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Highlights  

• Selectively cueing features results in an overall performance benefit 

• Feature-based attention is sufficient to form a prospective motor plan 

• Prospective motor preparation can be initiated ahead of task specification 

• Retro-active task specification leads to forming of higher-level action codes 

• Different tasks requirements result in different prospective action plans 
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Abstract 

What mechanisms underlie the transfer of a working memory representation into a 

higher-level code for guiding future actions? Electrophysiological correlates of attentional 

selection and motor preparation processes within working memory were investigated in two 

retrospective cuing tasks. In the first experiment, participants stored the orientation and 

location of a grating. Subsequent feature cues (selective vs. neutral) indicated which feature 

would be the target for later report. The oscillatory response in the mu and beta frequency 

range with an estimated source in the sensorimotor cortex contralateral to the responding hand 

was used as correlate of motor preparation. Mu/beta suppression was stronger following the 

selective feature cues compared to the neutral cue, demonstrating that purely feature-based 

selection is sufficient to form a prospective motor plan. In the second experiment, another 

retrospective cue was included to study whether knowledge of the task at hand is necessary to 

initiate motor preparation. Following the feature cue, participants were cued to either compare 

the stored feature(s) to a probe stimulus (recognition task) or to adjust the memory probe to 

match the target feature (continuous report task). An analogous suppression of mu oscillations 

was observed following a selective feature cue, even ahead of task specification. Further, a 

subsequent selective task cue again elicited a mu/beta suppression, which was stronger after a 

continuous report task cue. This indicates that working memory is able to flexibly store 

different types of information in higher-level mental codes to provide optimal prerequisites 

for all required action possibilities.    

 

Key words: Working memory, motor planning, selective attention, neural oscillations, 

mu/beta suppression 
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1. Introduction 

In everyday life, we are frequently required to respond to stimuli that are present in our 

environment. However, what feels natural and automatic requires a complex cascade of 

cognitive processes, ranging from sensory perception via motor planning to motor execution. 

Working memory plays a central role in these cognitive processes, as it can be defined as a 

cognitive stage for the interface between perceptual information, higher-level cognitive 

operations, and goal-directed actions. Based on two working memory experiments and neural 

oscillations measured by means of the EEG, this study examined the role of prospective 

motor plans for the focusing of attention within working memory.  

Traditionally, perception and action have been considered to occur in a capacity-limited, 

strictly serial fashion (Pashler, 1994). In this view, attention acts as a kind of spotlight by 

enhancing the mental representation of relevant information and potentially suppressing 

neural activity related to irrelevant content. Analogously, during the storage of visuo-spatial 

information in working memory, we can focus attention on certain stored content and thereby 

generate a prioritized representational state, protecting the attended information against decay 

and interference (Bays & Taylor, 2018; Makovski et al., 2008; Matsukura et al., 2007; 

Pertzov et al., 2013). However, this concept of an attentional bias on information stored in 

working memory fails to consider the goal-directedness of human information processing in 

every-day life. What we store in working memory is not only the mental representation of 

past sensory input, but also information about what current goal we are pursuing or what 

future action or mental operation we want to perform. Thus, working memory contents cannot 

only be seen as more or less precise copies of sensory information, but rather as mental 

representations that can be used to guide future action (for review: Nobre & Stokes, 2019; 

Olivers & Roelfsema, 2020). 
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In line with this account, earlier studies have shown that, just as storing sensory 

representations, working memory can also store higher-level representations of to-be-

executed actions (e.g. Behmer & Fournier, 2014; Gallivan et al., 2016; Schneider et al., 2020; 

Zickerick et al., 2020). The attentional selection of certain working memory content could be 

the result of linking a sensory representation to such a representation of a to-be-executed 

action (Olivers & Roelfsema, 2020). In this regard, the measurement of neural oscillations in 

the EEG as a correlate for motor planning can provide valuable information. It was shown 

that oscillatory power in the mu (~10-14 Hz) and beta frequencies (~15-30 Hz) can track the 

preparation of a motor response (Leocani et al., 1997; Pfurtscheller et al., 2000; Zhuang et al., 

1997). For example, when participants can acquire explicit knowledge about a certain action 

sequence across an experiment, this knowledge about which action to-be-executed next is 

reflected in a suppression of mu oscillatory power over motor areas contralateral to the side of 

response (Zhuang et al., 1997). In a comparable way, an investigation by Schneider, Barth, & 

Wascher (2017) made use of oscillatory effects in mu/beta power as correlates of the creation 

of motor representations during the storage interval of a visual working memory task. 

Participants had to store three different visual items and were then cued to focus on one, two 

or three items for later report by means of a right-handed movement of the computer mouse. 

Following these cues, the authors observed a suppression of mu and beta oscillatory power 

with an estimated source in the pre-motor and motor cortex contralateral to the side of the to-

be-executed action. Just like in the motor learning experiment by Zhuang and colleagues 

(1997), this effect was only found when participants gained explicit knowledge about the 

action to-be-executed next (i.e., when only one item was cued) and it appeared clearly prior to 

the presentation of the memory probe demanding the actual response. In a comparable way, 

van Ede and colleagues (2019) used non-spatial (color) information to cue relevant working 

memory content. They orthogonally manipulated the lateralized position of the relevant visual 
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item in a memory array (left vs. right target) and the required motor response (button press 

with left vs. right index finger). Hemispheric asymmetries in alpha oscillations related to 

attentional selection (Foxe & Snyder, 2011; Händel et al., 2011; Myers et al., 2015; Sauseng 

et al., 2005; Schneider et al., 2016) and in mu and beta oscillations related to planning a left- 

vs. right-handed response could thus be fully separated from one another. It was shown that 

these types of oscillatory effects were related to spatially distinct areas of the brain but 

occurred in the same time frame. These results highlight that working memory can store 

sensory information along with corresponding motor plans and that both kinds of memory 

codes can be selected in support of future behaviour (see also: Boettcher et al., 2021). 

So far, the mentioned investigations suggested that correlates of motor planning like the 

suppression of mu/beta oscillatory power result from selecting an individual object stored in 

working memory for action control. However, in order to establish a general role of motor 

planning processes during the selection and storage of working memory content, it is 

necessary to investigate whether these principles also apply to the selection of individual 

features of stored objects. Therefore, as a first step, the current study investigated to what 

extent feature selection in working memory also involves the selection and storage of 

prospective motor plans. For this purpose, participants had to store both the location and 

orientation of a single object in working memory and were then cued to focus on one of these 

features for later report. We expected that both selective cues should lead to a more accurate 

report relative to a neutral cue condition without an attentional bias towards either feature. 

Furthermore, if selecting a visual feature from an object stored in working memory also 

involved motor planning (or the selection of an associated motor code), we should observe 

stronger suppression of oscillatory mu and beta power with an estimated source in the pre-

motor cortex contralateral (but not ipsilateral) to the to-be-executed response for the selective 

cue conditions relative to the neutral condition. This effect should occur together with a 
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stronger suppression of alpha power over posterior visual areas following the selective cues 

that was already observed in the context of the retrospective selection of visual object features 

(see Hajonides et al., 2020; Niklaus et al., 2017; Sasin & Fougnie, 2020; Ye et al., 2016). 

In a second experiment, we wanted to build on this by asking what conditions must be 

met for a prospective motor code to get created in working memory. For example, it is 

possible that a motor representation can be created only if it is clearly defined that the next 

operation in a working memory task requires dealing with the stored information based on a 

certain movement (e.g., adjusting a memory probe orientation or moving the hand or gaze to a 

specific position). So far, this was always the case in the studies that used mu and beta 

oscillations as a correlate of motor planning during working memory storage (Boettcher et al., 

2021; Schneider et al., 2017; van Ede et al., 2019). Such clear knowledge about the task to be 

executed next has been shown to improve working memory accuracy (Printzlau et al., 2019) 

and modulate the way the storage of visual working memory content is represented in the 

EEG signal (Fahrenfort et al., 2017). However, it is also possible that a motor representation 

of task-relevant working memory content is created even if the upcoming task has not yet 

been clearly defined. Working memory could then flexibly select from the stored mental 

representations of a given content the one(s) best suited to support each subsequent operation. 

In the present study, participants therefore had to select the relevant information in working 

memory on the basis of a feature cue (location vs. orientation vs. neutral) and later use it 

either for a continuous report task (adjusting a memory probe to the target feature by moving 

the computer mouse) or a recognition task (match vs. mismatch decision based on a memory 

probe). Only a second retro-cue (continuous report vs. recognition) or the later memory probe 

display (following a neutral task cue) indicated which of the two tasks should be performed 

based on the selected information. We hypothesized that a motor code of the selected 

information should be pre-emptively created in working memory even if the task to be 
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performed has not yet been clearly defined. In this case, a greater suppression of mu and beta 

power in contralateral sensorimotor and pre-motor cortex after the selective feature cues (i.e., 

before the definition of the task to be performed) relative to the neutral condition should be 

evident as a correlate of motor selection. A further selection of the mental representations 

useful for the to-be-executed task should then take place after the (second) task retro-cue. 

Compared to the recognition task which should first require comparing the memory probe to 

the relevant visual feature before selecting a certain response, cuing the continuous report task 

should entail a motor-planning process ahead of memory probe presentation, reflected by a 

stronger suppression of mu and beta power in contralateral sensorimotor and pre-motor 

cortex. These results would argue for a flexible use of sensory and motor codes in working 

memory according to the requirements of the tasks to be performed. 

2. Materials and methods 

2.1. Participants 

Twenty-four participants took part in the first experiment (15 females), who were 

between 20 and 30 years old (M = 24.13, SD = 3.03) and right-handed (as assessed with the 

Edinburgh Handedness Inventory: Oldfield, 1971). Twenty-six participants took part in the 

second experiment. Due to performance below chance level (n = 3) and one participant 

actually being left-handed, four participants had to be excluded. The final sample in the 

second experiment thus consisted of 22 right-handed participants (age: M = 23.09, SD = 2.43, 

range = 19-27, 19 female). None of the participants from the first and second experiment 

reported suffering from any neurological or psychological disorder. Participation was 

compensated with 10 Euros/hour or with course credits (for psychology students). The 

experiments were approved by the local ethics committee of the Leibniz Research Centre for 
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Working Environment and Human Factors (Dortmund, Germany) and were conducted in 

accordance with the Declaration of Helsinki. 

2.2. Stimuli and procedure 

The experiments took place in an electrically shielded, dimly lit chamber. Participants 

were seated with a viewing distance of 150 cm from the 22-inch CRT monitor (1024x768 

pixels), which had a 100 Hz refresh rate. A ViSaGe MKII Stimulus Generator (Cambridge 

Research Systems, Rochester, UK) controlled stimulus presentation. 

Prior to the actual experiments, participants performed a short training and three practice 

blocks to get acquainted with the tasks. During the training, a grey circle (luminance = 

20cd/m2, RGB = [R54 G54 B54], diameter = 4.4°) was presented on the left side of the 

screen. A randomly oriented Gabor grating (size = 1.3°, spatial frequency = 4.25 cycles per 

degree, phase = 180°, deviation = 0.25°) was shown on the perimeter of the circle on a 

random position. On the right side, a similar second circle with either one bar (indicating a 

position report) or two opposing bars (indicating an orientation report) was shown. The 

participants’ task was to adjust the second circle, using lateral mouse movements, so that the 

bar(s) matched the position or the orientation of the Gabor grating. In cases when the 

adjustment took longer than 4 s, participants were instructed to respond faster in order to 

familiarize themselves with the time constrains of the later experiment. The training was 

complete when the average response error was below 18° for orientation and below 36° for 

location in 50 consecutive trials. Afterwards, participants performed three practice blocks (30 

trials each), one for each condition of the experiment (see below). 

2.2.1. Experiment 1 

Participants were instructed to memorize the orientation and location of an oriented 

Gabor grating (similar to the one in the training; 16 different possible locations 22.5° apart 

from each other; eight different possible orientations 22.5° apart from each other), depicted on 
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the perimeter of an imaginary centrally located circle (diameter = 4.4°). After a 1500 ms delay 

interval, a retrospective feature cue indicated whether participants would have to recall the 

location (location cue: “P” for “Position”; one third of the trials) or orientation (orientation 

cue:”, “O”; one third of the trials) of the initially presented grating (see figure 1A). In one 

third of the trials, the feature cue contained no information about the to-be-reported feature 

(neutral cue, “X”). After another delay period, a highly salient distractor appeared in the 

centre of the screen followed by another delay interval. The visual distractor was included for 

facilitating decoding of the cued working memory representations (see Wolff et al., 2017) and 

therefore is not relevant for the current investigation. Finally, a memory probe, which 

consisted of a circle with either one marker (location report) or two opposing markers 

(orientation report) at a randomly chosen position appeared. Upon memory probe 

presentation, participants had to adjust the marker(s) position to indicate the cued feature (i.e., 

the grating’s location or orientation). Following a neutral feature cue, the type of memory 

probe (one mark vs. two marks) indicated the target feature. Once the probe was correctly 

adjusted, each answer had to be confirmed by a button press within 4 s. Otherwise the trial 

was considered incomplete. The task consisted of 720 trials (240 per feature cue condition) 

and the whole experiment (including the EEG cap preparation) lasted around 3.5 hours.  

2.2.2. Experiment 2 

The second experiment differed from the first one in the sense that participants had to 

perform one of two possible tasks: either the same location/orientation continuous report task 

as in Experiment 1 (50% of the trials) or a recognition task (50% of the trials). After 

memorizing the location and orientation of the grating presented in the memory array, a 

retrospective feature cue (location cue, orientation cue or neutral feature cue) indicated which 

feature was going to be relevant at the end of the trial. The delay interval after the feature cue 

was followed by a second retro-cue indicating whether participants had to adjust the location 
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or orientation of the probe or to compare a presented feature with the cued feature from the 

memory array. When the continuous report task was cued (one third of the trials; “K”, K = 

kontinuierlich; i.e., the German word for “continuous”; see figure 1B) the memory probes 

were identical to the first experiment. When the recognition task was cued (one third of the 

trials; “V”, V = Vergleich; i.e., German for “comparison”) the probe displayed just one 

feature. The probe location was indicated by a filled grey circle presented at a given location 

on an imaginary circle. Participants had to indicate by pressing the left or right button on the 

computer mouse (right hand) whether the position of the grey circle matched the initial 

position of the memory item. In orientation-recognition trials, a grating with a specific 

orientation was presented in the centre of the screen. Again, participants had to indicate with 

the computer mouse buttons whether this was the same or different orientation as presented in 

the memory array. The probe matched the memory array in half of the recognition task trials. 

The assignment of responses to the computer mouse buttons was counterbalanced across 

participants. In one third of the trials, the task cue was neutral, and participants could infer 

which task they should perform by looking at the probe display. When the probe was a circle 

with one or two marks on it, they had to perform the continuous report task. When it was 

either a filled grey circle or a centrally presented grating, the recognition task had to be 

performed. The combination of feature and task cues resulted in nine conditions (3 x 3 

experimental design) with 80 trials each. The experiment consisted of 720 trials in total and 

took about 4 hours, including the preparation of the EEG cap.  

#### insert figure 1 here #### 

2.3. Behavioural Analysis  

2.3.1. Experiment 1 

Only complete trials (including a button press following location/orientation report) were 

included in the analyses and two parameters were considered: the angular error (calculated as 
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the difference between the original orientation/location of the grating and the reported value) 

and the time to mouse movement (i.e., the time required for starting response initiation). For 

analysis of the angular error, conditions were compared against the respective neutral retro-

cue condition with a t-test separately for each feature. More specifically, trials with a location 

feature cue were compared to neutral trials with a location probe and orientation feature cue 

trials were compared to neutral trials with a later orientation probe. Since location and 

orientation adjustment featured different maximal angular error values (location: 180°; 

orientation: 90°), angular error analysis was done separately for each feature. Time to mouse 

movement onset was analysed with a repeated measures analysis of variance (rm-ANOVA) 

with the factors feature (location vs. orientation) and cue type (selective vs. neutral). 

2.3.2. Experiment 2 

Parameters for the analysis of working memory accuracy and response initiation in the 

continuous report task were the same as in Experiment 1: the angular error and time to mouse 

movement onset. Only complete trials were included in all analyses. For the recognition task, 

the percentage of correct responses and response times were analysed. Here, responses were 

considered from 150 - 4000 ms after memory probe presentation. Trials with responses prior 

to this interval were not included in the analyses (premature responses). Responses were 

considered as erroneous when there was a wrong button press or no button press within 150 - 

4000 ms (misses). For analysis of the angular error, separate rm-ANOVA were run with the 

factors feature cue (selective vs. neutral) and task cue (selective vs. neutral). All other 

parameters (continuous task: time to mouse movement onset; recognition task: percentage of 

correct responses, response times) were analysed with a rm-ANOVA with the factors feature 

(location vs. orientation), feature cue (selective vs. neutral) and task cue (selective vs. 

neutral).   
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2.4. EEG recording and pre-processing  

EEG data were recorded using a 128 Ag/AgCl passive electrode cap (Easycap GmbH, 

Herrsching, Germany) with a 10/20 configuration (Pivik et al., 1993). Data were recorded 

with a sampling rate of 1000 Hz and amplified by a NeurOne Tesla AC-amplifier (Bittium 

Biosignals Ltd, Kuopio, Finland). During data acquisition, an online 250 Hz low-pass filter 

was applied, which was chosen to be well below the Nyqist frequency in order to prevent 

aliasing. Impedances were kept below 20 kΩ. The FCz electrode was chosen as reference and 

the AFz as ground electrode.  

EEG data were analysed using MATLAB (R2021a) and the EEGLAB toolbox (v.14.1.2, 

Delorme & Makeig, 2004). As the first pre-processing step, data were 1 Hz high-pass (roll-off 

= 48dB/oct, half-amplitude cut-off: 1 Hz, half-power cut-off: 1.1 Hz) and 40 Hz low-pass 

filtered (roll-off = 48dB/oct, half-amplitude cut-off:  40 Hz, half-power cut-off:  36.4), using 

an infinite impulse response (IIR) Butterworth filter (pop_basicfilter function included in the 

ERPLAB toolbox; Lopez-Calderon & Luck, 2014). Prior research has shown that 1-2 Hz 

high-pass filtering of the continuous data can optimize ICA decomposition (see Winkler et al., 

2015). The 40 Hz low-pass filter was applied to exclude high-frequency fluctuations in the 

EEG signal that were not of interest for the current investigation (> 30 Hz; e.g., line noise). 

After filtering, the data were down sampled to 250 Hz to decrease further processing time.  

Channels containing a high level of artifacts were excluded using an automated channel 

rejection procedure (pop_rejchan function included in EEGLAB, probability threshold = 5 

SD; kurtosis threshold = 10). On average, 5.79 channels were excluded per participant (SD = 

3.75, range = 0-15) in Experiment 1. In Experiment 2, 6.92 channels per participant were 

excluded on average (SD = 4.6, range = 1-15). 

Next, data were re-referenced to a common average and were then separated into epochs 

time-locked to the memory array (Experiment 1: 1000 ms before and 6100 ms after the 
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memory array; Experiment 2: 1000 ms before and 7400 ms after the memory array). Trials 

containing extreme fluctuations were excluded with an automated artifact rejection procedure 

(pop_autorej function included in EEGLAB; threshold = 500 µV, probability threshold = 5 

SD, max. % of rejected trials per iteration: 5%). On average, 664.42 trials remained for the 

ICA (SD = 36.86, range = 592 - 711) in Experiment 1 and 672.84 trials (SD = 34.06, range = 

592 - 715) in Experiment 2. 

ICA was conducted on the rank-reduced data (number of channels minus 1, i.e., to 

account for the rank deficiency introduced by re-referencing to average reference) and 

components reflecting artifacts (horizontal and vertical eye movements, blinks, generic data 

discontinuities) were identified using ADJUST (Mognon et al., 2011). In addition, single-

equivalent current dipoles were fitted on the ICs based on a spherical head model using the 

dipfit-plugin of the EEGLAB toolbox. ICs with a residual variance exceeding 50% regarding 

their dipole solution and those ICs identified by ADJUST were excluded. Overall, 50.33 

components (SD = 11.30, range: 32-73) were excluded in Experiment 1. In Experiment 2, 

51.05 components (SD = 11.39, range: 32-77) were excluded. 

Trials still containing extreme fluctuations were identified and excluded through a second 

automated artifact rejection procedure (threshold = 1000 µV, probability = 5 SD, max. % of 

trials rejected per iteration = 5%). On average, 195.13 trials per experimental condition (SD = 

16.46, range = 166 – 228.67) (Experiment 1) remained. In Experiment 2, 67.48 (SD = 5.6, 

range = 58.33 – 76.11) trials per experimental condition remained on average. Finally, 

rejected channels were interpolated based on a spherical spline algorithm (eeg_interp function 

included in EEGLAB). 

2.5. Channel-based analysis 

Spectral power was computed by convolving complex Morlet wavelets with each trial of 

the EEG data. Frequencies between 4 and 30 Hz were included, which increased in 
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logarithmic steps of 52. The width of the Gaussian, defined by the number of cycles, 

increased linearly by a factor of 0.5, resulting in three cycles at the lowest and 11.5 cycles at 

the highest frequency. An interval of 200 ms before memory array onset (-200 to 0) was used 

as spectral baseline. The resulting epochs contained 200 time points ranging from -1000 ms 

before to 6000 ms after memory array onset (Experiment 2: -1000 ms to 7400 ms after 

memory array onset). For both experiments, ERSPs were computed separately for each 

experimental condition (Experiment 1: feature cue conditions; Experiment 2: feature and task 

cue combinations). Depending on the particular research questions, averages were taken 

across conditions for further analysis.  

Similar to Schneider et al. (2017), four clusters of electrodes were chosen to investigate 

to what extent the retrospective cuing of object features led to a modulation of oscillatory 

power prior to memory probe presentation: two clusters over the left (PO3, PO7, PPO5h, P7, 

P5) and right (PO4, PO8, PPO6h, P8, P6) parieto-occipital cortex and two clusters over the 

left (CP3, CCP5h, CCP3h, C3) and right (CP4, CCP6h, CCP4h, C4) sensorimotor cortex. As 

a first step, data were averaged across these clusters and across the two selective feature cue 

conditions. A cluster-based permutation procedure was performed in order to find the time 

window and frequency range in which selective and neutral feature cue conditions differed 

from each other. Since differences in this regard should appear following the retro-cue (the 

first retro-cue for Experiment 2), only time points between the retro-cue and the probe were 

included in the permutation procedure. Condition labels (selective vs. neutral feature cue) 

were randomly assigned to each dataset. This was repeated 1000 times. A two-sided within 

subject t-test was performed for each time-frequency data point on each iteration resulting in a 

time points (67) x frequencies (52) x permutations (1000) matrix (Experiment 2: time points 

(63) x frequencies (52) x permutations (1000)). For each permutation, the size of the largest 

time-frequency cluster with p < .05 was assessed. Differences between selective and neutral 
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feature cues in the original data were considered significant, if the size of time-frequency 

cluster was larger than the 95th percentile of the distribution of cluster sizes created by the 

permutation procedure.  

Subsequently, a rm-ANOVA with the factors condition (location feature cue vs. 

orientation feature cue vs. neutral feature cue), hemisphere (left vs. right electrode clusters) 

and caudality (posterior vs. central electrode clusters) was performed on the identified time-

frequency clusters. The three-way interaction of these factors was analysed to test whether the 

stronger contralateral (left-hemispheric) vs. ipsilateral (right-hemispheric) suppression in 

mu/beta oscillatory power we expected for the selective feature cue conditions was indeed 

stronger over the motor cortex (central electrode clusters) and not rather related to retro-cue 

effects on more posterior oscillatory patterns in the alpha and beta frequency ranges. 

2.6. Independent component clustering 

A clustering procedure on IC level, as implemented in the EEGLAB toolbox, was used to 

further isolate the mu/beta activity over the sensorimotor cortex from posterior alpha activity 

and to prove the sensorimotor source of the mu/beta suppression.  

All parameters used for the clustering procedure were based on the approach by 

Schneider et al. (2017). However, the number of clusters resulting from the k-means 

clustering algorithm was changed to 24, due to the higher number of channels (resulting in a 

higher number of ICs). We chose this higher number of resulting clusters to guarantee a 

sufficient solution with many datasets contributing ICs to the mu/beta clusters, while still 

ensuring a good isolation of the mu/beta IC clusters from those reflecting more posterior 

alpha/beta oscillations. Only ICs with less than 20% residual variance regarding their dipole 

solution were included in the clustering procedure  (see Schneider et al., 2017). Event-related 

spectral perturbations (ERSPs) for the individual ICs were calculated with the same 

parameters as for the channel-based analysis. Frequency spectra were computed using an FFT 
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(fast-Fourier transform) algorithm. The clustering was based on estimated dipole locations 

(three dimensions), scalp distributions (10 dimensions), ERSPs between 4 and 30 Hz (10 

dimensions) and spectral power between 4 and 30 Hz (10 dimensions). The number of 

dimensions define to what extent the different features contribute to the generation of the 

clusters (Onton & Makeig, 2006). As the IC dipole solution can only contribute three 

dimensions (x, y and z values), its relative contribution to clustering was weighted by a factor 

of 10 (see the std_preclust function included in EEGLAB). A k-means clustering algorithm 

separated 870 ICs into 24 clusters (Experiment 2: 835 ICs into 24 clusters). Furthermore, an 

individual IC was considered as an outlier when it was more than 3 SD away from any of the 

24 cluster centroids (referring to the distance between the IC and the locations representing 

the centre of each IC cluster in the multidimensional feature space; see pop_clust function 

included in EEGLAB). 

To further illustrate the estimated neural sources of the IC clusters used for further 

analyses (see Results section), we specified the MNI coordinates of the dipole centroid for 

each cluster. MNI coordinates resulted from the dipole fitting procedure where the channel 

locations were aligned with a spherical head model and an average MRI image from the 

Montreal Neurological Institute (MNI) database (average of 152 T1-weighted stereotaxic 

volumes; International Consortium for Brain Mapping/ICBM). Thus, each individual 

component was assigned a dipole with three coordinates (x,y,z), which can be mapped to a 

specific brain region via the average MNI brain template. Based on all ICs within a cluster, 

we then expanded this centroid point to a sphere with a radius that had the length of 1 SD 

referred to each of the three dipole coordinates. The statistical sources were defined by the 

number of grid points within this extended spatial sphere that belonged to a specific 

anatomical structure, divided by the number of all grid points (see figures 5, 7 and 8). This 

procedure was based on the std_dipoleDensity function implemented in the EEGLAB 
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toolbox. For statistical analyses, ICs from subjects contributing several ICs to one of the 

clusters were averaged. 

For Experiment 1, ERSP responses generated by the statistical sources from 19 

participants (left-hemispheric cluster) and 20 participants (right-hemispheric cluster) were 

compared between the two selective feature cue conditions (location vs. orientation) and the 

neutral condition by a cluster-based permutation approach comparable to the one described 

for the channel-based analysis. For Experiment 2 (left-hemispheric cluster: 22 participants; 

right-hemispheric cluster: 23 participants), the same cluster-based permutation approach was 

used for analysing condition effects based on the first feature retro-cue (location vs. 

orientation vs. neutral) and the second task cue (continuous report vs. comparison vs. neutral).  

2.7. Inferential statistics and effect sizes 

When indicated by Mauchly’s test for sphericity, Greenhous-Geisser correction was 

applied (indicated by e). Effect sizes for ANOVAs are indicated by partial eta squared (η2p) 

and by Cohens dz for within-subject t-tests. To prevent p-value inflation due to multiple 

comparisons, the false discovery rate (FDR) procedure (adjusted p values / padj are reported in 

this regard; Benjamini & Hochberg, 1995) was used for post-hoc comparisons and to adjust 

for hidden multiplicity within rm-ANOVAs (the critical p-value or pcrit is reported in this 

regard; Cramer et al., 2016). Additionally, the boundaries of the 95th confidence interval (CI) 

surrounding the mean condition differences are reported. 

3. Results 

3.1. Behavioural results 

3.1.1. Experiment 1 

Precision of working memory performance was assessed by the difference between the 

target feature value and the adjusted probe. This angular error (see figure 2A) for location 
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adjustment was lower following a location feature cue than following a neutral feature cue, 

t(23) = -2.47, padj = .043, dz = -0.50, CI 95% [-2.12 -0.19]. However, this effect was increased 

by on outlier in the neutral feature cue condition. After outlier exclusion (mean +/- 3 standard 

deviations), this effect could no longer be considered as statistically significant (t(23) = -2.36, 

padj = .055, dz = -0.49, CI 95% [-1.55 0.10]). Similarly, the angular error for orientation 

adjustment trials did not differ between selective and neutral feature cues, t(23) = -1.88, padj  = 

.072, dz = -0.38, CI 95% [-1.64 0.08]. Speed of response initiation (indicated by time to 

mouse movement onset; see figure 2B) was accelerated by the selective feature cue, F(1,23) = 

151.38, p < .001, pcrit = .017, η2p = 0.87. Speed of location adjustment did not differ from 

orientation adjustment, F(1,23) = 1.74, p = .200, pcrit = .05, η2p = 0.07. There was also an 

interaction of task and feature cue, F(1,23) = 11.85, p = .002, pcrit = .033, η2p = 0.34. 

Comparison of effect sizes revealed that time to response initiation was slightly more 

decreased after a selective compared to a neutral cue in location, t(23) = -11.48, padj <.001, dz 

= -2.34, CI 95% [-195.83 -136.01], than in orientation adjustment trials, t(23) = -10.49, padj < 

.001, dz = -2.14, CI 95% [-149.37 -100.16]. 

#### insert figure 2 here #### 

3.1.2. Experiment 2 

For Experiment 2, precision of working memory performance (see figure 3A) in the 

continuous task was reliably increased for location adjustment by a selective feature cue, as 

revealed by a main effect of feature cue, F(1,21) = 14.26, p = .001, pcrit = .017, η2p = 0.40, 

while there was no influence of the task cue on probe adjustment, F(1,21) = 0.37, p = .548, 

pcrit = .05, η2p = 0.02. Orientation adjustment was not affected by any of the cues (feature cue: 

F(1,21) = 0.04, p = .845, pcrit = .033, η2p < .01; task cue:  F(1,21) < 0.01, p = .962, pcrit = .05, 

η2p < 0.01).  
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For the recognition task, the percentage of correct responses (see figure 3B) was used to 

assess working memory accuracy. Here, selective feature cues increased performance, F(1,21) 

= 27.46, p < .001, pcrit = .007, η2p = 0.57. As in the continuous task, the task cues had no 

effect on accuracy, F(1,21) = 0.36, p = .554, pcrit = .043, η2p = 0.02. In general, performance 

was better for location than for orientation recognition, F(1,21) = 24.97, p < .001, pcrit = .014, 

η2p = 0.54. 

As in Experiment 1, time to mouse movement onset (see figure 3C) was utilized as a 

measure for speed of response initiation in the continuous report task. Response initiation did 

not differ between location and orientation adjustment trials, F(1,21) = 1.99, p = .173, pcrit = 

.027, η2p = 0.09. Responses were speeded by a selective feature cue, F(1,21) = 48.77, p < 

.001, pcrit = .007, η2p = 0.70, as well as by a selective task cue, F(1,21) = 47.66, p < .001, pcrit 

= .014, η2p = 0.69. After correcting for hidden multiplicity within the ANOVA none of the 

possible interactions remained significant (all p-values > .027, corresponding critical p-values 

= .014). 

Responses to the recognition task were faster after selectively cueing either of the 

features, F(1,21) = 36.69, p < .001, pcrit = .014, η2p = 0.64. The selective task cue also 

decreased response times, F(1,21) = 27.79, p < .001, pcrit = .021, η2p = 0.57. Response times in 

general were faster for location than for orientation recognition, F(1,21) = 55.17, p < .001, 

pcrit = .007, η2p = 0.72. Finally, the effect of the feature cue differed between the cued 

features, F(1,21) = 7.93, p = .010, pcrit = .029, η2p = 0.27, in the way that selective feature cues 

decreased response times more strongly in location, t(21) = -5.44, padj < .001, dz = -1.16, CI 

95% [-205.39 -91.84], than orientation recognition trials, t(21) = -3.77, padj = .001, dz = -0.80, 

CI 95% [-103.04 -29.73]. 

Summarized, also Experiment 2 indicated an overall performance benefit of selective 

feature cues. While the task cues did not consistently affect performance, a benefit was shown 
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regarding the time required for response initiation in both the continuous report task and the 

recognition task. This is especially true for a continuous report of orientation, since here a 

selective feature cue further amplified the acceleration of response initiation following a 

selective task cue. 

#### insert figure 3 here #### 

3.2. EEG results 

3.2.1. Experiment 1 

3.2.1.1. Channel-based analysis 

Analyses on EEG level were focused on the left (PO3, PO7, PPO5h, P7, P5) and right 

(PO4, PO8, PPO6h, P8, P6) posterior electrodes as well as on the left (CP3, CCP5h, CCP3h, 

C3) and right (CP4, CCP6h, CCP4h, C4) electrodes over sensorimotor sites. In a first step, 

time-frequency data were collapsed over all electrode clusters and selective and neutral trials 

were contrasted by a cluster-based permutation procedure, which revealed a broad significant 

difference in mu and beta frequency ranges following the feature cue (see figure 4A). Based 

on this time-frequency cluster, a rm-ANOVA was run with the factors condition (location vs. 

orientation vs. neutral feature cue) x hemisphere (left vs. right) x caudality (central vs. 

posterior). Importantly, this ANOVA revealed a 3-way interaction, F(2,46) = 3.45, p = .040, 

η2p = 0.13 (see figure 4 C-F). 

When only considering the posterior recording sites, there was a condition x hemisphere 

interaction, F(2,46) = 9.37, p = .001, pcrit = .042, η2p = 0.28, e = .80. The condition effect was 

stronger over left posterior sites, F(2,46) = 21.67, p = .001, pcrit = .017, η2p = 0.29, e = .69, 

than over right posterior sites, F(2,46) = 8.53 p = .003, pcrit = .05, η2p = 0.27, e = 0.73. The 3-

way interaction can be explained by the fact that for the central recording sites, there was an 

even stronger condition x hemisphere interaction, F(2,46) = 11.09, p < .001, pcrit = .042, η2p = 
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0.33, e = 0.79. Again, the feature cue effect was stronger over the left hemisphere, F(2,46) = 

31.74, p < .001, pcrit = .013, η2p = 0.58, e = 0.69, than over the right hemisphere, F(2,46) = 

10.61, p < .001, pcrit = .038, η2p = 0.32, e = 0.87. 

Summarized, there was a stronger hemispheric difference regarding the feature cue effect 

(selective vs. neutral) over the sensorimotor cortex than over posterior visual areas. This 

might indicate that the lateralized mu/beta effect was associated with the planning of the 

right-handed motor response following selective feature cues. To further support this 

assumption, we looked specifically at oscillatory power from estimated neural sources in left 

vs. right sensorimotor cortex based on an IC-clustering approach. 

    #### insert figure 4 here ####     

3.2.1.2. IC-based analysis 

We observed two IC clusters that featured the typical characteristics of the mu and beta 

oscillatory response in preparation for responses and during their execution (see Jenson et al., 

2019; Jenson & Saltuklaroglu, 2021; Schneider et al., 2017). These characteristics include a 

spectral response (FFT) with a peak in both the alpha (8-14 Hz) and beta (15-30 Hz) 

frequency range (see figures 5 B & D, 8 B & D), an average dipole location within left- or 

right-hemispheric pre-motor or motor cortex, and a scalp distribution of the IC cluster with 

strongest activity over left- or right motor areas (see figures 5 E-H, 7 B, C, E & F). 

Dipole density analysis indicated estimated neural sources in the left sensorimotor cortex 

for IC cluster 12 (located with 37% probability in the precentral gyrus and 31% probability in 

the post central gyrus; see figure 5C) and right sensorimotor cortex for IC cluster 23 (located 

with 44% probability in the precentral gyrus and 33% probability in the middle frontal gyrus; 

see figure 5F). 
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All conditions were contrasted by separate cluster-based permutation procedures. Both 

the location and the orientation feature cues led to differences in oscillatory power in mu and 

beta frequency range relative to the neutral cue condition (see figure 5 A). Importantly, only 

for the left (contralateral) IC cluster, this effect appeared clearly prior to the onset of the 

memory probes demanding the actual motor response. For the right (ipsilateral) IC cluster, the 

minor differences between the selective and neutral cue conditions were only evident after 

memory probe presentation (see figure 5 C). 

     #### insert figure 5 here #### 

3.2.2. Experiment 2 

3.2.2.1. Channel-based analysis 

Oscillatory power averaged over the four electrode clusters was compared between the 

selective and neutral feature cue conditions and revealed a time-frequency cluster with a 

significant difference after the feature cue presentation (see figure 6). Like for Experiment 1, 

the subsequent rm-ANOVA revealed a significant condition x hemisphere x caudality 

interaction, F(2,44) = 4.47, p = .017, η2p = 0.17. While a subsequent ANOVA on posterior 

channels revealed no hemispheric difference regarding the condition effect, F(2,44) = 0.02, 

p= .982, pcrit = .05, η2p < 0.01, the same analysis focusing on the two central electrode clusters 

found a significant condition x hemisphere interaction, F(2,44) = 4.47, p < .001, pcrit = .025, 

η2p = 0.27. This again suggested that the stronger suppression of mu and beta power following 

selective feature cues was related to motor preparation processes. 

#### insert figure 6 here #### 

3.2.2.2. IC-based analysis 

As revealed by the dipole density analysis, the left-hemispheric mu/beta IC cluster 16 

(precentral gyrus: 24%; postcentral gyrus: 43%) and the right-hemispheric mu/beta IC cluster 

21 (precentral gyrus: 36%; middle frontal gyrus: 27%) were estimated in sensorimotor and 
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premotor cortex with a high probability. Only for the left-hemispheric mu/beta IC cluster, the 

cluster-based permutation procedure revealed a stronger suppression of oscillatory power 

following the location cue than following the neutral cue. Similarly, there was a stronger 

suppression of oscillatory power after the orientation cue than after the neutral cue. The two 

selective feature cue conditions (location vs. orientation) revealed no difference in this regard 

(see figure 7A). This highlights that, even when the to-be-executed task was not yet fully 

specified, cuing of the target feature resulted in a stronger suppression of mu and beta 

oscillatory power, but only in the sensorimotor cortex contralateral to the future response. 

Comparing the data based on the second task cue (see figure 8) revealed a significant 

cluster of stronger mu and beta suppression following a continuous report task cue than a 

neutral task cue. Cuing a recognition task resulted in a stronger suppression of mu oscillatory 

power compared to a neutral task cue. There was also a difference between the selective task 

cues. The continuous report task cue resulted in a stronger mu and beta suppression starting at 

around 748 ms after cue onset. We further analysed whether the difference in oscillatory 

power between selective (continuous report or recognition) and neutral task cues differed as a 

function of feature cue type. The time-frequency window for this analysis resulted from the 

comparison of the combined selective task cues and the neutral task cue condition with the 

cluster-based permutation procedure described above. This was done to test whether the 

differences in the oscillatory response between the task cue conditions were actually based on 

the process of selecting a specific feature that was only postponed to a time when the actual 

task had been specified. These post-hoc analyses could not reveal a difference in the task cue 

effect depending on the prior feature cues, F(4,84) = 1.50, p = .210, pcrit = .05, η2p = 0.07, 

making it unlikely that delayed feature selection can fully explain the effects of the task cue. 

However, we cannot completely rule out this alternative explanation, since there was no 

longer a reliable effect between selective and neutral task cues when only considering trials 
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with neutral feature cues (continuous report: t(21) = -1.98, padj = .122, dz = -0.42, CI [-0-78 

0.02]; recognition task: t(21) = -1.26, padj = .221, dz = -0.23, CI [-0.53 0.13]). 

#### insert figure 7 here #### 

#### insert figure 8 here #### 

When comparing the oscillatory response of the contralateral mu/beta cluster between 

trials with fast vs. slow responses based on a median split within each experimental condition, 

we found a stronger suppression of oscillatory power in the mu frequency range to be linked 

to fast responses. A post-hoc ANOVA based on the significant time-frequency cluster 

revealed that this effect appeared independent of experimental conditions. There was no 

interaction of the RT effect with the type of feature cue, F(2,42) = 0.74, p = .483, pcrit = .043, 

η2p = 0.03, and it did not differ between the continuous report and the recognition task, 

F(2,42) = 0.69, p = .507, pcrit = .05, η2p = 0.03. Also, the three-way interaction was non-

significant, F(4,84) = 2.247, p = .071, pcrit = .029, η2p = 0.10.  

#### insert figure 9 here #### 

4. Discussion 

By means of oscillatory parameters of the EEG, the present study demonstrates that the 

selection of visual features stored in working memory results in the concurrent selection of 

preparatory motor codes. This is true even when an individual feature of a single item stored 

in working memory is selected and when the exact, to-be-executed task is still unknown. 

In line with earlier research on feature selection in working memory (Hajonides et al., 

2020; Niklaus et al., 2017; Sasin & Fougnie, 2020; Ye et al., 2016), we could show in 

Experiment 1 that a retrospective cue towards  a single feature of a visual object caused a 

performance benefit relative to a neutral cue condition, both in terms of working memory 

precision and the speed of response initiation (see figure 2). On the electrophysiological level, 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.01.25.477681doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.477681
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

we observed a suppression of alpha (or mu) and beta power (~8 – 30 Hz) at posterior and 

centro-parietal recording sites that was stronger following selective feature cues (see figure 

4). Importantly, and in line with a prior investigation from our lab (see Schneider et al., 2017), 

the centro-parietal electrode clusters featured an increased hemispheric difference, with a 

stronger suppression of oscillatory power over the left-hemispheric electrodes. In addition to 

the suppression of posterior alpha power already shown in the context of feature selection in 

working memory (Hajonides et al., 2020), this indicates an oscillatory effect prior to memory 

probe presentation that appeared specifically over the motor cortex contralateral to the 

responding hand. Earlier research has shown that this contralateral suppression of oscillatory 

power appeared prior to both left-sided and right-sided motor responses (Schneider et al., 

2020; van Ede et al., 2019; Zickerick et al., 2021). 

The IC-clustering approach supported the contralateral mu and beta suppression effect 

(see figures 5B). We obtained both a left-hemispheric and right-hemispheric IC cluster with 

the typical spectral peaks in mu and beta frequencies and estimated neural sources in 

sensorimotor and pre-motor cortex. Importantly, only the left-hemispheric cluster (i.e., the 

cluster contralateral to the executed motor response) featured a stronger suppression of mu 

and beta power following the selective feature cues. The ipsilateral mu/beta IC cluster showed 

differences in oscillatory power only after memory probe presentation (see figure 5E). This 

oscillatory pattern has typically been linked to the planning of a response prior to its actual 

execution, both when selecting information relevant for later action from working memory 

(e.g. Boettcher et al., 2021, S. 2; Schneider et al., 2017, 2020; van Ede, 2018) and prior to 

self-paced movements (Leocani et al., 1997; Pfurtscheller et al., 2000; Zhuang et al., 1997). 

Thus, whereas the posterior suppression of alpha power can be associated with the selection 

of a visuospatial representation stored in working memory, the suppression in mu and beta 

frequencies over contralateral centro-parietal areas can be linked to the concurrent selection of 
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a motor code associated with the cued visual feature. The stronger suppression of mu and beta 

power following the selective retro-cues appeared both when location and when orientation 

was the relevant feature. This clearly shows that such motor-related processing is not specific 

to the selection of individual items from working memory (Boettcher et al., 2021; Schneider 

et al., 2017; van Ede et al., 2019).  

The second experiment focused on the question whether the precise definition of the 

upcoming task is a prerequisite for the development of a motor representation in working 

memory. Olivers and Roelfsema (2020) proposed that the difference between attended and 

non-attended information stored in working memory might be the coupling of a sensory 

representation with an action plan. However, it remains unclear whether this coupling requires 

the precise knowledge of the action to be executed next or whether it also happens when the 

to-be-executed action is still uncertain. In the latter case, a prospective motor code would be 

created for dealing with the continuous report task (see Experiment 1), even though it would 

not be necessary for the visual comparison of the memory probe with the stored information 

(recognition task).  

The current study strongly speaks in favour of this latter assumption. Analogous to 

Experiment 1, the channel-based analysis revealed a stronger suppression of mu and beta 

power at posterior and centro-parietal sensors following the selective cuing of the location or 

orientation of the stored visual object (i.e., following the first retro-cue). This effect was 

stronger at electrodes contralateral to the side of the to-be-executed actions, but only for the 

centro-parietal electrode clusters over left and right sensorimotor cortex (see figure 6). 

Moreover, the IC clustering approach strengthened our assumption that this oscillatory effect 

was linked to motor-related processes and not simply related to feature selection effects 

reflected in oscillatory patterns in more posterior brain regions. Again, the left-hemispheric 

(contralateral) and right-hemispheric (ipsilateral) IC cluster featured the typical double 
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spectral peaks in mu and beta frequency ranges and showed the highest estimated dipole 

density in sensorimotor and pre-motor cortex. Comparable to Experiment 1, only the 

contralateral cluster revealed a stronger suppression of mu and beta power following the 

selective feature cues. Thus, Experiment 2 shows that a motor-related code was selected at a 

time when it was not yet clear whether it would be required for the next action to be 

performed. The relevance of this oscillatory effect for behavioural performance was indicated 

by a comparison of fast vs. slow response trials within the experimental conditions. Greater 

suppression of mu oscillatory power prior to the presentation of the memory probe display 

was associated with fast responses (see figure 9) and this effect only occurred for the 

contralateral mu/beta IC cluster.  

 In line with these findings, Henderson, Rademaker and Serences (2021) proposed that 

information stored in working memory can be represented in a rather flexible format, based 

on the requirements of the task at hand. For example, when it is required to compare the 

representation of a visual stimulus to a memory probe, the stored mental representation might 

be based on a “retrospective” visual code. On the other hand, when the information stored in 

working memory is used to precisely manipulate an object by means of a goal-directed 

movement, a prospective motor code might additionally be required. This is in line with the 

pattern of oscillatory activity following the task cues. The contralateral mu/beta IC cluster 

featured a stronger suppression of oscillatory power following a selective task cue than 

following a neutral cue (i.e., no task definition until memory probe presentation). This pattern, 

however, differed between the different task cues. Following the continuous report task cue, 

we observed a stronger suppression of both mu and beta frequencies (see figure 8A), whereas 

this modulation of oscillatory power was limited to the mu frequency range following the 

recognition task cue. In contrast to the continuous report task where the participant has all the 

necessary information in working memory to respond as soon as the memory probe appears, 
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one must consider new information (the probe stimulus) and compare it to the contents of 

working memory in the recognition task. Therefore, it is not possible to respond immediately, 

but only after the memory probe has been compared to the relevant information stored in 

working memory. It is interesting that there is still some motor preparatory activity (see figure 

8A; recognition vs. neutral task cue) in this case, which further strengthens the notion of a 

motor planning process even when the actual response to be executed is still ambiguous (see 

also: Nasrawi & van Ede, 2021). 

Further, when comparing the two selective task cue conditions directly, the contralateral 

IC cluster revealed a stronger suppression of mu and beta oscillatory power prior to a cued 

continuous report task. This suggests that subjects potentially relied more strongly on a 

prospective motor code when preparing for the continuous report task. Alternatively, subjects 

might have been preparing for two different tasks in terms of the mere motor requirements. 

While the continuous report task required an arm movement (in order to move the computer 

mouse), the recognition task required simply a key press (i.e., a finger movement). 

Furthermore, it has to be considered that the comparison of the two selective task cue 

conditions might be confounded by task difficulty. In this sense, different oscillatory patterns 

of the contralateral mu/beta IC cluster between the continuous report and recognition task 

would not be directly based on differences in the type of mental representation required 

(prospective vs. retrospective mental representations). Rather, the preparation for a generally 

more difficult task could be associated with the fact that motor planning processes become 

necessary to a greater extent even before memory probe presentation. Based on the current 

experiment, we cannot distinguish between these alternative explanations. To allow for a 

more specific conclusion in this regard, the two tasks need to be linked to identical motor 

responses and matched in terms of difficulty. Nonetheless, the present data clearly show that 
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compared to the neutral condition, both selective cues brought about a further specification of 

the mental representation of the to-be-executed task. 

4.1. Conclusion 

The current study sheds light on the role of motor representations for the goal-oriented 

processing of information in working memory. The first experiment showed that the 

retrospective selection of object features can entail the selection of corresponding motor 

representations. This shows that individual features of a visual object can also be stored and 

selected as a visual (input) and motor (output) code. The second experiment further 

highlighted that such motor codes are prospectively generated even when the exact to-be-

performed task is not fully specified. Thus, it can be assumed that the observed effects in the 

mu and beta frequency range reflect a higher-level representational state of the stored working 

memory content that serves as a basis for later response planning processes once the to-be-

executed task was cued. This shows that working memory flexibly stores different kinds of 

memory representations in such a way that the best possible conditions for the execution of a 

given task are provided. 
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9. Figures  

 

Figure 1. Experimental design. Panel A depicts the procedure of Experiment 1. Each trial 

began with the presentation of an oriented Gabor grating whose location and orientation 

had to be memorized. After a delay interval, a selective feature cue (P = position, O = 

orientation, X = neutral) indicated whether participants had to reproduce the orientation 

or location. Finally, after presentation of a visual distractor stimulus, a memory probe had 

to be adjusted so that it matched the target feature. The design of Experiment 2 is 

depicted in panel B. Here, the feature cue was followed by a task cue (X = neutral, K = 

continuous report task, V = recognition task) indicating whether a continuous report task 

(as in Experiment 1) or a recognition task had to be performed. In the recognition task, 

either a probe location or a probe orientation was presented, and participants indicated by 

mouse click whether it matched the target information from the memory array.  
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Figure 2. Behavioural results of Experiment 1. Panel A shows the angular error for location 

feature cues vs. neutral cue conditions (left) and for the orientation feature cue vs. neutral 

cue conditions (right). The coloured dots depict the mean angular error of each 

participant and the horizontal line depicts the mean across participants. Panel B 

represents comparisons of the time to mouse movement onset between the above-

mentioned conditions.  
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Figure 3. Behavioural results of Experiment 2. Panel A shows the angular error for the 

different combinations of the feature cue (selective vs. neutral) and task cue (selective vs. 

neutral).  The orange-coloured dots depict the mean angular error of each participant for 

selective task cues and the green coloured dots for the neutral task cue condition. The 

vertical line indicates the condition average. Panel B represents the correct response rate 

in the recognition task. Panel C shows the time required to initiate the mouse movement 

and Panel D the response times in the recognition task.  
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Figure 4. Results of the channel-based analyses. Panel A shows the time-frequency 

distribution of the activity averaged across channels and subjects for the selective cue, the 

neutral cue condition, and the difference between selective and neutral activity. The 

vertical solid lines indicate relevant events throughout the trial (0 ms - memory array 

onset, 1800 ms - selective cue onset, 3000 ms - visual distractor onset, 3900 - ms memory 

probe onset). Stimulus offset times are indicated by dashed vertical lines. Panel B 

illustrates the topographical distribution of the location-minus-neutral condition activity 

(left) and the orientation-minus-neutral condition activity (right) averaged across the 

significant cluster (see solid line in panel A). Panel C-F highlights the time course of 

oscillatory power in the significant frequency range (8-15 Hz) for the four electrode 

clusters of interest. The standard error of the mean is indicated by shaded areas 

surrounding the condition average. The grey areas depict significant time windows 

obtained by conducting the cluster-based permutation analysis (2200 - 3300 ms; see panel 

A). 
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Figure 5. Feature cue effects for contralateral vs. ipsilateral mu/beta IC clusters 

(Experiment 1). Panel A depicts a time-frequency plot showing the condition differences 

contralateral to the responding hand. Time-frequency clusters differing between the 

conditions are indicated by a solid (-) line. Stimulus offset times are indicated by dashed 

vertical lines. Panel B shows the spectral power of the left hemispheric IC cluster. Panel 

C and D depict the respective results for the right hemispheric IC cluster. Panel E and G 

show the scalp map and the respective dipole density distribution of the left hemispheric 

IC cluster. Panel F and H depict the scalp map and dipole density distribution for the 

right hemispheric IC cluster. 
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Figure 6. Results of the channel-based analyses (Experiment 2). Panel A shows the time-

frequency distribution of the activity averaged across channels and subjects for the 

selective cue, neutral cue condition, and the difference between the two conditions. The 

vertical solid lines indicate relevant events throughout the trial (0 ms –memory array 

onset, 1800 ms – selective cue onset, 3000 ms – task cue onset, 4200 memory probe 

onset) and the solid line (-) marks the cluster in which the conditions differ significantly. 

Stimulus offset times are indicated by dashed vertical lines.  Panel B illustrates the 

topographical distribution of the location-minus-neutral condition activity (left) and the 

orientation-minus-neutral condition activity (right averaged across the significant cluster 

(see panel A)). Panel C-F highlights the time course of the significant frequency range for 

the four electrode clusters of interest. The standard error of the mean is indicated by the 

shaded area surrounding each condition average. The grey areas depict significant time 

windows (2200 ms - 4100 ms) obtained from the cluster-based permutation analysis (see 

panel A).  
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Figure 7. Feature cue effects for contralateral vs. ipsilateral mu/beta IC clusters 

(Experiment 2). Panel A depicts the differences in oscillatory power between conditions 

for all pair-wise contrasts between the feature cues at the contralateral IC cluster. Time-

frequency clusters differing between the conditions are indicated by a solid (-) line. Panel 

B shows the scalp map of the left-hemispheric IC cluster and Panel C the respective 

dipole densities. Panel D-F depict the same results for the right sensorimotor cortex. 
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Figure 8. Task cue effects for contralateral vs. ipsilateral mu/beta IC clusters 

(Experiment 2). Panel A depicts the difference in oscillatory power for all pairwise 

contrasts between the three task cues for the left-hemispheric IC cluster. Time-frequency 

clusters differing between the conditions are indicated by a solid (-) line. Panel B shows 

the spectral power for the left-hemispheric IC cluster. Panel C and D depict the same 

results for the right-hemispheric IC cluster. 
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Figure 9. Response time effects for contralateral vs. ipsilateral mu/beta IC clusters 

(Experiment 2). Panel A depicts the oscillatory power of fast and slow trials and their 

difference for the left-hemispheric IC cluster. The time-frequency clusters differing 

between the conditions are indicated by a solid (-) line. Panel B shows the same for the 

right-hemispheric IC cluster.  
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10. Supplementary 

 

A Table: ANOVA of the channel analysis experiment 1 

 df F p η2p e 

condition 2,46 26.24 <.001 .53 .69 

hemisphere 1,23 29.12 <.001 .56  

frontal gradient 1,23 0.25 .626 .01  

condition*hemisphere 2,46 14.49 <.001 .39 .66 

condition*frontal gradient 2,46 2.26 .005 .24 .72 

hemisphere*frontal gradient 1,23 0.42 .523 .02  

condition*hemisphere*caudality 2,46 3.45 .040 .13  

Supplementary A. 3-factor ANOVA for experiment 1: condition (location vs. orientation 

vs. neutral feature cue) x hemisphere (left vs. right hemisphere) x caudality (central vs. 

posterior channels). 
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B 

 

Supplementary B. Scalp topographies of independent component clusters in Experiment 

1. Mean topographies of 24 IC clusters. The clusters representing left hemispheric and 

right-hemispheric mu/beta oscillatory activity are marked in red. The number of subjects 

(Ss) and ICs contributing to each cluster are given above each topography. In addition to 

the 24 clusters, the mean topography for the outlier cluster is provided in the top-left 

corner. 
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C 

 

Supplementary C. Individual scalp topographies contributing to the contralateral IC 

cluster in experiment 1.  
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D 

 

 Supplementary D. Individual scalp topographies contributing to the ipsilateral IC 

cluster in experiment 1.  
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E Table: ANOVA of the channel analysis experiment 2 

 df F p η2p 

condition 2,44 13.55 <.001 .38 

hemisphere 1,22 17.27 <.001 .44 

frontal gradient 1,22 0.68 .419 .03 

condition*hemisphere 2,44 3.63 .035 .14 

condition*frontal gradient 2,44 4.34 .019 .17 

hemisphere*frontal gradient 1,22 0.31 .581 .01 

condition*hemisphere*caudality 2,44 4.47 .017 .17 

Supplementary E. 3-factor ANOVA for experiment 2: condition (location vs. orientation 

vs. neutral feature cue) x hemisphere (left vs. right hemisphere) x caudality (central vs. 

posterior channels). 
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F 

 

Supplementary F. Scalp topographies of independent component clusters in Experiment 

2. Mean topographies of 24 IC clusters. The clusters representing left hemispheric and 

right-hemispheric mu/beta oscillatory activity are marked in red. The number of subjects 

(Ss) and ICs contributing to each cluster are given above each topography. In addition to 

the 24 clusters, the mean topography for the outlier cluster is provided. 
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G 

 

Supplementary G. Individual scalp topographies contributing to the contralateral 

IC cluster in experiment 2.  
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H  

 

Supplementary H. Individual scalp topographies contributing to the ipsilateral IC 

cluster in experiment 2.  
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