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so that each infant was held-out once. B. Voxels used in the fROI analysis. The circles outline the spherical FFA search
space from the meta-analysis. Each voxel is colored by the number of iterations (of 12) in which it was among the top
5%. C. There was a robust group difference in the contrast of Novel vs. Repeat human face blocks: the neural response
was marginally greater for Novel than Repeat human face blocks in pre-lockdown infants (repetition suppression), and
significantly greater for Repeat than Novel in post-lockdown infants (repetition enhancement). Dots are individual
participants. ** p < 0.01, * p < 0.05, ~p < 0.10.

group difference between pre- and post-lockdown infants in the Novel vs. Repeat contrast was significant285

in the STS (M = 1.251, p = 0.018) and marginal in OFA (M = 0.946, p = 0.058) and rIFG (M = 1.089, p = 0.083),286

but not in amygdala (M = 0.670, p = 0.157; 3B). This effect extended to a spherical ROI in primary visual287

cortex (M = 1.372, p = 0.009) but not primary auditory cortex (M = 0.839, p = 0.218; Figure 3C). If correcting288

formultiple comparisons across all seven spherical ROIs, only the FFA survives (Bonferroni p = 0.007). These289

results indicate relative specificity of the group effect to the FFA.290

Specificity of findings to human faces291

Finally, we examined the specificity of the results to human faces by repeating the analyses above for sheep292

face blocks (Figure 4). We did not use the FFA fROI because the voxels in the fROI were chosen based293

on responses to human face blocks, which might introduce a bias in favor of specificity to human faces.294

However, considering all voxels in the spherical ROI for FFA, there was a marginal group difference in the295

contrast of Novel vs. Repeat sheep face blocks (M = 1.067, p = 0.054), which did not survive correction for296

multiple comparisons. There was a greater neural response for Novel than Repeat sheep face blocks in pre-297

lockdown infants (M = 1.120, CI = [0.622, 1.625], p <0.001) but no effect in either direction in post-lockdown298

infants (M = 0.052, CI = [-0.702 , 1.013], p = 0.962). Thus, FFA results for sheep faces were similar to human299

faces, with aweaker group difference driven by the lack of sensitivity to sheep face identity in post-lockdown300

infants who had shown strong repetition enhancement for human face identity.301
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Figure 3. A. Spherical ROIs derived from an adult meta-analysis for the term “face” (Yarkoni et al., 2011). The voxel with
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voxels largely mirrored the results from the FFA fROI limited to the most face-selective voxels. A similar group
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the periphery of the visual field that did not contain stimuli. Dots are individual participants. *** p < 0.001, ** p < 0.01, *
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When considering sheep face blocks in the broader set of spherical ROIs for face and sensory processing,302

we again focused on the key group difference in the contrast of Novel vs. Repeat. Only the OFA showed a303

significant group difference (M = 0.751, p = 0.049, which did not survive multiple comparisons correction.304

The other spherical ROIs did not show a reliable group difference: STS (M = -0.098, p = 0.837), amygdala (M305

= -0.154, p = 0.695), rIFG (M = -0.125, p = 0.836), primary visual cortex (M = 0.195, p = 0.699), and primary306

auditory cortex (M = -0.733, p = 0.138).307

Discussion308

We investigated face identity processing in the brains of infants tested before and after the initial COVID-19309

lockdown in our State. The neural responses of these groups to human faces differed: pre-lockdown infants310

showed someevidence of repetition suppression (Novel >Repeat) for human faces in the FFA, similar towhat311

is seen in adults (Grill-Spector andMalach, 2001) andolder children (Natu et al., 2016); post-lockdown infants312

showed the opposite, repetition enhancement (Repeat >Novel). This group difference was most robust in313

the FFA compared to other brain regions and for human faces compared to sheep faces.314

This pattern of results is reminiscent of the debate over novelty vs. familiarity preferences in infant be-315

havior (e.g., reduced vs. increased looking at repeated stimuli). Familiarity preferences are more likely in316

younger infants, for more complex stimuli, after shorter exposure, and for more difficult tasks (Rose et al.,317

1982; Hunter and Ames, 1988; Roder et al., 2000). Likewise, the adult brain shows increased processing of318

repeated stimuli when the stimuli are unfamiliar or briefly exposed (Henson et al., 2000; Turk-Browne et al.,319

2007; Segaert et al., 2013). By this account, human faces could be considered a more familiar category to320

pre-lockdown infants, with exposure to a greater number of unique faces building amore robust face space321
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Figure 4. There was a group difference in the Novel vs. Repeat contrast for sheep faces in the spherical ROI for OFA and
marginally for FFA, but was not for STS, amygdala, rIFG, primary visual cortex, or primary auditory cortex. Dots
represent individual participants. *** p < 0.001, * p < 0.05, ~p < 0.10.

(Humphreys and Johnson, 2007), than to post-lockdown infants with more restricted face experiences. In322

particular, the pandemic presumably reduced exposure to faces that would have been experienced infre-323

quently (e.g., relatives and strangers). This lends credence to the possibility that even limited exposure to324

different face exemplars can impact face processing (Spangler et al., 2013).325

Notably, our behavioral measure in the scanner did not mirror the neural measure, as might have been326

expected (Snyder and Keil, 2008; Turk-Browne et al., 2008; Nordt et al., 2016). We interpret these null be-327

havioral results with caution given the difficulty of collecting reliable behavior in the scanner even in adults328

and the possibility of different sensitivity and noise for neural and behavioralmeasures. Nevertheless, adult329

fMRI studies have shown that repetition suppression and enhancement can occur in the absence of (Segaert330

et al., 2013), and be dissociated from (Xu et al., 2007), behavioralmeasures of priming. Moreover, the similar331

pattern of looking behavior between groups during exposure and test phases is inconsistent with an atten-332

tional explanation of the group difference in neural responses, whereby the strength of neural responses333

might be an artifact of the amount of stimulus viewing. We believe that our findings illustrate the benefit of334

using multiple measures to study infant cognition (LoBue et al., 2020) and the potential of brain imaging to335

disentangle cognitive processes (Yates et al., 2021).336

It is tempting to interpret these data in relation to how pandemic precautions such as social distancing337

and face masks altered early face experience, especially given the strict local guidelines that were imposed.338

However, this link is speculative in our study because we did not measure daily exposure to faces in the pre-339

or post-lockdown group; indeed, this study was designed and partially completed prior to the pandemic.340

Thus, we cannot conclude definitively that our results are related to altered visual experience with faces.341

The pandemic had many other impacts on daily life that could explain neural differences. Perhaps most342

relevant to face processing is an increase in maternal fear and anxiety (Cameron et al., 2020; Davenport343

et al., 2020) that may have affected how mothers interacted with their infants (Nicol-Harper et al., 2007)344

and how infants process faces (Bowman et al., 2021). Although the causal mechanism remains unclear,345

this is a unique and likely one-time dataset that could contribute to our understanding of how face identity346

processing changes in early development.347

Our study has a number of other limitations. First, the sample size per group was small and spanned348

a wide age range. Our initial intention was to use this age variability to study perceptual narrowing. We349

combined data across ages to increase statistical power, knowing that face processing changes over this350

time (Pascalis et al., 2020). Additionally, although the groups were roughly matched (fortuitously) on key351

variables such as infant age, number of usable blocks, head motion, and eye gaze, the biological sex of the352

infants was notmatched. There was an equal number ofmale and female infants post-lockdown, but all pre-353

lockdown infants were born female. The small sample size precludes any examination of sex differences.354

Although there are some advantages in face processing for female infants (Gluckman and Johnson, 2013),355

the evidence is mixed (Simpson et al., 2020; Maylott et al., 2021). Finally, although most data collection356
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procedures were identical across groups, there was one key difference: whether the experimenters and357

parents wore face masks. It is possible that exposure to normal vs. obscured faces immediately prior to358

the experiment affected how infants processed faces. The serendipitous and opportunistic nature of this359

project means that we are saddled with these limitations, yet we believe the data remain valuable to report360

and may inform debates on the role of experience in the early development of face processing.361
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Appendix517

ID Age Sex TR prop Total blocks Eye IRR Days quarantine
s8687_1_5 17.1 F 1.000 15 0.976 n/a
s6687_1_5 18.1 F 1.000 15 0.974 n/a
s4607_1_4 13.0 F 0.982 10 0.929 n/a
s4607_1_6 16.9 F 1.000 10 0.971 n/a
s8037_1_2 12.2 F 0.976 15 0.934 n/a
s7067_1_3 9.2 F 1.000 15 0.949 n/a
s8687_2_1 10.7 F 0.975 14 0.935 244
s6057_1_6 23.8 M 1.000 10 0.961 213
s7047_1_2 17.6 F 1.000 15 0.958 216
s3097_1_4 13.4 F 0.866 14 0.838 185
s5477_1_1 13.3 M 0.933 15 0.956 215
s5477_1_2 17.7 M 0.947 10 0.948 349

Table A1. Demographic information. The first six infants are the pre-lockdown group and the next six infants are the
post-lockdown group. ‘ID’ is a unique infant identifier (i.e., sXXXX_Y_Z), with the first four digits (XXXX) indicating the
family, the fifth digit (Y) the child number within family, and the sixth digit (Z) the session number with that child. ‘Age’ is
recorded in months. ‘Sex’ is female or male. ‘TR prop’ is the proportion of TRs included from all usable blocks. ‘Total
blocks’ is the number of blocks across all five conditions that were usable after motion and gaze exclusion. ‘Eye IRR’ is
the proportion of frames coded the same way across gaze coders. ‘Days quarantine’ is the number of days between the
start of the first lockdown in our State (March 15, 2020) and the day of the scan.
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