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Abstract 

Aging is accompanied by cognitive changes but strong variations across individuals exists. One 

of the ways to characterize this individual variability is to use techniques such as 

magnetoencephalography (MEG) to measure the dynamics of synchronization between brain 

regions and the variability of this connectivity over time. Indeed, few studies have focused on 

the fluctuations in the dynamics of brain networks over time and their evolution with age. We 

therefore used this method on the Cam-CAN database. We show here that with age an increase 

in the variability of brain synchronization, as well as a reversal of the direction of information 

transfer in the default mode network (DMN), in delta frequency band takes place. These 

changes in functional connectivity were associated with cognitive decline. These results suggest 

that advancing age is accompanied by a functional disorganization of dynamic networks with a 

loss of communication stability and a decrease in the information transmitted. This could be 

partly due to the loss of integrity of the network structure. 
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Introduction 

With an increasing number of people over 65, the world population is aging. Aging is associated 

with a reduced efficiency of cognitive functioning, that primarily affects memory and executive 

processes (e.g., Hedden & Gabrieli, 2004). However, some individuals show a major decline 

while others maintain cognitive performance similar to young adults (e.g., Hultsch et al., 2008). 

Recent research aims to better understand these individual differences during aging. Such 

variability across individuals has been associated with concepts of maintenance and cognitive 

reserve (Cabeza et al., 2018; Stern et al., 2020). Maintenance corresponds to the preservation 

of similar cognitive and brain functioning to that of younger individuals with advancing age, 

while cognitive reserve corresponds to compensatory functional adjustments associated with 

the preservation of cognitive performance in the presence of structural changes. Cognitive 

reserve and maintenance can account for individual differences in aging- and pathology-related 

effects, and have been extensively investigated at both structural and functional levels (e.g., 

Stern et al., 2020). However, the contribution of the temporal dynamics of brain 

communications underlying cognitive reserve remains under-investigated. As changes in brain 

dynamics are expected to occur long before the disconnection associated with atrophy and brain 

lesions, this could yield highly sensitive elements on individual differences with age. 

Neuroimaging research in healthy aging has been primarily conducted using functional methods 

with high spatial resolution (e.g., positron emission tomography (PET) or functional MRI 

(fMRI)). These methods have provided insight into the anatomical and functional changes that 

occur with age, including changes in brain activity (Cabral et al., 2017; Smitha et al., 2017). 

These techniques also enable the study of brain connectivity changes. Connectivity measures 

have high sensitivity for detecting cognitive changes and differences between individuals (e.g., 

Hedden et al., 2016). Studies showed, for example, that the cognitive decline observed in 

normal aging may be due to functional connectivity disruptions, particularly in the default-

mode network (DMN; this network is mainly activated when no task is requested from the 

participant; Andrews-Hanna et al., 2007). The concept of cognitive reserve itself has also 

emerged in part from fMRI studies, as individuals with a higher cognitive reserve have fewer 

brain and cognitive alterations than individuals with a lower level of cognitive reserve (Stern, 

2009).The contribution of these methods in the precise localization of brain activations and in 

the study of brain networks is therefore undeniable. However, due to their constrained temporal 

resolution, age-related changes on the dynamics of the networks involved remain largely 

understudied. The use of methods with high temporal resolutions, such as 

magnetoencephalography (MEG) and electroencephalography (EEG) (e.g., Baillet, 2017), can 

provide sensitive and specific elements on individual differences associated with cognitive 

aging.  

Brain activity is characterized by its spectral complexity, and can be distinguished according to 

its dominant frequency (delta, theta, alpha, beta, gamma). The delta waves (1-3Hz) are the 

slowest, while the gamma waves (40+Hz) are the fastest. Previous work highlighted that these 

brain rhythms are associated with different cognitive functions (Buszaki et al., 2006), for 

example the gamma frequency band is associated with information processing in higher-order 

cognitive tasks. Previous MEG studies show that networks activated at rest are activated 

periodically and in different frequency bands (de Pasquale et al., 2010). A decrease in 

functional connectivity has been observed during aging (Wig, 2017). Moreover, previous work 

has shown that in older individuals, activations are less frequently observed in the alpha and 

gamma frequency bands, and more in the delta frequency band (Vlahou, 2014). This slowing 

of neural activity has been linked to decreased cognitive performance and slower information 

processing speed. Conversely, the preservation of this neural activity allows cognitive abilities 

to be maintained with age. However, previous M/EEG studies have mainly focused on the 
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average of activations over long periods of time (see Courtney & Hinault., 2021, for a review), 

and therefore do not provide insight into the dynamics of brain activities or their association 

with cognitive changes. It is therefore important to study the fluctuations of brain 

communications over time. 

Spontaneous fluctuations of brain activity have long been considered as noise to be eliminated 

and/or controlled. They are now considered as a fundamental element of brain communications 

(e.g., Uddin, 2020). Recent work has demonstrated the importance of sustained synchronization 

between brain regions for performance in complex cognitive tasks (e.g., Daume et al., 2017). 

Moreover, disrupted synchronization has been associated with cognitive decline with age 

(Hinault et al., 2020). However, fluctuations of activity have not been considered in light of 

individual differences during aging. Impaired stability of brain network dynamics could lead to 

the neurocognitive changes observed with advancing age (Voytek & Knight, 2015). The 

directionality of connectivity between neuronal oscillations may also play a role in the 

transmission of neuronal communications. Therefore, changes in dynamic connectivity would 

take place in order to maintain cognitive performance, while failure to make these changes 

would lead to cognitive decline (Ariza et al., 2015). 

Here, we investigated the stability and variability of resting brain networks’ synchrony over 

time in young and elderly healthy participants from the Cam-CAN (Cambridge Centre for 

Ageing and Neuroscience) database (e.g., Shafto et al., 2014; Taylor et al., 2017). This database 

includes multimodal neuroimaging data (MEG, f/MRI) as well as cognitive performance 

assessment in each individual. Analyses were focused on the four networks found activated at 

rest that are the default network, salience network, left and right fronto-parietal networks. Our 

objectives were twofold: i) To study changes in dynamic connectivity with age: Between young 

and old individuals, we hypothesized differences in functional networks, as well as greater 

variability in the activity of these networks; ii) To investigate the relationships between changes 

in dynamic connectivity and cognitive changes: We expected that stability in synchronization 

and directionality of connectivity over time would be associated with better cognitive 

performance with age, compared to high variability in these measures. Preservation of this 

neural activity would help maintain cognitive abilities with age. 

Methods 

Participants 

We analysed data from 46 young (29 women and 17 men; aged 22-29 years) and 46 older 

healthy adults (29 women and 17 men; aged 60-69 years; see participant demographics 

characteristic in Table 1). Participants were selected from the Cam-CAN database (e.g., Shafto 

et al., 2014; Taylor et al., 2017), in line with demographic characteristics of individuals 

recruited in previous work (e.g., Coquelet et al., 2017; Hinault et al., 2020). All participants 

were right-handed, showed normal cognitive functioning (Montreal Cognitive Assessment 

(MoCA) score >26; Nasreddine. et al., 2005), and no neurological or psychiatric condition.  

Behavioural measures 

A detailed description of the behavioural measures can be found in Shafto et al. (2014) and 

Taylor et al. (2017). Cognitive performance was assessed with the Mini-Mental State 

Evaluation (MMSE; Folstein et al., 1975) used as a measure of general cognitive functioning, 

the Visual Short-Term Memory (VSTM; Vogel et al., 2001) which measures working memory, 

the Cattell test (Horn & Cattell, 1966) which is a measure of reasoning ability and the Hotel 

Test (Shallice & Burgess, 1991) which assesses planning abilities.  

MEG and structural MRI data acquisition 
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Resting brain activity was measured for 10 minutes (sampling rate: 1kHz, bandpass filter: 0.03-

330 Hz) with a 306-channel MEG system. Participants' 3D-T1 MRI images were acquired on a 

32-channel 3T MRI scanner. The following parameters were used: repetition time = 2250 ms; 

echo time = 2.99 ms; inversion time = 900 ms; flip angle = 9 degrees; field of view = 256 mm 

x 240 mm x 192 mm; voxel size = 1 mm; GRAPPA acceleration factor = 2; acquisition time = 

4 minutes and 32 seconds.  

Data pre-processing 

The Elekta Neuromag MaxFilter 2.2 has been applied to all MEG data (temporal signal space 

separation (tSSS): 0.98 correlation, 10s window; bad channel correction: ON; motion 

correction: OFF; 50Hz+harmonics (mains) notch). Afterwards, artifact rejection, filtering (0.3-

100 Hz bandpass), re-referencing (i.e. using the algebraic average of the left and right mastoid 

electrodes), temporal segmentation into epochs, averaging and source estimation were 

performed using Brainstorm (Tadel et al., 2011). In addition, physiological artefacts (e.g. 

blinks, saccades) were identified and removed using spatial space projection of the signal. In 

order to improve the accuracy of the source reconstruction, the FreeSurfer (Fischl, 2012), 

software was used to generate cortical surfaces and automatically segment them from the 

cortical structures from each participant's T1-weighted anatomical MRI. The advanced MEG 

model was obtained from a symmetric boundary element method (BEM model; OpenMEEG; 

Gramfort et al., 2010; Kybic et al., 2005), fitted to the spatial positions of each electrode (Huang 

et al., 1999). A cortically constrained sLORETA procedure was applied to estimate the cortical 

origin of the scalp MEG signals. The estimated sources were then smoothed and projected into 

a standard space (i.e., the ICBM152 model) for comparisons between groups and individuals, 

while accounting for differences in native anatomy. This procedure was applied for the entire 

recording duration.  

Network segmentation 

In line with previous work (e.g., Smitha et al., 2017; Van den Heuvel et al., 2009), we 

investigated the four main brain networks at rest: the default-mode network (DMN), the 

salience network (SN), the left fronto-parietal network (FPG) and the right fronto-parietal 

network (FPD). Each network is composed of different brain regions: the DMN is composed 

of the posterior cingulate cortex, the medial prefrontal and the inferior parietal cortex. The SN 

is composed of the anterior cingulate cortex, the insula and the pre-complementary motor area. 

The FPG is composed of the left dorsolateral prefrontal cortex and the left superior parietal 

cortex. Finally, the FPD is composed of the right dorsolateral prefrontal cortex and the right 

superior parietal cortex (Figure 1). These networks are involved in different cognitive activities 

or functions: the DMN is mainly observed at rest and shows lower connectivity levels when 

participants are currently performing cognitive tasks (Raichle et al., 2001). The SN is associated 

with the processing of salient stimuli in the environment (Seeley et al., 2007). Finally, the 

bilateral fronto-parietal network is involved in spatial attention, planning and cognitive control 

(Kam et al., 2019). We separately investigated the FPG, which is involved in working memory 

(Murphy et al., 2019) and the FPD which is involved in inhibitory processing (Nee et al., 2007). 

Regions of interest were selected following segmentation of individual anatomies based on the 

Desikan-Killiany atlas (Desikan et al., 2006).  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.26.477817doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477817
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

 

 

 

 

 

 

Study of dynamic connectivity 

Phase-locking value analyses (PLV; Lachaux et al., 1999) were used to determine the functional 

synchrony between regions of interest. PLV estimates the variability of phase differences 

between two regions over time. If the phase difference varies little, the PLV is close to 1 (this 

corresponds to high synchronisation between the regions), while the low association of phase 

difference across regions is indicated by a PLV value close to zero. Because PLV is an 

undirected measure of functional connectivity, and to investigate brain dynamics with 

complementary metrics, analyses of transfer entropy (TE) have also been conducted. TE 

measures of how a signal a can predict subsequent changes in a signal b (Ursino et al., 2020). 

It then provides a directed measure of a coupling’s strength. If there is no coupling between a 

and b, then TE is close to 0, while TE is close to 1 if there is a strong coupling between a and 

b. 

The range of each frequency band was based on the frequency of the individually observed 

alpha peak frequency (IAF), measured as the average of peaks detected with both 

occipitoparietal magnetometers and gradiometers. From previous work (Toppi et al., 2018) the 

following frequency bands were considered: Delta (IAF-8/IAF-6), Theta (IAF-6/IAF-2), Alpha 

(IAF-2/IAF+2), Beta (IAF+2/IAF+14), Gamma1 (IAF+15/IAF+30) and Gamma2 

(IAF+31/IAF+80). To reduce the dimensionality of the data, the first principal component 

analysis (PCA) decomposition mode of the time course of activation in each region of interest 

(ROI) of the Desikan-Killiany atlas brain fragmentation was used. The first component, rather 

than the average activity, was chosen to reduce signal leakage (Sato et al., 2018). 35 sliding 30s 

sliding time windows were then extracted for the epochs of interest to calculate the variability 

across time windows (standard deviation) of the PLV. The analyses were conducted on the 

average activity within each network, however additional analyses were conducted at the 

coupling level to further investigate the observed results. 

Statistical tests 

Functional data (PLV, TE) were analyzed using a 2 (age group: young/old) x 4 (networks: 

DMN, SN, FPG, and FPD) x 6 (frequency bands: delta, theta, alpha, beta, gamma1, gamma2) 

Figure 1: Visualisation of the different regions forming the four studied brain networks; 

in blue: the DMN; in orange: the SN; in yellow: the FPG; in purple: the FPD 
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repeated-measures ANOVA to determine which network and frequency band showed the 

greatest young/old changes. The Greenhouse-Geisser epsilon correction was used where 

necessary. Original degrees of freedom and corrected p-values are reported. Significant 

interactions were followed by permutation t-tests (N=1,000) to compare groups. Finally, 

correlations as well as regressions aimed at determining the association between these measures 

and behavioral measures within each group. Results were FDR corrected for multiple 

comparisons (Benjamini & Hochberg, 1995). 

Results 

Age-related differences in cognitive performance 

The main behavioral and demographic data from the CamCAN database are summarized in 

Table 1.  

 

 

 

 

 

 

 

 

 

 

 

Relative to younger individuals, older adults showed lower scores in the MMSE (p=0.013), 

VSTM_all (p<0.001), Cattell (p<0.001) and hotel test (p=0.018 for number of rooms; and 

p=0.005 for time) scores. For the hotel test, a decrease in the rate of correct answers was 

observed (p=0.018). A significant increase in response time for the hotel test was also observed 

in older individuals (p=0.005). 

Increased variability of delta phase synchrony frequency band in older adults 

We first observed a significant effect of network, F(3, 270) = 8.085, p<0.001, η2 = 0.082, 

frequency, F(5, 450) = 202.748, p<0.001, η2 = 0.693, and age, F(1,90) = 4.698, p= 0.033, η2= 

0.05. The interaction between frequency and age, F(5,450) = 6.57, p<0.001, η2 = 0.068, revealed 

that this difference in variability between young (M = 0.076, SE = 0.002) and older adults (M 

= 0.087, SE = 0.002) was stronger for the delta frequency band. This effect was not observed 

in other frequency bands. The Age x Networks interaction for the delta frequency band was 

also significant, F(3,270) = 6.823, p<0.001, η2 = 0.07,  with the  DMN network showing the 

largest difference. These results indicate an increased variability of the delta DMN activity with 

advancing age (Figure 2). We observed a significant negative correlation between such 

Variables Young adults Older adults p-value 

Number of participants 46 46 - 

Number of females 29 29 - 

Age 26.5 64.5 - 

Years of education 22.2 19.1 0.001 

MMSE 29.5 28.9 0.013 

VSTM_all 0.5 0.5 0.001 

Cattell 37.8 30.5 0.001 

Hotel_Num_rows 4.7 4.3 0.018 

Hotel_Time 227.7 326.9 0.005 

Table 1: Demographics and scores for both groups younger and older participants 
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variability and cognitive performance (VSTM, p = 0.009, r = -0.387). The rest of the analyses 

was therefore focused on the DMN network, in the delta frequency band.  

 

 

 

 

 

 

 

 

 

 

We then performed permutation t-tests on the DMN couplings between age groups. Different 

couplings were found to be significantly more variable for the older group compared to the 

younger group especially for interhemispheric and frontoparietal couplings. In the older group, 

the right frontoparietal coupling was found to be negatively correlated with cognitive 

performance (MMSE test; r = - 0.305, p = 0.039). These data suggest an increase in variability 

in the overall DMN network in the delta frequency band, but also an increase in the significant 

variability of specific couplings in this network, both being associated with lower cognitive 

performance. 

Reversal of the direction of information transfer of delta band in older adults 

As phase synchrony measures are undirected, transfer entropy was used to determine whether 

a specific direction of connectivity was associated with age-related differences. We performed 

a repeated measures ANOVA Age x Networks x Frequencies x Direction to determine which 

,network, which frequency band and in which direction the largest young-to-old changes were 

found. We showed a significant effect of frequency, F(5, 450) = 361.1, p<0.001, η2 = 0.801. A 

significant effect of age, F(1, 90) = 17.7 p<0.001, η2= 0.165 was also observed. Results revealed 

an increase in the direction of information transfer variability in the delta frequency band, in 

older adults relative to young adults. An interaction between frequency and age was also 

observed, F(5, 450) = 14.61, p<0.001, η2 = 0.140. This significant interaction effect indicates 

larger coupling strength in delta frequency in the older group (M = 1.218, SE = 0.0231) 

compared to the younger group (M = 0.921, SE = 0.0231). 

Student's t-tests were performed to determine the direction of information transfer for young 

and older adults in the DMN. We saw a significant difference between the fronto-parietal and 

parieto-frontal direction (p=0.013), with a significantly larger coupling strength parieto-frontal 

direction for young relative to older participants. With advancing age, in the DMN network and 

the delta frequency band, a decrease in the transfer of information from parietal to frontal 

Figure 2: Visualisation of the DMN couplings showing significant differences 

between young and older adults in the delta frequency band (permutation test, FDR 

correction; Benjamini & Hochberg, 1995) 
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regions has been observed. This decrease in communication can be linked to the cognitive 

performance observed in this group. Indeed, we conducted regression and correlation analyses 

to determine the association between these entropy transfer measures and behavioural measures 

within each group. We found negative correlations of information transfer with cognitive 

performance in all directions (VSTM, p=0.031, r= -0.319; Cattell, p=0.020, r= -0.341) in the 

delta frequency band for older adults. 

Discussion 

Our main objective was to investigate changes in the stability and variability of brain 

communication dynamics with age and the relationship of these changes with age-related 

cognitive changes. Our connectome-based approach, based on MEG data in healthy young and 

older participants from the Cam-CAN database, allowed us to investigate changes of 

connectivity dynamics with aging. Two time-resolved connectivity aspects were studied: the 

stability of synchronized communications over time, and directed connectivity. Brain activity 

was studied at rest, as previous work suggested a link between the activity of specific networks 

at rest and cognitive abilities (e.g. Nashiro et al., 2017). In this study, we first showed an 

increased variability of phase synchrony over time with age, especially in the delta frequency 

band. We also showed a reversal of the main direction of synchronized with age: connectivity 

in the fronto-parietal direction was found to be increased in older participants, whereas it was 

stronger in the parieto-frontal direction for younger participants. These observations are in line 

with the available literature on functional connectivity during non-pathological aging (e.g. 

Geerligs et al., 2015). The results also show for the first time the influence of the stability or 

variability of functional networks, as well as information exchange over time, on individual 

cognitive differences during aging. This was made possible by the excellent temporal resolution 

of MEG, combined with advanced source reconstruction analyses. 

The study of oscillatory activity allowed us to specify age-related changes in the variability of 

phase synchrony over time, and the specific frequency band associated with these differences. 

Phase synchrony between brain regions is a critical parameter of neural communications (e.g., 

Fries, 2015). Indeed, with advancing age, changes in synchronized network communications 

have been observed (see Courtney & Hinault, 2021, for a review). Our results reveal an 

increased variability of phase synchrony in the default network, mainly in the delta frequency 

band with age. Such variability of neural synchrony was negatively correlated with cognitive 

performance (measures of general cognition, and working memory). This result is consistent 

with MRI work showing that an age-related decrease in connectivity within the DMN is related 

to a decrease in memory and executive functions (e.g. Andrews-Hanna et al., 2007). Our results 

are also consistent with previous M/EEG work reporting an overall slowing of brain activity 

with advancing age (e.g., Celesia, 1986), with an increase of slow rhythms relative to faster 

rhythms. Increased slow waves seem to be associated with the cognitive decline observed with 

advancing age. Here, we show that this slowing of brain rhythms with age is associated with a 

loss of stability in neuronal communications, and poorer performance. 

In association with synchrony analyses, transfer entropy analyses allow the quantification of 

directed connectivity (see Ursino et al., 2020). This enables to quantify  the information flow 

between brain regions more precisely than functional connectivity, thus allowing the detection 

of causal interactions (i.e., A must precede B) between brain regions. Such investigation of 

directed connectivity revealed a decrease in the parietofrontal direction of brain 

communications relative to the frontoparietal direction in the default network and the delta 

frequency band with age. This reversal of information transfer between young and old 

participants was negatively correlated with cognitive performance (especially for working 

memory and fluid intelligence). The reversal of information transfer and decreased variability 
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in phase synchrony observed here may help furthering the age-related pattern described in the 

PASA model (Cabeza et al., 2018). According to this model, the increase in the recruitment of 

frontal regions in elderly people would be an indicator of their attempts to compensate for the 

decrease in their cognitive abilities. Here, we show a decrease in information transfer to these 

frontal regions (therefore, a decrease in recruitment from these regions), which is negatively 

associated with cognitive performances. These results allow us to understand this concept at 

the network communication dynamics levels. Further investigation of investigation transfer 

during task completion will be necessary to specify its associations with the direct 

implementation of cognitive processes.  

Several methodological considerations must be discussed regarding the reported results. First, 

the investigation of resting-state activity prevents in part the direct investigation of the neural 

bases of cognitive processes, which may explain the small number of associations with 

cognition. This could also reflect the fact that the Cam-CAN database does not include tasks 

directly testing executive functions. However, studying dynamic network connectivity at rest 

furthers our knowledge on the stability of these networks and help better characterize their 

individual variations. 

Theoretically, the variability of brain communications has received little investigation, as it was 

long considered as noise, but is now recognized as contributing to brain functions (Uddin et al., 

2020). Here, we show that healthy aging is associated with an increased variability in 

synchronized brain communications, and with changes of the main connectivity directions 

between brain regions. Results highlight that even when brain networks are not engaged in a 

particular cognitive activity, significant changes occur with age regarding connectivity 

dynamics and information flow between regions of different functional brain networks. 

Advancing age appears to be accompanied by a functional disorganization of dynamic 

networks, with a loss of communication stability and a decrease in the information transmitted. 

The study of dynamic connectivity contributes to a better understanding of the cognitive decline 

with aging. The stability of communications and its alteration should be considered in the 

framework of maintenance, reserve and resilience (Cabeza 2018; Stern, 2020). 
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