sufficient sampling of the population.27

28

Introduction29

The development of new antimicrobial therapeutics and the design of successful drug deployment30

strategies to reduce the prevalence of resistance, requires an understanding of the underlying31

molecular evolution. Antimicrobial resistance (AMR) poses a huge global health threat through a32

wide range of mechanisms (Sun et al., 2019; Davies and Davies, 2010; Levy and Marshall, 2004;33

Rodrigues et al., 2016). One of the major routes to resistance, and focus of this work, is genomic34

variation within protein coding regions. Of particular significance are single-nucleotide polymor-35

phisms (SNPs) in the antimicrobial target gene that alter the protein structure and prevent efficient36

binding of the antimicrobial drug. Provided these SNPs do not prevent the target from carrying out37
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its function, the resistant strains will proliferate within the population (Blair et al., 2015).38

The evolution of resistance is affected by the interplay between selection for resistance, selec-39

tion for protein function, drug concentration and mutational bias, and it is also influenced by a40

phenomenon known as epistasis (Weinreich et al., 2006; Lozovsky et al., 2009; Jiang et al., 2013).41

Epistasis between mutations within the same protein arises due to energetic interactions be-42

tween the amino acids, where the impact of a mutation depends upon the protein sequence (Starr43

and Thornton, 2016). When epistasis occurs between two or more mutations, their combined im-44

pact on protein fitness or a physical trait such as stability or binding affinity, does not equal the45

sum of their independent impacts. Epistasis determines the order of fixation of mutations and the46

accessibility of evolutionary trajectories to resistance phenotypes (Weinreich et al., 2006, 2005) and47

has been observed in the evolution of many pathogens (Khan et al., 2011; Gong et al., 2013; San-48

juán et al., 2005), including the evolution of resistance in Plasmodium falciparum (Lozovsky et al.,49

2009; Sirawaraporn et al., 1997) and Plasmodium vivax (Jiang et al., 2013). It may also have impor-50

tant consequences for the success of AMR management strategies that aim to reduce resistance51

via the cessation of use of a particular drug, which theoretically should result in reversion of resis-52

tance mutations, due to the fitness cost incurred in the absence of the drug (Melnyk et al., 2015;53

Vogwill and MacLean, 2015). However, the success of this strategy has been mixed, and in some54

cases bacterial populations remained resistant (Costelloe et al., 2010; Enne, 2010; Sundqvist et al.,55

2010), likely due to compensatory mutations (a type of epistasis), which mitigate the deleterious56

impact of resistancemutations, allowing them to remain in a population and thus retain resistance57

even in the absence of drug selection pressures (Andersson and Hughes, 2011).58

Fragment-based drug discovery (FBDD) and AMR surveillance strategies require methods to59

predict evolutionary trajectories to resistance. For example, by identifying mutations involved in60

resistance trajectories that reduce the effectiveness of an antimicrobial drug, specific regions of61

a target molecule can be exploited or avoided, thus creating ‘evolution proof’ drugs. Therefore,62

understanding how epistasis arises and predicting which mutations will interact, is important for63

anticipating future mutations, designing new drugs and developing strategies to minimize resis-64

tance.65

Evolution towards drug-resistant phenotypes in malaria species P. falciparum and P. vivax has66

been shown to occur in a stepwise manner, due to epistatic interactions between mutations, and67

themost likely trajectories to resistance phenotypes have been predicted using experimental mea-68

sures of resistance (Lozovsky et al., 2009; Jiang et al., 2013; Sirawaraporn et al., 1997).69

P. falciparum and P. vivax parasites cause the majority of malaria infections and have evolved70

strong resistance to many antimalarial drugs, including pyrimethamine (Sirawaraporn et al., 1997)71

and sulfadoxine (Wang et al., 1997). There were an estimated 241 million new cases of malaria72

world-wide in 2020, resulting in approximately 627,000 deaths predominately among children un-73

der 5 years of age (WHO, 2021). P. falciparummalaria has been treated with the combination drug74

sulfadoxine-pyrimethamine (SP) since 1970s, which targets the folate metabolic pathway. Numer-75

ous resistance mutations have arisen within its genome as a result of SNPs in P. falciparum dihy-76

drofolate reductase (PfDHFR) and dihydropteroate synthase (PfDHPS) genes, which are the targets77

of pyrimethamine and sulfadoxine respectively (Wang et al., 1997; Brooks et al., 1994). Although78

SP is not usually used to treat P. vivax, co-infections with P. falciparum have meant SP resistance79

mutations have also arisen in the P. vivax genome (Snounou and White, 2004). The enzymes of the80

folate pathway are largely conserved across Plasmodium species, and so polymorphisms in equiva-81

lent positions have been observed in P. vivax DHFR (PvDHFR) and DHPS (PvDHPS) and are thought82

to confer resistance to SP (Korsinczky et al., 2004; Hastings et al., 2004).83

TheDHFR gene encodes an enzyme that usesNADPH to synthesize tetrahydrofolate, a co-factor84

in the synthesis of amino acids (Kompis et al., 2005) and pyrimethamine acts to disrupt this pro-85

cess, thereby blocking DNA synthesis and slowing down growth. Stepwise acquisition of multiple86

mutations leading to resistance to pyrimethamine has been observed in both PfDHFR (Lozovsky87

et al., 2009; Sirawaraporn et al., 1997) and PvDHFR (Jiang et al., 2013).88
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Resistance in PfDHFR has been studied extensively and a combination of four mutations –89

Asn-51 to Ile (N51I), Cys-59 to Arg (C59R), Ser-108 to Asn (S108N) and Ile-164 to Leu (I164L) –90

has been reported to result in resistance to pyrimethamine (Ferlan et al., 2001) by altering the91

binding pocket and reducing the affinity for the drug (Yuthavong et al., 2005). Epistasis in both92

pyrimethamine binding free energy and the concentration required to inhibit cell growth by 50%93

(IC50) has been observed experimentally for combinations of these fourmutations (Lozovsky et al.,94

2009; Sirawaraporn et al., 1997). This means that mutations which on their own are not associated95

with a resistance phenotype, can be when in combination with other mutations. Epistasis between96

thesemutations has been shown to determine the evolutionary trajectories to the quadruplemuta-97

tionN51I,C59R,S108N,I164L, which is strongly associatedwith pyrimethamine resistance (Lozovsky98

et al., 2009).99

A similar investigation was conducted into the homologous set of PvDHFR mutations – Asn-50100

to Ile (N50I), Ser-59 to Arg (S58R), Ser-117 to Asn (S117N) and Ile-173 to Leu (I173L) - and the acces-101

sible evolutionary trajectories to the quadruple mutation (Jiang et al., 2013), some combinations102

of which have been observed to result in pyrimethamine resistance both in vivo and in vitro (Hast-103

ings et al., 2004; Hawkins et al., 2007). Evolutionary simulations accounting for growth rates, IC50104

measurements for increasing concentrations of pyrimethamine and nucleotide bias predicted the105

most likely pathways to the quadruple mutation for different drug concentrations. The observed106

trajectories at each concentration were influenced by epistasis between the mutations and the107

adaptive conflict between endogenous function and acquisition of drug resistance. These studies,108

along with other investigations (Weinreich et al., 2006; Tamer et al., 2019), have highlighted the109

prevalence of epistasis among resistance mutations and the importance of considering epistatic110

interactions between mutations when predicting evolutionary trajectories to drug resistance.111

The predictability of evolution is a central topic in biology of interest to experimentalists and112

theorists alike (Achaz et al., 2014; Lobkovsky and Koonin, 2012; Szendro Ivan et al., 2013) (for a113

review of the topic see de Visser and Krug (2014)). By using experimentally measured values to114

characterize the empirical fitness landscapes and simulate evolutionary trajectories, the work in115

Lozovsky et al. (2009) and Jiang et al. (2013) is determining the predictability of evolution in these116

landscapes by assessing which trajectories are accessible and the level of determinism associated117

with the evolution. Whilst such experimental methods have been successful in capturing epistasis,118

characterizing evolutionary landscapes andpredicting evolutionary trajectories, they are expensive119

and time consuming.120

The development of computational methods to predict resistance trajectories would enable121

fast and efficient predictions and would be more widely accessible than lab-based methods. Com-122

putational tools could help narrow down the pool of mutations to be studied experimentally and123

would also be applicable to difficult to study targets. Some target-specific computational tools to124

predict individual resistancemutations have been developed (Karmakar et al., 2020; Portelli et al.,125

2020). However, such tools are target specific and so not generalizable. Furthermore, they only126

consider independent mutations on a single structure and so ignore epistasis between resistance127

mutations. Therefore, they are not suitable for predicting evolutionary trajectories to resistance.128

To determine a generalizable computational method to predict evolutionary trajectories to re-129

sistance, we need to consider the main determinants of resistance. Rodrigues et al. (2016) inves-130

tigated three mutations in Escherichia coli DHFR associated with trimethoprim resistance and con-131

sidered activity, binding affinity, fold stability, and intracellular abundance. They found that whilst132

resistance is a trade-off between these factors, binding affinity is the single most predictive trait133

of resistance, especially at later points in evolution. Therefore, we decided to investigate if predic-134

tions of binding affinity change can be used to predict the order of fixation of resistance mutations135

involved in evolutionary trajectories to resistance.136

Rosetta Flex ddG (Barlow et al., 2018) is the current state-of-the art method for predicting137

changes in protein-protein and protein-ligand binding free energy. Rosetta is a software suite for138

macromolecular modelling and design that uses all-atom mixed physics- and knowledge-based139
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potentials, and provides a diverse set of protocols to perform specific tasks, such as structure pre-140

diction, molecular docking and homology modelling (Alford et al., 2017). The Flex ddG protocol141

has been found to perform better than machine learning methods and comparably to molecular142

dynamicsmethods when tested on a large dataset of ligand binding free energy changes upon pro-143

tein mutation (Aldeghi et al., 2018, 2019). However, its ability to capture epistasis has not yet been144

tested. Therefore, we investigated how well Flex ddG can capture epistasis between resistance145

mutations in PfDHFR and observed a good agreement with experimental data.146

Next, we used the Flex ddG predictions to parameterize a fitness function applied in an ex-147

isting model of molecular evolution. We used this method to predict evolutionary trajectories to148

known resistant quadruple mutants in both PfDHFR and PvDHFR, where the evolutionary trajecto-149

ries have been studied experimentally (Lozovsky et al., 2009; Jiang et al., 2013). Good agreement150

was observed between the most likely trajectories to the quadruple mutations predicted by our151

model and those predicted experimentally. This suggests binding affinity is highly predictive of152

resistance, supporting the conclusions of Rodrigues et al. (2016).153

The main advantage of this approach is that it does not require access to an experimental ‘wet’154

lab and can be carried out by anyone with access to a high-performance computer. It is general-155

izable to any antimicrobial drug that acts by binding to its target and can be easily applied to any156

drug-target complex for which there is an available structure. Therefore, it can be used to study157

complexes and systems thatmight be problematic experimentally. It enables accurate assessment158

of the predictability of the evolutionary landscape and can predict whether we would expect to see159

constrained evolutionary trajectories on a fitness landscape as a result of epistatic interactions in160

drug binding free energy.161

In addition, we analyzed if evolutionary pathways can be inferred from the frequency of mu-162

tations found in isolate data. We determined the frequency of mutations in PfDHFR and PvDHFR,163

and inferred the most likely evolutionary pathways under the assumption that the most likely mu-164

tation at each step corresponds to the most frequent mutation. We carried out this analysis first165

upon a combined set of global isolates and then upon isolates from individual regions. The most166

likely pathways inferred from the global isolate data agreed remarkably well with both the exper-167

imentally determined pathways and the pathways predicted by our computational method. This168

suggests evolutionary trajectories can be inferred from the frequency of mutations observed in169

isolate data, provided adequate sampling of the population. When considering geographical re-170

gions separately, the inferred pathways from several regions agreed well with the experimental171

pathways and our predicted pathways, however themost likely pathways inferred in some regions172

differed from the main pathways, highlighting the importance of considering the evolution in dif-173

ferent regions separately.174

Results175

Rosetta Flex ddG captures general trends in binding free energy changes and epis-176

tasis177

We investigated if Flex ddG predictions agree with experimentally measured binding free energy178

and if these predictions can be used to calculate the non-additivity in binding free energy (interac-179

tion energy), which for a double mutant defines the epistasis between the two mutations and, for180

a triple mutant or higher, captures the level of epistatic interactions. We calculated the interaction181

energy by finding the difference between the predicted change in binding free energy of a mul-182

tiple mutation and the sum of the predictions of their independent binding free energy changes.183

A positive value of the interaction energy indicates the sum of the independent impacts is more184

destabilizing than the impact of the multiple mutation and a negative value indicates the sum is185

less destabilizing than the combined impact.186

The change in binding free energy was predicted using Flex ddG for the combinatorically com-187

plete set of the four PfDHFR pyrimethamine resistance mutations N51I, C59R, S108N and I164L.188
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(Note on notation: lists of single mutations are written X, Y, Z, multiple mutations are written X,Y,Z189

(i.e. no space between the commas and the mutations) and pathways are written X/Y/Z to denote190

the order of fixation).191

We compared the predictions to the data from Sirawaraporn et al. (1997) in which they deter-192

mined binding free energy changes for a subset of the possible combinations of mutations, the193

sum of the independent mutations (calculated for multiple mutants to compare to the experimen-194

tally determined binding free energy changes of multiple mutants) and the interaction energy of195

the multiple mutants (Table 1). A positive ΔΔ𝐺 value indicates a destabilising mutation and a neg-196

ative ΔΔ𝐺 value indicates a stabilising mutation (Note: Rosetta Flex ddG calculates the change in197

binding free energy as ΔΔ𝐺 = Δ𝐺𝑚𝑢𝑡 − Δ𝐺𝑊 𝑇 , whereas Sirawaraporn et al. (1997) calculated the198

change as the reverse, ΔΔ𝐺 = Δ𝐺𝑊 𝑇 − Δ𝐺𝑚𝑢𝑡, where WT indicates the wild-type free energy and199

mut indicates the mutant free energy. Therefore, in Sirawaraporn et al. (1997), a mutation that200

destabilized the binding corresponded to a negative ΔΔ𝐺, whilst here we have reversed the signs201

of their data to enable comparison with our predictions).202

The authors of the Flex ddG protocol suggest conducting a minimum of 35 runs and taking the203

average of the distribution as the prediction for that mutation (Barlow et al., 2018). We found the204

average of the distributions converges and the rank order of the mutations is constant at around205

250 runs (Appendix 1-Figure 3 and Appendix 1-Figure 4). We compared the predictions for 250206

runs and the data from Sirawaraporn et al. (1997)(1) and observed a correlation of 0.611 for the207

binding free energy data, 0.660 for the sum of the independent predictions for multiple mutants208

and 0.756 for the interaction energy. We found 8/9 binding free energy predictions were correctly209

classified, 4/ 5 of the sum of the independent predictions were correctly classified and 4/ 5 of the210

interaction energies were correctly classified. Comparing the predictions for 35 runs (Appendix 1-211

Figure 1, Appendix 1- Table 1) and 250 (Appendix 1-Figure 2, Table 1) runs, 250 runs provides the212

best trade-off between accuracy and efficiency (see Supplementary text for detailed discussion).213

Therefore, we will be discussing the predictions for n=250 going forward.214

Mutation S108N was the only single mutation to destabilize pyrimethamine binding in both the215

experimental data and the Flex ddG predictions. However, in the experimental data the double216

mutation N51I,S108N is more destabilizing to binding than single mutation S108N, but the Flex217

ddG prediction was stabilizing. The triple mutation C59R,S108N,I164L was found experimentally218

to be themost destabilizing of the triple mutations, however Flex ddG predicted it to be only mildly219

destabilizing and the least destabilizing of the triple mutations. Furthermore, the quadruple mu-220

tation was found experimentally to have the most destabilizing impact out of all combinations of221

single and multiple mutations, however, Flex ddG predicted it to be less destabilizing than the222

double mutation C59R,S108N and single mutation S108N.223

Considering the interaction energy, the incorrectly classified mutation was again N51I,S108N224

which was predicted to be positive, but found experimentally to be negative, because the sum of225

the individual predictions was destabilizing but the double mutation itself was predicted to be sta-226

bilizing. Both the experimental data and our predictions found that the quadruple mutation had227

the largest magnitude interaction energy reflecting the greatest difference between the stabiliz-228

ing impact of the sum of the individual mutations and the destabilizing impact of the quadruple229

mutation itself.230

We also observed large negative interaction energy between S108N and C59R, where C59R is231

stabilizing in the wildtype background but destabilizing in the background of S108N, an example232

of sign epistasis and in agreement with the observations of both Sirawaraporn et al. (1997) and Lo-233

zovsky et al. (2009) However, whilst the interaction energy of the triple mutation N51I,C59R,S108N234

was positive for both the experimental data and predictions, in our predictions its magnitude was235

much smaller compared to the data. Both single mutations N51I and C59R were predicted to be236

only marginally stabilizing – almost neutral - to pyrimethamine binding, whilst in the experimental237

data both mutations have a large stabilizing impact. Furthermore, the triple mutation was pre-238

dicted to be only marginally more destabilizing than single mutation S108N, resulting in the small239
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Table 1. Correlation between Flex ddG predictions for 250 runs and experimental data (see table 4 of
Sirawaraporn et al. (1997)) for PfDHFR pyrimethamine resistance mutations

Mutation ΔΔ𝐺∗
𝑒𝑥𝑝

(kcal/mol)
Exp. Sum∗∗ Exp I.E.∗∗∗ ΔΔ𝐺†

𝐹 𝑙𝑒𝑥𝑑𝑑𝐺

(kcal/mol)
Sum‡ I.E.§

N51I -0.783 -0.124
C59R -0.184 -0.033
S108N 1.297 0.312
I164L -0.351 -0.323
N51I,S108N 1.89 0.514 1.376 -0.166 0.188 -0.354
C59R,S108N 2.29 1.113 1.177 0.399 0.279 0.119
N51I,C59R,S108N 2.595 0.33 2.265 0.162 0.155 0.007
C59R,S108N,I164L 3.283 0.762 2.521 0.018 -0.043 0.061
N51I,C59R,S108N,I164L 3.761 -0.021 3.782 0.301 -0.168 0.469
Pearson Correlation 0.611 0.660 0.756
Correctly Classified 8/9 4/5 4/5

*Experimentally measured PfDHFR pyrimethamine binding free energy change data from Sir-
awaraporn et al. (1997)
**Sum of experimental values of binding free energy change for independent mutations
***Interaction energy calculated as the difference between experimentally measured values of
binding free energy change of multiple mutant compared to the sum of the independent muta-
tions involved
†Change in PfDHFR-pyrimethamine binding free energy predicted by Flex ddG calculated as the
average of the distribution of runs. Free energy predictions from Rosetta are in Rosetta Energy
Units, however the authors of Flex ddG applied a generalized additive model to re-weight the
predictions and make the output more comparable to units of kcal/mol (Barlow et al., 2018)
‡Sum of Flex ddG predictions for independent mutations
÷Interaction energy calculated as the difference between Flex ddG predicted binding free energy
change of multiple mutant compared to the sum of the independent mutations.

negative interaction energy.240

We conclude that although there are some disagreements between the predictions and the241

data, Flex ddG is able to capture the general trend of the data. However, if we use the average242

of the distributions as a summary metric of the predictions for the combinatorically complete set243

of the four mutations and try to infer a pathway through to the quadruple mutation, under the244

criteria that each subsequent mutation must destabilize pyrimethamine binding more than the245

last, then we are unable to find a pathway through. However, since the predictions capture the246

general trend observed in the data, and the summary metric does not fully characterize the entire247

distribution of predictions, we used the distributions to parameterize an evolutionary model to248

determine if we can predict a pathway through to the quadruple mutation and if the predicted249

evolutionary trajectories agree with experimentally determined evolutionary trajectories.250

A thermodynamic evolutionarymodel predicts themost likely evolutionary trajec-251

tories to quadruple mutations in both PfDHFR and PvDHFR252

We simulated the evolutionary trajectories to the quadruple mutants described above for the253

genes PfDHFR and PvDHFR using an evolutionary model, adapted from previous studies (Eccle-254

ston et al., 2021; Pollock et al., 2012, 2017). In this model, selection acts to reduce the binding255

affinity between target protein and the antimalarial drug with which the mutations have been as-256

sociated with resistance. Briefly, starting from the wild-type protein, we randomly sample a value257

from the Flex ddG distributions for each of the four singlemutations and calculate the fitness of the258
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mutated protein (Eq. 1), and the fixation probability (Eq. 2. A mutation is then chosen with a prob-259

ability proportional to the fixation probability and this is repeated until the quadruple mutation is260

reached. If the set of sampled mutations at a step all have a fixation probability of zero, the algo-261

rithm terminates at that point in the pathway and begins the next run at the single mutation step.262

Therefore, it is not guaranteed that a run will reach the quadruplemutation. We carried out 50,000263

runs and determined i) the number of runs that reached a single, double, triple or the quadruple264

mutation before the run ended (files ending ’_endpoint_numbers.csv’), ii) the frequency of the265

observed trajectories up to the quadruple mutation, including trajectories that terminated before266

the quadruple mutation (files ending ’_pathway_endpoints.csv’), iii) the frequency at which a mu-267

tational step was chosen in all runs (files ending ’_total_pathway_probabilities.csv’) and iv)268

the most likely trajectories to the quadruple mutation predicted by our simulations (files ending269

’_quadruple_pathways.csv’).270

To determine how well our simulations reflect the evolutionary process to the PfDHFR quadru-271

ple mutation N51I,C59R,S108N,I164L, we compared our results to experimentally determined evo-272

lutionary trajectories as presented by Lozovsky et al. (2009). In our simulations, the quadruple mu-273

tationwas reached in approximately 8%of runs (see Supplementary file ‘PfDHFR_endpoint_numbers.csv’).274

The majority of the runs (66%) terminated at a double mutation, with S108N/C59R the most likely275

trajectory over all. The algorithm was often unable to proceed passed S108N/C59R because the276

Flex ddG distribution for C59R,S108N is concentrated around large destabilizing values (Appendix277

1 -Figure 2f) whilst the distributions of the two possible next steps, N51I,C59R,S108N and278

C59R,S108N,I164L, are concentrated around lower destabilizing values ( Appendix 1- Figures 2g279

and h). Therefore, in many instances, the change in binding free energy caused by the next step280

in the pathway were predicted to be stabilizing, and thus were not be chosen by the algorithm.281

This demonstrates the dependence of the method upon the accuracy of the Flex ddG. In contrast,282

the majority of runs in the simulations based on IC50 measurements presented in Lozovsky et al.283

(2009) reached the quadruple mutation (see Figure 2 in Lozovsky et al. (2009).284

However, since we are interested in how epistasis influences the order of fixation of mutations285

in an evolutionary trajectory to a high-resistance quadruplemutation, we compared themost likely286

trajectories to the quadruple mutation predicted by our simulations to the most likely trajectories287

to the quadruple mutation predicted in Lozovsky et al. (2009) and observed remarkable agree-288

ment. The top two most likely trajectories predicted by our model to the PfDHFR quadruple muta-289

tion were S108N/C59R/N51I/I164L and S108N/C59R/I164L/N51I, respectively (Figure ??) which cor-290

respond to the top two most likely pathways to the quadruple mutation determined in Lozovsky291

et al. (2009). The third most likely trajectory to the quadruple mutation in Lozovsky et al. (2009)292

was predicted to be S108N/N51I/C59R/I164L, however this pathway was predicted to be unlikely in293

our simulations, due to the fact that the distribution of Flex ddG predictions for double mutation294

N51I,S108N was mostly stabilizing to pyrimethamine binding (Appendix 1- Figure 2e), whereas all295

of the S108N distribution was destabilizing to pyrimethamine binding, so this step was unlikely to296

be chosen by the evolutionary algorithm.297

Considering the frequency at which the single mutations were chosen as the first step in all sim-298

ulated pathways (’PfDHFR_total_pathway_probabilities.csv’), S108N was the most likely single299

mutation and C59R was the second most likely single mutation, in agreement with the two most300

likely first steps in the pathways predicted in Lozovsky et al. (2009). The most likely pathway to a301

doublemutation realized in all trajectories in both our simulations and the simulations in Lozovsky302

et al. (2009) is S108N/C59R. Similarly, the most likely pathway to a triple mutation realized in all303

our simulations and in Lozovsky et al. (2009) was S108N/C59R/N51I.304

To simulate the evolutionary pathways for PvDHFR, we also carried out predictions of binding305

free energy changes for the homologous set of four mutations in PvDHFR, (N50I, S58R, S117N and306

I173L). Unfortunately, binding affinity data is not available for the mutations in PvDHFR to com-307

pare to the Flex ddG predictions. However, Jiang et al. (2013) predicted pathways to the PvDHFR308

quadruple mutation for four pyrimethamine concentrations using simulations informed by both309
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Figure 1. The probability of simulated evolutionary pathways to quadruple mutations (a)
N51I,C59R,S108N,I164L in PfDHFR and (b) N50I,S58R,S117N,I173L in PvDHFR. Line thickness indicates the
total probability of a mutation when considering all pathways it can occur in, determined from the frequency
of that step in all realized mutational pathways from all runs. Dotted lines indicate zero probability of a
mutation at that step. The most likely pathway in total is denoted by a red star. The most likely pathway to
the quadruple mutation is highlighted in dark red and the second most likely pathway to the quadruple
mutation is highlighted in lighter red. The probabilities corresponding to these plots can be found in
Supplementary files ‘PfDHFR_total_pathway_probabilities.csv’ and ‘PvDHFR_total_pathway_probabilities.csv’
for a) and b), respectively.

drug resistance and catalytic activity, to which we can compare our simulations. In their simula-310

tions, the quadruple mutation fixed in 99.8% of runs for the highest pyrimethamine concentration,311

but it did not fix for the three lower concentrations. In our simulations, the quadruple mutation312

was reached in 39% of runs (‘PvDHFR_endpoint_numbers.csv’), whilst 51% of runs terminated at313

a double mutation. The most likely endpoint overall in our simulations was S58R/I173L, which314

occurred in 32% of runs, however this path was not a frequent trajectory observed in the simula-315

tions in Jiang et al. (2013). All Flex ddG runs of double mutation S58R,I173L were predicted to be316

destabilizing and many predicted to have a medium to large impact. However, the triple mutation317

S58R,S117N,I173L was predicted to have a smaller destabilizing impact than S58R,S117N, mak-318

ing pathway S58R/I173L/N50I unlikely, whilst N50I,S58R,I173L was predicted to be stabilizing to319

pyrimethamine in all Flex ddG runs and therefore pathway S58R/I173L/N50I had a zero probability320

of occurring in the simulations. This resulted inmany runs terminating at step S58R/I173L. Consid-321

ering the order of fixation up to the quadruplemutation, we compared themost likely evolutionary322

trajectories to the quadruplemutation predicted by our simulations to themost likely evolutionary323

trajectories to the quadruple mutation presented in Jiang et al. (2013), and observed good agree-324

ment for the largest of the four pyrimethamine concentrations they considered. The most likely325

pathway to the quadruplemutation predicted by our simulations was S58R/S117N/I173L/N50I (Fig-326

ure ??) which corresponds to the secondmost likely pathway to the quadruple mutation predicted327

in Jiang et al. (2013) for the highest pyrimethamine concentration. Our second most likely path-328

way to the quadruple mutation (S58R/S117N/N50I/I173L) corresponds to the first most likely path-329

8 of 34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2022. ; https://doi.org/10.1101/2022.01.25.477595doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.477595
http://creativecommons.org/licenses/by/4.0/


way predicted in Jiang et al. (2013) for the highest pyrimethamine concentration. There were two330

other possible pathways to the quadruple at the highest concentration, S117N/N50I/S58R/I173L331

and N50I/S117N/S58R/I173L, which correspond to the fourth and twelfth most likely pathways to332

the quadruple in our simulations.333

Thefirst step in the evolutionary trajectories determined in Jiang et al. (2013) for the highest con-334

centration was S58R whereas for the three lower concentrations it was S117N. The most likely first335

step in all pathways predicted by our simulations was S58R (Figure ??), whilst S117N was the sec-336

ond most likely first step (‘PvDHFR_total_pathway_probabilities.csv’). Analyzing the Flex ddG337

distributions, the S58R predictions are mostly destabilizing to pyrimethamine and it is the only sin-338

gle mutation to reduce the binding affinity when considering both the average and the peak of the339

distribution (Figure S1). The S117N distribution peaks around zero, meaning the majority of the340

runs predict thismutation has a neutral impact on pyrimethamine binding, whilst there is a smaller341

peak in the distribution for mildly destabilizing values (Figure S2).342

To quantify the predictability of an evolutionary landscape, previous studies have calculated343

the Gibbs-Shannon entropy distribution of the path weights (Szendro Ivan et al., 2013; de Visser344

and Krug, 2014), namely 𝑆 = −
∑

𝑃𝑖 ln𝑃𝑖, where 𝑃𝑖 is the probability of the 𝑖𝑡ℎ pathway and the value345

of 𝑆 ranges from 0 to ln 𝑛 for 𝑛 equally likely pathways. The lower the value of 𝑆 the higher the346

predictability of the evolution i.e. most of the probability is concentrated around a small number347

of pathways, suggesting epistasis is influential in constraining the accessible trajectories. The value348

of 𝑆 when considering the probability distribution of all realized evolutionary trajectories in the349

simulations was 1.19 for PfDHFR and 2.82 for PvDHFR (both simulations have an equal number350

of possible pathways because they have an equal number of mutations, so the values of 𝑆 are351

comparable and themaximumvalue of𝑆 for both simulations is 4.16). Thismeans the evolutionary352

trajectories weremore constrained in the PfDHFR simulations than in the PvDHFR simulations and353

suggests that epistasis between the mutations plays a greater role in constraining the trajectories354

in the evolution of PfDHFR resistance. Unfortunately, the probabilities of all possible pathways355

determined in Lozovsky et al. (2009) and Jiang et al. (2013) are not made available (the data is356

represented in pathway diagrams, the probabilities of a step are indicated by line thickness and357

only the probabilities of the most likely pathways annotated), therefore we cannot calculate the358

corresponding values of 𝑆 for these distributions for comparison.359

The frequency of mutations in isolate data can be used to infer evolutionary tra-360

jectories to multiple resistance mutations361

It was noted in Lozovsky et al. (2009) that their most likely pathways to the PfDHFR quadruple362

mutation were consistent with combinations of these four mutations observed in high frequen-363

cies in worldwide surveys of P. falciparum polymorphisms. To expand on this idea, we analyzed364

the frequency of the combinations of mutations in PfDHFR and PvDHFR found in our isolate data365

to identify if there is agreement between these frequencies, the experimentally determined tra-366

jectories and our predicted trajectories and if, therefore, isolate frequency data may be used to367

infer evolutionary trajectories. We inferred evolutionary trajectories from the frequency data by368

assuming if a specific mutation was found in high frequency (and is part of the combinatorically369

complete set of four mutations found in the four genes) then it is likely to be part of the evolution-370

ary trajectory towards the quadruple mutation. To infer the first step in the most likely trajectory,371

we considered the frequency of single mutations of the set of four mutations considered for each372

gene and selected the most frequent mutation. To infer subsequent steps in the trajectory, we373

considered the frequency of only thosemutations that contain the previous mutation and another374

of the set of four mutations in some combination and chose the most frequent mutation at each375

step. We also inferred alternative pathways which from the frequency data are less likely than the376

main pathway, but still a possibility due to the occurrence of intermediate mutations in the isolate377

data. To do this, we considered each step in themost likely trajectory and identified any other high378

frequency mutations that would enable alternative pathways from the double mutation onwards.379
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Figure 2. The total frequency of the combinations of mutations found in our isolate data for sets of four
mutations (a) N51I, C59R, S108N and I164L in PfDHFR, and (b) N50I, S58R, S117N and I173L in PvDHFR. All
frequencies have been multiplied by a factor of 10 to enable clear identification of those mutations occurring
in one isolate only. The frequencies are also given as the percentage of the total number of isolates, which for
PfDHFR is 6762 and PvDHFR is 847.

If there were no alternative pathways, we began the process again but chose the second most380

frequent single mutation (if applicable) and built the pathway from there. In the event of multiple381

alternative pathways, we are unable to quantify their relative likelihoods, only that they are less382

likely than the most likely pathway. It is sometimes not clear which pathway is most likely. For383

example, for the set of mutation frequencies A:9, D:10, AB:20, CD:2, ABC:50, BCD:1, ABCD:75, the384

most likely pathway from the method stated above would be D/C/B/A and the alternative pathway385

would be A/B/C/D, purely because mutation D is more abundant than mutation A. However, the386

frequencies of the intermediate mutations in the most likely pathway are low compared to the al-387

ternative pathway. Therefore, in these situations we will not refer to any one pathway as the most388

likely pathway and will refer to all pathways as possible trajectories.389

Considering the total frequency of each mutation in the set of four PfDHFR mutations (N51I,390

C59R, S108N and I164L) in the isolate data (Figure ??), S108N was the most frequent single muta-391

tion (72/6762 isolates), C59R,S108N the most frequent double mutation (496/6762 isolates) and392

N51I,C59R,S108N themost frequent triple mutation (3714/6762 isolates). The quadruple mutation393

N51I,C59R,S108N,I164L was found in 1439/6762 isolates. This suggests the pathway proceeds in394

the order S108N/C59R/N51I/I164L, in agreement with the most likely pathway to the quadruple395

mutation from both our evolutionary simulations and those using experimental data (Lozovsky396

et al., 2009).397

Triple mutation C59R,S108N,I164L was found in 101/6762 isolates, suggesting that the second398

most likely pathway to the quadruple from our simulations and experimental data,399

S108N/C59R/I164L/N51I, is a possible alternative trajectory to the quadruple mutation. Double400

mutation N51I,S108Nwas the secondmost frequent doublemutation in the isolate data (198/6762401

isolates), allowing for another alternative pathway S108N/N51I/C59R/I164L. This agrees with the402

third most likely pathway presented by Lozovsky et al. (2009), however this pathway was unlikely403

in our simulations.404

Single mutations C59R and N51I were the second and third most prevalent single mutations in405

our isolate data, found in 5/6762 and 1/6762 of isolates, respectively. They were also the second406

and thirdmost likely first step in our pathwaypredictions (‘PfDHFR_total_pathway_probabilities.csv’).407

Single mutation I164L was absent from the isolate data and had zero probability of being selected408

as the first step of our evolutionary trajectories.409

A Chi-squared analysis revealed the worldwide distribution of mutations is significantly dif-410
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ferent than would be expected if there was no preferred evolutionary pathway, and the muta-411

tions which were over-represented were those involved in the most likely pathway inferred above412

S108N/C59R/N51I/I164L (see Appendix 2 and Appendix 2 - Figure 1). This provides further support413

that the epistatic interactions between the mutations determine the order of fixation resulting in414

preferred pathways to the quadruple mutation.415

Considering the set of four PvDHFR mutations (N50I, S58R, S117N and I173L), in our isolate416

data, the mutations S58R and S117N are fixed at these locations and the wild-type alleles are now417

considered to have an Arginine at codon 58 and Asparagine at codon 117. However in Jiang et al.418

(2013) they consider the wild-type allele to have a Serine at codons 58 and 117 and therefore we419

have changed our definition of the wild-type allele to agree with Jiang et al. (2013) for ease of420

comparison with their evolutionary pathways and our own.421

The most frequent single mutation was S117N (70/847 isolates), the most frequent double mu-422

tation was S58R,S117N (237/847) and the only observed triple mutation was S58R,S117N,I173L423

(2/847) (Figure ??). The quadruple mutation was not observed in our isolate data, and has not424

been reported in the literature either. By considering the frequency of the possible combinations425

of mutations, we inferred the evolution towards triple mutation S58R,S117N,I173L most likely oc-426

curs via pathway S117N/S58R/I173L. This corresponds to the fifth most likely pathway to a triple427

mutation when considering all pathways observed in our simulations, however this pathway is not428

observed in any of the most frequent pathways at any of the four concentrations studied in Jiang429

et al. (2013).430

Singlemutation S58Rwas the secondmost frequent singlemutation in our isolate data (20/847).431

This supports the predicted first evolutionary steps in Jiang et al. (2013) which were predicted to432

be S58R for the highest pyrimethamine concentration and S117N for three lower concentrations433

of pyrimethamine, which suggests both single mutations are possible, but S117N is more likely434

for a lower pyrimethamine concentrations. An alternative pathway to the triple mutation could435

therefore be S58R/S117N/I173L, which may be more likely under higher pyrimethamine concen-436

trations. This corresponds to the most likely pathway to a triple mutation in our simulations and is437

part of the second most likely pathway to the quadruple mutation at the highest pyrimethamine438

concentration considered in Jiang et al. (2013).439

A Chi-squared test on the frequency distributions of the single and double PvDHFR mutations440

(the triple mutations were too infrequent to include in the analysis, see Appendix 2 and Appendix441

2 -Figure 1 for more details) revealed the worldwide distribution of PvDHFR mutations is signifi-442

cantly different than would be expected if there were no preferred order of fixation of this set of443

mutations, with S117N and S58R,S117N being over-represented in the single and double distribu-444

tions, respectively. This supports our inference that pathway S117N/S58R/I173L is the most likely445

pathway in the worldwide data.446

Analysis of geographical distribution ofmutations found in our isolate data reveals447

alternative pathways to resistance448

Wenext considered the evolutionary trajectories by geographical location to determine if there are449

any differences in the inferred trajectories compared to the global trajectories, and which areas450

agree with the trajectories predicted by our simulations. The P. falciparum isolates were grouped451

in to seven geographical regions, as defined by the United Nations Statistics Division: South Amer-452

ica (Brazil, Colombia and Peru), West Africa (Benin, Burkina Faso, Cameroon, Cape Verde, Cote453

d’Ivoire, Gabon, Gambia, Ghana, Guinea, Mali, Mauritania, Nigeria and Senegal), Middle Africa454

(Congo [DRC]), Eastern Africa (Eritrea, Ethiopia, Kenya, Madagascar, Malawi, Tanzania, Uganda),455

Southern Asia (Bangladesh), Southeastern Asia (Cambodia, Indonesia, Laos, Myanmar, Thailand456

and Vietnam) and Melanesia (Papua New Guinea). The P. vivax isolates were grouped into seven457

broad geographical regions, as defined by the United Nations Statistics Division: Central America458

(Mexico), South America (Brazil, Colombia, Guyana, Panama, Peru), Eastern Africa (Ethiopia, Er-459

itrea, Madagascar, Sudan, Uganda), Southern Asia (Afghanistan, Bangladesh, India, Pakistan, Sri460
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Figure 3. The PfDHFR isolate data was grouped into seven geographical areas: South America, West Africa,
Middle Africa, Eastern Africa, Southern Asia, Southeastern Asia and Melanesia. The bar charts display the
frequency (log scale) of the combinations of the four mutations N51I, C59R, S108N and I164L. The frequency
data has been multiplied by a factor of 10 to enable clear identification of those mutations occurring in one
isolate only. The most likely evolutionary trajectory inferred from the frequency of combinations are included
above the corresponding frequency chart from which the pathways were inferred indicated by mutations
separated by dark red arrows. Alternative pathways are indicated by mutations separated by light red arrows.
Where only single mutations are present a pathway is not inferred. (See Supplementary data folder
‘PfDHFR/IsolateMutationFrequency’ for the frequency of all mutations found in the isolate data from these
regions).

Lanka), Southeastern Asia (Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Thailand461

and Vietnam), Eastern Asia (China) and Melanesia (Papua New Guinea). The mutation frequency462

data discussed in this section for each country can be found in Supplementary data folders ‘PfD-463

HFR/IsolateMutationFrequency’ and ‘PvDHFR/IsolateMutationFrequency’. For an analysis of the464

frequencies and inferred pathways per country per region, as well as information on additional465

mutations found in the data, see Supplementary text.466

As in the previous section, we inferred the most likely pathway by assuming the most frequent467

mutation at each step corresponds to the most likely evolutionary trajectory. The inferred most468

likely pathway to the quadruple mutation agreed with the main pathway, S108N/C59R/N51I/I164L,469

predicted by our evolutionary model and the data presented in Lozovsky et al. (2009), as well470

as the most likely pathway inferred by considering the frequency of the worldwide PfDHFR iso-471

late data in Western Africa (S108N: 31/2594; C59R,S108N: 211/2594; N51I,C59R,S108N: 1739/2594;472

N51I,C59R,S108N,I164L: 1/2594), SouthernAsia (S108N: 2/86; C59R,S108N: 39/86; N51I,C59R,S108N:473

15/86; N51I,C59R,S108N,I164L: 17/86) and SoutheasternAsia (S108N: 3/2650; C59R,S108N: 186/2650;474

N51I,C59R,S108N: 920/2650; N51I,C59R,S108N,I164L: 1419/2650). Additionally, the alternativeworld-475

wide pathway S108N/C59R/I164L/N51I was inferred to be an alternative in Southern Asia476

(C59R,S108N,I164L: 11/86) and Southeastern Asia (C59R,S108N,I164L: 90/2650), corresponding to477

the secondmost likely pathway to the quadruple predicted by our simulations, the data in Lozovsky478

et al. (2009) and worldwide frequency data.479
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This main pathway to the quadruple mutation was also inferred to be a possible alternative480

pathway in Eastern Africa (S108N: 3/904; C59R,S108N: 31/904; N51I,C59R,S108N: 782/904,481

N51I,C59R,S108N,I164L: 2/904). However, in Eastern Africa S108N/N51I/C59R/I164L was the most482

likely pathway to the quadruple mutation (S108N,N51I: 67/904), which corresponds to the third483

most likely pathway presented in Lozovsky et al. (2009) and inferred from the total frequency data,484

but which was unlikely in our simulations. This was also an alternative pathway in Western Africa485

(S108N,N51I: 32/2594).486

Furthermore, the quadruple mutation was not observed in the isolate data from Middle Africa,487

SouthAmerica, andMelanesia. InMiddle Africa, evolutionup to the triplemutationN51I,C59R,S108N488

was observed and themost likely inferred pathway to this mutation was S108N/N51I/C59R (S108N:489

6/359; N51I,S108N: 86/359; N51I,C59R,S108N: 258/359), with an alternative less likely pathway of490

S108N/C59R/N51I (C59R,S108N: 6/359), corresponding to the thirteenth and first most likely trajec-491

tories to a triple mutation in our simulations, respectively. In South America, evolution up to the492

triple mutation N51I,S108N,I164L was observed in the isolate data and was inferred to follow the493

pathway S108N/N51I/I164L (S108N: 26/50, N51I,S108N: 12/50; N51I,S108N,I164L: 4/50), however494

this pathway does not occur in our simulations. In Melanesia, evolution up to the double mutation495

C59R,S108N was observed in the isolate data and was inferred using the frequency data to have496

followed the pathway S108N/C59R (S108N: 1/119; C59R,S108N: 23/119), which corresponds to the497

most likely pathway of all our evolutionary runs.498

We performed an analysis of the significance of the regional frequency distributions (see Ap-499

pendix 3 and Appendix 3 - Figure 2). All regions had mutations which were significantly over- or500

underrepresented compared to what would be expected from the worldwide distribution. The501

overrepresented mutations were always part of the inferred most likely evolutionary pathway for502

each region. This suggests any differences in the inferred pathways between the regions and the503

worldwide data are significant. For example, in South America (Appendix 3 Figure 2d), the three504

mutations involved in the most likely inferred pathway (single mutation S108N, double mutation505

N51I,S108Nand triplemutationN51I,S108N,I164L) are all overrepresented. Thesemutations are in-506

volved in themost likely inferred pathway in that region (S108N/N51I/I164L), suggesting this region507

is indeed following a different evolutionary trajectory to what wewould expect from the worldwide508

data (see Supplementary Text for detailed analysis of all regions).509

Next, we considered the frequency of combinations of the four PvDHFR mutations in different510

geographical regions and used these frequencies to infer evolutionary trajectories (Figure 4). As511

mentioned previously, the quadruple mutation is not observed in the isolate data and so we will512

infer trajectories up to triple mutant combinations of the four mutations where possible, and com-513

pare to themost likely pathways to triplemutations in our simulations and in the experimental data.514

Triple mutation S58R,S117N,I173L was the only triple mutant combination observed in the isolate515

data and was only found in South America. Analyzing the frequency of the constituent mutations516

(S117N: 34/257; S58R,S117N: 74/257; S58R,S117N,I173L: 2/257), the most likely inferred pathway517

to this mutation is S117N/S58R/I173L. This was the fifth most likely triple mutation pathway in our518

simulations, however it was not an observed pathway in Jiang et al. (2013). There are two other519

possible pathways inferred from the frequency data to this triple mutation: S117N/I173L/S58R520

(S117N,I173L: 1/257), and S58R/S117N/I173L (S58R: 9/257). Pathway S117N/I173L/S58R was the521

third most likely pathway to a triple mutation in our simulations but was not observed in the sim-522

ulations in Jiang et al. (2013) and S58R/S117N/I173L the most likely pathway to a triple mutation523

in our simulations and was observed as part of the second most likely pathway to the quadruple524

mutation at the highest pyrimethamine concentration considered in Jiang et al. (2013).525

Evolution only up to double mutation S58R,S117N was found in Southeastern Asia, Eastern526

Africa and Melanesia and S117N/S58R was the most likely fixation order in Eastern Africa, whilst527

S58R/S117N was the most likely fixation order in Southeastern Asia and Melanesia. Pathways528

S58R/S117N and S117N/S58Rwere the second and fourthmost likely doublemutation pathways in529

our simulations. In Southern Asia, evolution up to double mutations S58R,S117N and N50I,S117N530

13 of 34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2022. ; https://doi.org/10.1101/2022.01.25.477595doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.477595
http://creativecommons.org/licenses/by/4.0/


Wild-type

N50I

S58R

S117N

N50I,S117N

S58R,S117N

S117N,I173L

S58R,S117N,I173L

longitude

la
ti
tu
d
e

Central America

South America
S117N I173LS58R

S58R S117N I173L
S117N I173L S58R

1000

Eastern Africa
S117N S58R
S58R S117N

Southern Asia 
S117N S58R
S58R S117N
S117N N50I

Eastern Asia 

Southeastern Asia 
S58R S117N

S117N S58R Melansia
S58R S117N

S117N S58R

0

0-100 100

-20

20

40

100

10

1

100

10

1

100

10

1

100

10

1

1000

100

10

1

1
3

10
30

1
3

10
30

Figure 4. The PvDHFR isolate data was grouped into seven geographical areas: Central America, South
America, Eastern Africa, Southern Asia, Eastern Asia, Southeastern Asia and Melanesia. The bar charts display
the frequency (log scale) of the combinations of the four mutations N50I, S58R, S117N and I173L. The
frequency data has been multiplied by a factor of 10 to enable clear identification of those mutations
occurring in one isolate only. The most likely evolutionary trajectory inferred from the frequency of
combinations are included above the corresponding frequency chart from which the pathways were inferred
indicated by mutations separated by dark red arrows. Alternative pathways are indicated by mutations
separated by light red arrows. Where only single mutations are present a pathway is not inferred. (See
Supplementary Text for further explanation and see Supplementary data folder
‘PvDHFR/IsolateMutationFrequency’ for the frequency of all mutations found in the isolate data from these
regions).

was observed, following pathways S117N/S58R and S117N/N50I, respectively (S58R: 3/37, S117N:531

6/37, N50I,S117N: 6/37, S58R,S117N:22/37), with the pathway S117N/S58R appearing to be more532

prevalent. In Eastern Asia, evolution only up to single mutation S58R was observed and in Cen-533

tral America no steps in the evolutionary pathway including combinations of these four mutations534

were found.535

We performed an analysis of the significance of the regional distributions, similar to described536

above for PfDHFR, however the frequencies of the four PvDHFR in many of the regions was too537

small to definitively draw conclusions (see Appendix 3 and Appendix 3 - Figure 2 for more de-538

tails). However, from this analysis it does appear that the distribution of mutations in South Amer-539

ica is very similar to the worldwide distribution (Appendix 3 -Figure 2d) and this region is follow-540

ing the same inferred evolutionary pathway as the pathway inferred from the worldwide data541

(S117N/S58R/I173L). The distribution of mutations in Eastern Africa is similar to the worldwide542

distribution (Appendix 3 - Figure 2a), however this region is enriched for single mutation S117N543

and appears to have not evolved to the double mutant step in the most likely worldwide pathway544

(S58R,S117N) as frequently as would be expected, suggesting it is at an earlier stage of evolution545

compared to the worldwide distribution. Finally, double mutation N50I,S117N is overrepresented546

in Southern Asia (Appendix 3 - Figure 2e), suggesting an alternative evolutionary pathway may be547

occurring in this region.548
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Discussion549

Wehave presented amethod for predicting themost likely evolutionary trajectories tomultiplemu-550

tants by parameterizing thermodynamic evolutionary model using Flex ddG predictions. The most551

likely pathways predicted by ourmodel to the pyrimethamine-resistant quadruple PfDHFRmutant552

correspond well to those predicted in Lozovsky et al. (2009), generated using experimentally de-553

termined IC50 values of PfDHFR pyrimethamine binding. The two most likely pathways based on554

experimental IC50 values were found in the top two most likely pathways to the quadruple mu-555

tation based on our simulations using predictions of binding free energy. Whilst our simulations556

disagreed with the simulations in Lozovsky et al. (2009) in terms of which were themost frequently557

realized pathways out of the total number of runs, where a realized pathway does not necessarily558

have to reach the quadruplemutation, ourmodel is able to capture themost likely order of fixation559

of mutations leading to a particular multiple mutant in general agreement with the simulations in560

Lozovsky et al. (2009).561

We also simulated the most likely evolutionary trajectories to the PvDHFR quadruple muta-562

tion N50I,S58R,S117N,I173L and compared our results to those predicted in Jiang et al. (2013) .563

They considered the relative growth rates of the different alleles at different drug concentrations564

when simulating evolutionary trajectories, which incorporate both change in pyrimethamine bind-565

ing affinity (𝐾𝑖) and catalytic activity (𝑘𝑐𝑎𝑡). Our top two most likely pathways to the quadruple cor-566

respond to their top two most likely pathways for the highest pyrimethamine concentration they567

consider, albeit in reverse order. At high pyrimethamine concentrations, it is likely mutations that568

significantly reduce binding affinity will be selectively favoured even if there is a slight reduction569

in catalytic activity. Indeed, Rodrigues et al. (2016) observed a clear tradeoff between catalytic570

activity and binding affinity for increased drug resistance and found that whilst many molecular571

features affect drug resistance, drug binding affinity was the key determinant of drug resistance572

in later stages of evolution. This may be why our predictions agree well their predictions for high573

pyrimethamine concentration, but not for low-to-middle pyrimethamine concentrations, because574

even though ligand concentration is included in our equation for protein fitness (Eq. 1), our model575

cannot account for adaptive conflict between𝐾𝑖 and 𝑘𝑐𝑎𝑡. This highlights a limitation of our method576

as it only accounts for changes in binding affinity and does not account for changes in protein577

function.578

As previously mentioned, DHFR catalyzes the reduction of substrate DHF via oxidation of cofac-579

torNADPH. Therefore, in the case of theDHFR enzyme, a future iteration of themodel could include580

the impact resistance mutations have on binding of these two ligands, as a proxy for changes to581

enzyme function. However, this would require a muchmore complex model of protein fitness and582

would be much more computationally expensive.583

A further limitation of the evolutionary model is that it operates in the weak mutation regime,584

in which the mutation rate is so low that mutations appear and fix in isolation. However, this585

assumption breaks down when considering large microbial populations where clonal interference586

means thatmutations can arise simultaneously and compete for fixation (Gerrish and Lenski, 1998).587

This can lead to a process known as ‘greedy adaptation’, in which the mutation of larger beneficial588

effect is fixed with certainty (Jain et al., 2011). Clonal interference has been shown to emerge589

rapidly in laboratory cultivated P. falciparum, where the parasite cycles through only asexual stages,590

suggesting it may influence the dynamics of the emergence of resistance (Jett et al., 2020). The591

evolutionary model used here may therefore overestimate the fixation probability of mutations592

with milder beneficial effects and underestimate the fixation probability of mutations with larger593

beneficial effects (de Visser and Krug, 2014). Future iterations of this work could be improved by594

making using a fixation probability that models of clonal interference such as the work of Gerrish595

and Lenski (1998) and Campos et al. (2004). However, suchmodels aremore difficult to implement596

as they can require species-specific derivations for certain functions.597

Mutations occurring at a drug-binding site may also reduce the protein’s thermodynamic stabil-598
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ity (Wang et al., 2002) and therefore may not be selected for, even if they improve the resistance599

phenotype. Therefore, our model may also be improved by including selection for mutations that600

do not reduce thermodynamic stability relative to the wild-type enzyme. However, it must also be601

noted that most proteins are marginally stable (Vogl et al., 1997; Ruvinov et al., 1997), a property602

which may have evolved either as an evolutionary spandrel (Taverna and Goldstein, 2002; Gold-603

stein, 2011) (a characteristic that arises as a result of non-adaptive processes which is then used604

for adaptive purposes (Gould et al., 1979) or due to selection for increased flexibility to improve605

certain functionalities (Závodszky et al., 1998; Tsou, 1998)). Therefore, the model would also have606

to account for the fact that a resistance mutation that increases protein stability relative to the607

wild-type stability may also result in a reduction in fitness.608

Despite the limitations of our computational method to predict evolutionary trajectories by609

only considering the impact on drug binding, it is able to accurately predict the most likely order610

of fixation of mutations in a trajectory in general agreement with trajectories determined using611

experimental values such as IC50 or more complex fitness landscapes informed by multiple pa-612

rameters including drug concentration and growth rates. This supports the findings in Rodrigues613

et al. (2016), that drug binding is amajor determinant of resistance, especially at later stages of evo-614

lution. It also suggests evolution in such landscapes is more predictable than might be expected,615

since trajectories can be predicted considering only the impact on binding affinity.616

We also inferred evolutionary pathways from the total frequency in worldwide clinical isolate617

data as well as from different geographical regions. This analysis suggests evolutionary pathways618

may be inferred from the frequency of mutations found in isolate data, however it requires a large619

number of isolates to properly sample the mutations in the population. Furthermore, this method620

can only be used to predict trajectories once resistance has emerged in a population, whereas the621

computational method presented here can predict evolutionary trajectories before introduction622

of a new drug.623

This analysis also suggested that different regions often follow different evolutionary trajecto-624

ries and that the most likely evolutionary trajectories predicted by our model, and experimental625

trajectories, are not always the most prevalent. Geographical differences in the distribution of626

resistant alleles may be the result of drug regimens and gene flow in parasite populations. Com-627

bination drug SP was first used in 1967 to treat P. falciparum in Southeastern Asia, and resistance628

was first noted that same year on the Thai-Cambodia and Thai-Myanmar borders (Björkman and629

Phillips-Howard, 1990). In Africa, SP was first used in the 1980s, with resistance occurring later630

that decade. However, analysis of PfDHFR genotypes and microsatellite haplotypes surrounding631

the DHFR gene in Southeastern Asia and Africa suggest a single resistant lineage that appeared in632

Southeastern Asia accumulated multiple mutations, including the triple N51I,C59R,S108N (Roper633

et al., 2004;Mita et al., 2007), migrated to Africa and spread throughout the continent (Maïga et al.,634

2007; McCollum Andrea et al., 2007, 2008). Variation in the frequency of PfDHFR mutants across635

Africa occurs because of differences in the timing of chloroquine withdrawal and introduction of636

SP, as well as continued use of SP for intermittent preventive treatment (IPTp) in pregnant women637

residing in areas ofmoderate to highmalaria transmission intensity (Turkiewicz et al., 2020; Raven-638

hall et al., 2016).639

Pyrimethamine resistance increased in West Papua in the early 1960s following the introduc-640

tion of mass drug administration (Verdrager, 1986). Microsatellite haplotype analysis suggests641

C59R,S108N in Melanesia has two lineages, one of which originated in Southeastern Asia whilst642

the other evolved indigenously Roper et al. (2004).643

Pyrimethamine resistance in South America looks surprisingly different from the distributions644

in Africa and Southeastern Asia. SP was introduced in South America and low-level resistance645

was first noted in Colombia in 1981 (Espinal et al., 1985). Microsatellite haplotype analysis sug-646

gests pyrimethamine resistance evolved indigenously in South America, with at least two distinct647

lineages detected. A triplemutant lineage (C50I,N51I,S108N) was identified in Venezuela that possi-648

bly evolved from doublemutant N51I,S108N (?). A second triplemutant lineage (N51I,S108N,I164L)649
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was identified in Peru andBoliviawhich also possibly evolved fromadistinct doublemutant (N51I,S108N)650

lineage (Zhou et al., 2008).651

In general, the PvDHFR gene is muchmore polymorphic than PfDHFR gene, with over 20 alleles652

observed in a limited geographical sampling (Hawkins et al., 2007), whereas fewer PfDHFR alle-653

les have been observed despite much more extensive surveillance with non-synonymous changes654

and insertions/deletions occurring rarely (Gregson and Plowe, 2005). It also appears that the ori-655

gin of PvDHFR pyrimethamine resistance mutation is much more diverse than PfDHFR. Hawkins656

et al. (2008) investigated isolates from Colombia, India, Indonesia, Papua New Guinea, Sri Lanka,657

Thailand and Vanuatu and found multiple origins of the double PvDHFR mutant 58R,117N in Thai-658

land, Indonesia and Papua New Guinea/Vanuatu. Shaukat et al. (2021) assessed the resistance659

mutations in Punjab, Pakistan and foundmultiple origins of single mutation S117N and a common660

origin of double mutant 58R,S117N and triple mutant 58R,117N,I173L. This is in contrast to the661

evolutionary origin of pyrimethamine resistance in PfDHFR, where mutations in Africa shared a662

common origin with a resistance lineage from Asia.663

This highlights the need to distinguish between geographical regions and account for existing664

resistance alleles within that region and trace their lineages when attempting to predict the next665

step in evolutionary trajectories to highly resistant multiple mutants. Given the current dominant666

resistance allele from a specific region, our method could be used to predict the most likely next667

steps from a subset of likely mutations.668

We have presented a computational method for predicting the most likely evolutionary tra-669

jectories that has demonstrated good agreement with trajectories predicted experimentally and670

has the advantage of being much quicker andmore cost-effective than laboratory-basedmethods.671

This method can be applied to any system in which a drug binds to a target molecule, provided a672

structure of the complex exists or can be produced via structural modelling. Given the threat an-673

timicrobial resistance poses, methods to accurately and efficiently predict future trajectories are674

vital and can inform treatment strategies and aid drug development.675

Methods and Materials676

Homology Modelling677

Homology modelling was carried out in Modeller (Webb and Sali, 2016) to produce complete struc-678

tures of the target proteins bound to their drug molecules. Several crystal structures of PfDHFR679

exist in the Protein Data Bank (PDB). The entry 3QGT provides the crystal structure of wild-type680

PfDHFR complexed with NADPH, dUMP and pyrimethamine, however residues in the ranges 86-95681

and 232-282 aremissing from the structuralmodel. Homologymodellingwas used to complete the682

structure using a second wild-type PfDHFR structure PDB entry 1J3I along with a wild-type PvDHFR683

structure PDB entry 2BLB.684

To produce a complete structural model of PvDHFR, PDB entry 2BLB was used as a template,685

whichprovides the X-ray crystal structure ofwild-type P. vivaxDHFR in complexwith pyrimethamine.686

This structure was only missing a loop section between residues 87-105 and so Modeller was used687

to build this missing loop.688

Flex ddG binding free energy predictions689

The Rosetta Flex ddG protocol was used to estimate the change in binding free energy upon muta-690

tion, ΔΔ𝐺 = Δ𝐺𝑚𝑢𝑡−Δ𝐺𝑊 𝑇 , for each step in all possible mutational trajectories for a set of stepwise691

resistance mutations (see Supplementary data Flex_ddG folder for examples of a Rosetta script,692

resfile and command line. The protein-ligand structure files and ligand parameter files can be693

found in the folders named for the specific targets). To predict the change in binding free energy694

for a single ormultiplemutation, we used the structure of the target proteinwith the drugmolecule695

bound as input to Flex ddG and ran the protocol for 250 times per mutation to produce a distri-696

bution of predictions of the change in the free energy of binding. We then found the mean of the697
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distribution to produce a single estimate of the change in the binding free energy for the mutation,698

denoted ΔΔ𝐺∗
𝑋 for mutation X.699

To predict the stepwise evolutionary trajectories, we must consider the interactions between700

the mutations in the pathway. The interaction energy (or epistasis) in the binding free energy701

between two mutations X and Y, can be written 𝜖𝑋,𝑌 = ΔΔ𝐺𝑋,𝑌 − (ΔΔ𝐺𝑋 +ΔΔ𝐺𝑌 ). This quantifies by702

how much the change in binding free energy of the double mutant X,Y deviates from additivity of703

the single mutants, where each are calculated with respect to the wild-type. Therefore, the change704

in binding free energy when mutation Y occurs in the background of mutation X can be written705

ΔΔ𝐺𝑋∕𝑌 = ΔΔ𝐺𝑋,𝑌 − ΔΔ𝐺𝑋 , where ΔΔ𝐺𝑋∕𝑌 = ΔΔ𝐺𝑌 + 𝜖𝑋,𝑌 .706

For a third mutation, Z, occurring in the background of double mutation X,Y, the interaction707

energy between Z and X,Y is 𝜖𝑋𝑌 ,𝑍 = ΔΔ𝐺𝑋,𝑌 ,𝑍 − (ΔΔ𝐺𝑋,𝑌 + ΔΔ𝐺𝑍 ). The quantity 𝜖𝑋𝑌 ,𝑍 is not the708

same as the third order epistasis between mutations X, Y, and Z, or the interaction energy 𝜖𝑋𝑌𝑍 =709

ΔΔ𝐺𝑋,𝑌 ,𝑍 − (ΔΔ𝐺𝑋 + ΔΔ𝐺𝑌 + ΔΔ𝐺𝑍 ) as it does not account for the interaction between X and Y,710

rather it only quantifies the interaction between Z and the two mutations X and Y. Therefore, the711

change in binding free energy when mutation Z occurs in the background of double mutant X,Y712

can be calculated as ΔΔ𝐺𝑋,𝑌 ∕𝑍 = ΔΔ𝐺𝑋,𝑌 ,𝑍 − ΔΔ𝐺𝑋,𝑌 , where ΔΔ𝐺𝑋,𝑌 ∕𝑍 = ΔΔ𝐺𝑍 + 𝜖𝑋𝑌 ,𝑍 .713

To estimate the change in binding free energy when mutation Y occurs in the background714

of mutation X, ΔΔ𝐺𝑋∕𝑌 for stepwise pathway 𝑋∕𝑌 , we subtracted the predictions ΔΔ𝐺𝑖
𝑋 for the715

first mutation 𝑋, from the predictions for the double mutation 𝑋, 𝑌 , ΔΔ𝐺𝑖
𝑋,𝑌 , to create a set of716

250 ‘predictions’ for the change in binding free energy when 𝑌 occurs in the background of 𝑋,717

ΔΔ𝐺𝑖
𝑋∕𝑌 i.e. ΔΔ𝐺𝑖

𝑋∕𝑌 = ΔΔ𝐺𝑖
𝑋,𝑌 − ΔΔ𝐺𝑖

𝑋 for 𝑖 = {1, . . . , 150}. To estimate the change in bind-718

ing free energy when mutation Z occurs in the background of mutations X and Y we calculated719

ΔΔ𝐺𝑖
𝑋,𝑌 ∕𝑍 = ΔΔ𝐺𝑖

𝑋,𝑌 ,𝑍 −ΔΔ𝐺𝑖
𝑋,𝑌 . We applied a similar method for the quadruple mutations, so that720

we had a set of ‘predictions’ for each step in the possible evolutionary trajectories.721

Simulating Evolutionary Trajectories722

The Rosetta energy function is a mix of a combination of physic-based and statistics-based po-723

tentials and so raw predictions using this function don’t up match up with physical energy units724

(e.g. kcal/mol or kJ/mol). However, the authors of Flex ddG applied a generalized additive model725

(GAM)-like approach to the Rosetta energy function to reweight its terms and to fit experimentally726

known values (in kcal/mol). The resulting nonlinear reweighting model reduced the absolute error727

between the predictions and experimental values and so improved the agreement with experimen-728

tally determined interface ΔΔ𝐺 values. They found that by doing this the Flex ddG predictions of729

binding free energy changes were in a similar range as experimental binding free energy changes730

and observed improved correlation and classification of mutations as stabilising or destabilising731

(Barlow et al., 2018). Therefore, we assume Flex ddG can provide approximate predictions of bind-732

ing free energy changes comparable to experimental changes in kcal/mol and can therefore be733

used to parameterize a thermodynamic model.734

To predict the most likely evolutionary trajectories to reach a quadruple mutant we used a735

model based in thermodynamics and statistical mechanics where the fitness of a protein is deter-736

mined by the probability it would not be bound to a ligand, 𝑃𝑢𝑛𝑏𝑜𝑢𝑛𝑑 . We consider a two-state system737

in which the protein can either be bound or unbound and do not explicitly account for if the protein738

is folded or unfolded in either the bound or unbound state. For ligand concentration [𝐿] it can be739

shown that the probability a protein is unbound is740

𝑃𝑢𝑛𝑏𝑜𝑢𝑛𝑑 = 1
[𝐿]
𝐾𝑑

+ 1
(1)

where 𝐾𝑑 is the protein-ligand dissociation constant and can be calculated as 𝑐0𝑒Δ𝐺∕𝑘𝑇 where 𝑐0 is741

a reference ligand concentration (set here arbitrarily to 1M), Δ𝐺 is the protein-ligand binding free742

energy, 𝑘 is the Boltzmann constant and 𝑇 is the temperature in Kelvin.743
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Starting from the wild-type protein, with binding free energy Δ𝐺𝑊 𝑇 and fitness 𝑃𝑊 𝑇
𝑢𝑛𝑏𝑜𝑢𝑛𝑑 , we ex-744

tract one sample i from the 250 values of the predicted binding affinity changes for the single745

mutations to determine the binding free energy after mutation X, Δ𝐺𝑖
𝑋 = Δ𝐺𝑊 𝑇 +ΔΔ𝐺𝑖

𝑋 , and calcu-746

late the fitness of each single mutant protein 𝑃𝑋(𝑖)
𝑢𝑛𝑏𝑜𝑢𝑛𝑑 . We can calculate the probability themutation747

will fix in the population using the Kimura fixation probability for a haploid organism748

𝑝𝑓𝑖𝑥 =
1 − 𝑒−2𝑠

1 − 𝑒2𝑠𝑁𝑒
(2)

where 𝑁𝑒 is the effective population size (set to 106 as previous models in Eccleston et al. (2021);749

Pollock et al. (2012)) and s is the selection coefficient 𝑠 = (𝑃𝑋,𝑖
𝑢𝑛𝑏𝑜𝑢𝑛𝑑 − 𝑃𝑊 𝑇

𝑢𝑛𝑏𝑜𝑢𝑛𝑑)∕𝑃
𝑊 𝑇
𝑢𝑛𝑏𝑜𝑢𝑛𝑑 . We also took750

in to account the mutational bias of Plasmodium falciparum using the nucleotide mutation matrix751

calculated in Lozovsky et al. (2009). The probabilities of fixation for eachmutationwere normalised752

by the sum of the probabilities of fixation for all possible mutations at that step in the trajectory. A753

mutation is then chosen with a probability proportional to this normalised probability of fixation.754

Once a single mutation is chosen, the binding free energy is set to Δ𝐺𝑖
𝑋 of the chosen mutation,755

and a value is sampled from the distribution of each of the possible next steps, X/Y in the trajectory756

i.e. ΔΔ𝐺𝑖
𝑋∕𝑌 . This continues until the end of the trajectory is reached. If the fixation probabilities757

of all mutations sampled at a step are effectively zero, no mutation is chosen at that step and the758

algorithmbegins again by choosing a singlemutation. Therefore, not all of the runs produce a com-759

plete trajectory and some will terminate before reaching the quadruple mutation. The algorithm760

was written in R.761

We calculate the probabilities, 𝑃𝑖, of each realized pathway (even those which don’t reach the762

quadruple mutation) by dividing the total number of times that specific pathway occurs by the763

number of runs. We calculate the probability of a particular step by dividing the number of times764

that step occurs in all realized pathways by the total number of runs.765

SNP data766

P. falciparum and P. vivax data was obtained from publicly available raw sequence data from Euro-767

pean Nucleotide Archive. These data include Illumina raw sequences from the MalariaGEN Com-768

munity Project for P. falciparum (Ahouidi et al., 2021) and P. vivax (Adam et al., 2022). P. vivax data769

additionally includes the Public Health England Malaria Reference Laboratory isolates from return-770

ing travelers to UK from regions where malaria is endemic (study accession number ERP128476)771

(Benavente et al., 2021). Data was filtered and processed to SNP data with the methodology de-772

scribed in the recent publications Turkiewicz et al. (2020) and Benavente et al. (2021) respectively.773

In this study, we analysed genotype data for 6,762 high-quality isolates from 32 countries across774

regions of Africa, South Eastern Asia, Oceania and South America to identify the genetic diversity in775

the PfDHFR gene. A similar analysis was carried out on 847 P. vivax isolates spanning 25 countries776

across Eastern Africa, Southern Asia, Southeastern Asia, Eastern Asia and South America to iden-777

tify genetic diversity in PvDHFR gene. SNPs occurring in non-unique, low quality or low coverage778

regions were discarded, and those with a missense effect in the candidate genes were analysed.779

Functional annotation was done with SnpEff (version 5.0) (Cingolani et al., 2012) with the following780

options: -no-downstream -no-upstream.781

Data availability782

Supplementary data can be found at 10.5281/zenodo.7082168783
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Appendix 11026

Comparison of Flex ddG predictions for 35 to 250 runs1027

For the set of four PfDHFR mutations (N51I, C59R, S108N and I164L) and combinations
thereof studied in Lozovsky et al. (2009), we ran 35 runs per mutation (as suggested by
the Flex ddG authors (Barlow et al., 2018)) and found the average for each distribution and
used these predictions to calculate the sum and the interaction energies for the multiple
mutants. We compared the predictions of the binding free energy change, the sum of the
independent changes for multiple mutants and the interaction energy to the experimen-
tal data from Lozovsky et al. (2009) and observed Pearson correlations of 0.536, 0.580 and
0.900, respectively (Appendix 1 - Table 1). We also determined the number of correctly clas-
sified predictions. For the binding free energy predictions, 5/9 predictions were correctly
classified as stabilizing or destabilizing, 4/5 of the sum of the independent impacts were cor-
rectly classified as stabilizing or destabilizing and 2/5 interaction energy predictions were
correctly classified as either positive or negative. Therefore, whilst the predictions for 35
runs achieved a good correlation with the data, the predictions of the interaction energy
(and so the epistasis) using this data were correctly classified for less than half of the data
set.
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1038

1039

1040

1041

1042

Examining the distributions of the predicted change in binding free energy for 35 runs
for each of the mutations considered in Lozovsky et al. (2009) (Appendix 1 - Figure 1) we
can see that the distributions are not well characterized. We therefore decided to carry out
a larger number of runs per prediction and determine the number of runs required for the
rank order of the mutations to converge. We found the rank order of the average of the
distributions sufficiently converged by 250 runs (Appendix 1 - Figure 3), as demonstrated in
Appendix 1 - Figure 4 where the gradient of the average for each mutation is close to zero.
Whilst more runsmay have achieved better convergence, because of the time it takes to run
Flex ddG it is important to achieve a balance between efficiency and accuracy. Whilst these
new distributions are still not Gaussian, the distributions are better explored (Appendix 1
- Figure 2). We compared the predictions for 250 runs and the data from Lozovsky et al.
(2009) (Table 1) and observed a correlation of 0.611 for the binding free energy data, 0.660
for the sum of the independent predictions for multiple mutants and 0.756 for the interac-
tion energy. We found 8/9 binding free energy predictions were correctly classified, 4/5 of
the sum of the independent predictions were correctly classified and 4/5 of the interaction
energies were correctly classified. We therefore conclude that the predictions for n=250
runs present a better agreement with the data presented in Lozovsky et al. (2009) in terms
of compromising between correlation and correct classification, both of which are impor-
tant here.
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Mutation ΔΔ𝐺∗
𝑒𝑥𝑝

(kcal/mol)
Exp. Sum∗∗ Exp I.E.∗∗∗ ΔΔ𝐺†

𝐹 𝑙𝑒𝑥𝑑𝑑𝐺

(kcal/mol)
Sum‡ I.E.§

N51I -0.783 -0.156
C59R -0.184 0.059
S108N 1.297 0.521
I164L -0.351 -0.661
N51I,S108N 1.89 0.514 1.376 -0.132 0.365 -0.497
C59R,S108N 2.29 1.113 1.177 0.399 0.580 -0.183
N51I,C59R,S108N 2.595 0.33 2.265 0.196 0.425 -0.228
C59R,S108N,I164L 3.283 0.762 2.521 -0.004 -0.081 0.077
N51I,C59R,S108N,I164L 3.761 -0.021 3.782 0.306 -0.237 0.542
Pearson Correlation 0.536 0.580 0.900
Correctly Classified 5/9 4/5 2/5

1062

Appendix 1—table 1. Correlation between Flex ddG predictions for 35 runs and experimental data
(see table 4 of Sirawaraporn et al. (1997)) for PfDHFR pyrimethamine resistance mutations.

1063

10641065

*Experimentally measured PfDHFR pyrimethamine binding free energy change data from Sirawaraporn et al. (1997)1066

**Sum of experimental values of binding free energy change for independent mutations1067

***Interaction energy calculated as the difference between experimentally measured values of binding free energy
change of multiple mutant compared to the sum of the independent mutations involved

1068

1069
†Change in PfDHFR-pyrimethamine binding free energy predicted by Flex ddG calculated as the average of the dis-
tribution of runs. Free energy predictions from Rosetta are in Rosetta Energy Units, however the authors of Flex
ddG applied a generalized additive model to re-weight the predictions and make the output more comparable to
units of kcal/mol (Barlow et al., 2018)

1070

1071

1072

1073
‡Sum of Flex ddG predictions for independent mutations1074
÷Interaction energy calculated as the difference between Flex ddG predicted binding free energy change of multiple
mutant compared to the sum of the independent mutations.
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Appendix 1—figure 1. The distribution of pyrimethamine-PfDHFR binding free energy changes
predicted by Flex ddG for 35 runs for subset of mutations considered in Sirawaraporn et al. (1997)
namely a) N51I, b) C59R, c) S108N, d) I164L, e) N51I,S108N, f) C59R,S108N, g) N51I,C59R,S108N, h)
C59R,S108N,I164L and i) N51I,C59R,S108N,I164L
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Appendix 1—figure 2. The distribution of pyrimethamine-PfDHFR binding free energy changes
predicted by Flex ddG for 250 runs for subset of mutations considered in Sirawaraporn et al. (1997)
namely a) N51I, b) C59R, c) S108N, d) I164L, e) N51I,S108N, f) C59R,S108N, g) N51I,C59R,S108N, h)
C59R,S108N,I164L and i) N51I,C59R,S108N,I164L

1084

1085

1086

10871088

1089

1090

Appendix 1—figure 3. The average of the Flex ddG prediction distributions for n=30,. . . ,250 runs for
the PfDHFR mutation combinations.
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Appendix 1—figure 4. The gradient of the average of the prediction distributions for n=30,. . . ,250
runs for the PfDHFR mutation combinations
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Appendix 21099

Assessing the significance of the frequency distribution of mutations
in the worldwide isolate data

1100

1101

We performed a Chi-squared test on the worldwide distribution of the four PfDHFR mu-
tations considered here, to determine if the mutations involved in the most likely inferred
pathwaywere overrepresented compared to what wewould expect under a null hypothesis
in which there is no preferred pathway. Under this null hypothesis, if therewas no preferred
pathway, the single mutations would be observed at the same frequency, the double muta-
tions would be observed at the same frequency and the triplemutations would be observed
at the same frequency. Therefore, we carried out three separate Chi-squared tests on the
distributions of the single, double and triple mutations. (It would be difficult to carry out a
Chi-squared test on the combined distribution of these mutations because we would not
expect the single, double and triple mutations to have the same frequency and it would
be difficult to determine what their appropriate relative frequencies would be). The Chi-
squared tests determined all three distributions were significantly different from the null
hypothesis (𝑝𝑠𝑖𝑛𝑔𝑙𝑒𝑠 < 0.01, 𝑝𝑑𝑜𝑢𝑏𝑙𝑒𝑠 = 0, 𝑝𝑡𝑟𝑖𝑝𝑙𝑒𝑠 = 0). Analysing the residuals of each distribution
(Appendix 2 - Figure 1), S108N was found to be overrepresented in the distribution of single
mutations, C59R,S108N was overrepresented in the distribution of double mutations and
N51I,C59R,S108Nwas overrepresented in the triple mutation distribution. Thesemutations
are the single, double and triple mutations involved in the most likely inferred pathway for
the worldwide data, supporting our assertion this is the most likely stepwise trajectory to
the quadruple mutation.
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We performed a Chi-squared test for the distribution of the PvDHFR mutations in a
similar way to PfDHFR, however the frequency of triple mutants in the PvDHFR worldwide
dataset was not large enough to accurately carry out the test on the distribution of triple
mutations. Therefore, we only carried out the test for the distribution of single and double
mutations (Appendix 2 - Figure 1), with the null hypothesis that if there were no preferred
order of fixation, the frequency of the single mutations would be equal and the frequency
of the double mutations would be equal. The Chi-squared test revealed the distribution of
both the single and double mutants is significantly different from what we would expect
from the null hypothesis (𝑝𝑠𝑖𝑛𝑔𝑙𝑒𝑠 < 0.01 and 𝑝𝑑𝑜𝑢𝑏𝑙𝑒𝑠 < 0.01 for the single and double distri-
butions, respectively). Analysing the residuals of each distribution, S117N was found to be
overrepresented among the single mutations and S58R,S117N was found to be overrepre-
sented among the double mutations. This provides support for the idea that epistasis de-
termines the order of fixation and suggests that the most likely pathway to the only triple
mutation observed (S58R,S117N,I173L) occurs via pathway S117N/S58R/I173L. This corre-
sponds to the fifth most likely pathway to a triple mutation when considering all pathways
observed in our simulations, however this pathway is not observed in any of the most fre-
quent pathways at any of the four concentrations studied in Jiang et al. (2013).
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1138

Appendix 2—figure 1. The standardized residuals of the individual PfDHFR mutations from the
Chi-squared tests applied to single, double and triple mutants.
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Appendix 2—figure 2. The standardized residuals of the individual PvDHFR mutations from the
Chi-squared tests applied to single and double mutants.
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Appendix 31146

Assessing the significance of the frequency distribution of mutations
per region

1147

1148

The frequency of the mutations in the separate regions is often too small to reliably carry
out a Chi-squared test to determine if the regional distributions are significantly different
from the worldwide distribution. Therefore, for each region, a sample of size N (where N is
the size of the dataset from that region) was drawn with replacement from the worldwide
distribution, and this was repeated 50,000 per region to create a dataset of 50,000 bootstrap
samples per region. Comparing the frequency of mutations in the samples to the regional
data highlights those mutations whose frequency differs significantly from what would be
expected from the worldwide distribution.
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PfDHFR1157

The distribution of mutations in Western Africa is similar to the worldwide distribution with
the exception of mutations N51I,C59R,S108N and N51I,C59R,S108N,I164L which are over-
represented and underrepresented in the region, respectively (Appendix 3 - Figure 1g). This
suggests the region is following the same pathway as the worldwide distribution but that
the evolution is at an earlier stage. Conversely, in Southeastern Asia (Appendix 3 - Figure
1f), N51I,C59R,S108N was underrepresented in the region, whilst N51I,C59R,S108N,I164L
was overrepresented, suggesting the region is following the same pathway as the world-
wide distribution but evolution to the quadruple mutation had occurred more often than
expected. Analysis of the distribution of mutations in Southern Asia (Appendix 3 - Figure
1e) suggests double mutation C59R,S108N is overrepresented in this region and the evolu-
tion in this region is more concentrated around the double mutant step in the pathway
than would be expected. Triple mutations N51I,C59R,S108N and C59R,S108N,I164L are
under- and overrepresented in this region, respectively, suggesting the alternative pathway
S108N/C59R/I164L/N51I is more prevalent in this region than expected.

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

The distribution of mutations in Eastern Africa (Appendix 3 - Figure 1b) is similar to the
worldwide distributionwith the exception of doublemutationsN51I,S108NandC59R,S108N
which are slightly over- and underrepresented in the region, respectively. Furthermore,
triple mutation N51I,C59R,S108N and the quadruple mutation are over-and underrepre-
sented, respectively. This suggests a true preference for the doublemutant step S108N/N51I
over S108N/C59R in the pathway in this region compared to the worldwide distribution. Fur-
thermore, similar to Western Africa, the overrepresentation of the triple mutant step in the
most likely inferred pathway and the underrepresentation of the quadruple mutation sug-
gests this region is at an earlier stage in evolution compared to what would be expected
from the worldwide distribution.
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Similar to Eastern Africa, the distribution of mutations in Middle Africa (Appendix 3 - Fig-
ure 1a) showed significant differences in the frequency of double mutations N51I,S108N
and C59R,S108N which were over- and underrepresented, respectively. Triple mutation
N51I,C59R,S108N was overrepresented in this region and the quadruple mutation was un-
derrepresented. This suggests that like Eastern Africa, the evolutionary pathway in Middle
Africa shows a significant preference for the doublemutant step S108N/N51I over S108N/C59R
and that the evolution is at an earlier stage in this region than would be expected from the
worldwide distribution i.e. evolution to the quadruple mutation has not occurred as fre-
quently as would be expected.
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The distribution of mutations in South America is markedly different from the world-
wide distribution, with single mutation S108N, double mutation N51I,S108N and triple mu-
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tation N51I,S108N,I164L all overrepresented, whilst triple mutation N51I,C59R,S108N and
the quadruple mutation are underrepresented. This suggests this region has a significant
preference for the mutations involved in the most likely inferred pathway in this region
S108N/N51I/I164L and the evolution is following a significantly different trajectory than the
worldwide distribution.
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1197

Finally, we analysed the distribution ofmutations inMelanesia and found the doublemu-
tation C59R,S108N is significantly overrepresented, whilst N51I,C59R,S108Nand the quadru-
ple mutation, which were both absent from this region, were underrepresented. This sug-
gests the evolution in this region is at a much earlier stage than would be expected from
the worldwide data.
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Appendix 3—figure 1. The frequency distributions of the PfDHFR mutations from the 50,000
samples taken from the worldwide distribution with replacement for sample sizes equal to the
regional datasets from a) Middle Africa, b) Eastern Africa, c) Melanesia, d) South America, e) Southern
Asia, f) Southeastern Asia, and g) Western Africa. The red dots show the frequency of each mutation
from the regional datasets and the black distributions show the 69%, 80% and 90% quantile intervals
of frequency distributions from the samples.
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PvDHFR1212

The distribution of the four PvDHFR mutations in South America is similar to the worldwide
distribution (Appendix 3 - Figure 2d) with all of the observedmutations occurring at frequen-
cieswithin or just outside the expected range. This supports our inference that the evolution
in South America is following the same most likely pathway as the worldwide data.
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In Eastern Africa, S117N was found to be overrepresented and S58R,S117N was found

33 of 34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2022. ; https://doi.org/10.1101/2022.01.25.477595doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.477595
http://creativecommons.org/licenses/by/4.0/


to be underrepresented compared to the worldwide distribution (Appendix 3 - Figure 2a).
This suggests evolution to the doublemutation has not occurred as frequently in this region
as would be expected from the worldwide distribution.

1217

1218

1219

1220

In Southern Asia, the distribution of mutations was as expected from the worldwide
distribution, with the exception of N50I,S117N, which was overrepresented in this region
(Appendix 3 - Figure 2e). This suggests the alternative pathway S117N/N50I inferred from
the frequency data from this region is more prevalent than would be expected.
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1224

The frequency of the four PvDHFR mutations in Eastern Asia, Southeastern Asia and
Melanesia is very low, therefore it is difficult to drawmany conclusions about the frequency
ofmutations in these regions. From the distribution plots (Appendix 3 - Figures 2b, 2f and 2c
for Eastern Asia, Southeastern Asia and Melanesia, respectively), the mutations appear to
be found at similar frequencies to what would be expected from the worldwide distribution,
however due to the low frequencies it is difficult to conclude that definitively. More data is
required from these areas to draw conclusions regarding the distribution of their mutations
and the evolutionary pathways they appear to be following.
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Appendix 3—figure 2. The frequency distributions of the PvDHFR mutations from the 50,000
samples taken from the worldwide distribution with replacement for sample sizes equal to the
regional datasets from a) Eastern Africa, b) Eastern Asia, c) Melanesia, d) South America, e) Southern
Asia and f) Southeastern Asia. The distribution from Central America was not analysed because it did
not contain any combinations of the four PvDHFR mutations being studied. The red dots show the
frequency of each mutation from the regional datasets and the black distributions show the 69%, 80%
and 90% quantile intervals of frequency distributions from the samples.
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