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Abstract: 31 

Dynamic changes of microbiome communities may play important roles in human health 32 

and diseases. The recent rise in longitudinal microbiome studies calls for statistical 33 

methods that can model the temporal dynamic patterns and simultaneously quantify the 34 

microbial interactions and community stability. Here, we propose a novel autoregressive 35 

zero-inflated mixed-effects model (ARZIMM) to capture the sparse microbial interactions 36 

and estimate the community stability. ARZIMM employs a zero-inflated Poisson 37 

autoregressive model to model the excessive zero abundances and the non-zero 38 

abundances separately, a random effect to investigate the underlining dynamic pattern 39 

shared within the group, and a Lasso-type penalty to capture and estimate the sparse 40 

microbial interactions. Based on the estimated microbial interaction matrix, we further 41 

derive the estimate of community stability, and identify the core dynamic patterns through 42 

network inference. Through extensive simulation studies and real data analyses we 43 

evaluated ARZIMM in comparison with the other methods.  44 

Key words: absolute abundance, autoregressive, longitudinal microbiome data, 45 

microbial community stability, microbial interactions, network analysis, mixed-effects 46 

model, and zero-inflated model.  47 
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1 Introduction 49 

The human microbiota, a diverse array of microbial organisms living in and on human 50 

bodies, form a dynamic ecosystem that plays a critical role in human health. While 51 

temporally stable microbial communities are observed among healthy adults [1], the 52 

fluctuation of microbiome has been linked to increasing frailty [2] and declining immune 53 

function of hosts [3], and diseases such as inflammatory bowel disease [4, 5], colorectal 54 

cancer [6, 7], and irritable bowel syndrome [8, 9]. When a microbial community changes 55 

in response to an external perturbation, it undergoes a dynamic process and tends to 56 

evolve toward another stable state (Figure 1).  This dynamic process is stochastic and 57 

varies according to the type and strength of perturbation, the community stability prior to 58 

the perturbation, and other subject-level relevant features. The recent rise in longitudinal 59 

studies, in which microbial samples are collected repeatedly over time, offers unique 60 

insights into the responses of such communities to perturbations and the associated 61 

dynamic patterns. For example, in our ongoing microbiome study evaluating the effects 62 

of antibiotic exposure as a short-term perturbation on microbial, immune, and metabolic 63 

physiology (MIME study), we are interested in determining how differently the microbial 64 

community responds to the antibiotic treatment.  65 

Human microbiota studies have been accelerated by the advent of next-generation 66 

sequencing technologies which enabled the quantification of the composition of 67 

microbiomes, often by two common sequencing approaches—16S rRNA marker gene 68 

sequencing and shotgun metagenomics sequencing [10]. There are pros and cons to 69 

each of those techniques, which are discussed in recent reviews [11, 12]. But for both 70 

methods, because of the varying sequencing read counts obtained across samples, it is 71 
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necessary to employ various normalization tools to convert raw counts data into relative 72 

abundances [13]. However, the dependency of the compositional components greatly 73 

hampers the interpretation of microbiota changes in longitudinal studies. There is reason 74 

to believe that the absolute abundances of bacteria are biologically meaningful measures, 75 

especially in the study of microbial interactions. Thus, in our MIME study, we use an 76 

independent quantitative polymerase chain reaction (qPCR) technology [14-16] to 77 

quantify total bacterial load per unit sample, and then use these data to estimate absolute 78 

bacterial abundance by combining them with the relative abundance values obtained from 79 

16S rRNA or shotgun sequencing methods. This MIME study motivated us to develop 80 

analytical methods to investigate microbial interaction and community stability after a 81 

strong external perturbation, and identify core active microbial taxa by modeling the 82 

absolute abundances of bacteria.  83 

Although many well-developed statistical tools are widely used for assessing the diversity 84 

of microbial communities and its composition, there are only a few methods available for 85 

inferring the ecological networks of microbial communities. Here we briefly review the 86 

well-developed statistical methods for studying the dynamic microbial systems and their 87 

limitations.  88 

A Bayesian network contains a set of multivariate joint distributions that exhibit certain 89 

conditional independences and a directed and acyclic graph (DAG) that encodes 90 

conditional independences among random variables. If the dependence relationships 91 

repeat and the signals at a certain time point only depend on the signals from previous 92 

time points, then the whole network can be formulated as a dynamic Bayesian network 93 

(DBN)[17] representation. McGeachie et al.[18] constructed a simplified two-stage DBN 94 
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(TS-DBN) which uses a Markov assumption that the observed values at time 𝑡 + 1 are 95 

independent of those at earlier time points (𝑡 − 1 and earlier) given the variable values at 96 

time 𝑡. Lugo-Martinez et al. presented a computational pipeline which first aligns the data 97 

collected from all individuals, and then learns a dynamic Bayesian network from the 98 

aligned profiles[19]. However, DBN has several limitations in analyzing the longitudinal 99 

microbial data. (1) It can only model the microbial community subject-by-subject. (2) DBN 100 

cannot handle the exceeding zero structure of microbial counts. Most methods remove 101 

the taxa whose relative abundances exhibit zero entry (i.e., not present in a measurable 102 

amount at one or more of the measured time points) before the downstream analysis. (3) 103 

The assumed distributions are unrealistic. E.g. all continue variables are assumed to be 104 

normally distributed. (4) The computational cost is relatively high, since parent nodes are 105 

added sequentially for each bacterial node. Additionally, the maximum number of possible 106 

parents is imposed, which is not realistic. (5) Due to sampling and sequencing limitations, 107 

the compositionality bias in microbiome data may also cause inaccurate estimation of 108 

parameters. The existing methods ignore this compositionality bias, making parameter 109 

estimates difficult to interpret. (6) Irregular sampling time may also result in inaccurate 110 

parameter estimation. Therefore, it is advised to cautiously interpret the findings from 111 

DBN[20, 21]. 112 

The classical Lotka-Volterra equations has been used to model simple system such as 113 

two species in a predator-prey relationship, where the interactions are strictly assumed 114 

to be competitive. The generalized Lotka-Volterra (gLV) equations extend the classical 115 

predator-prey (Lotka-Volterra) equations, where the interacting species might have a wide 116 

range of relationships including competition, cooperation, or neutralism. Assuming that 117 
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the interaction (or the effect) of one species with another can be modeled by the 118 

corresponding coefficient in the equation, gLV equations provide a framework to analyze 119 

and simulate microbial populations. Mounier et al. used the gLV equations to model the 120 

interaction between bacteria and yeast in a cheese microbiome[22]. Other microbiome 121 

studies further extended and implemented the gLV equations[23-26].  122 

Many software are available for applying gLV modeling on microbial time series data, 123 

such as LIMITS[27], MetaMis[28], and MDSINE[29]. LIMITS and MetaMis can be 124 

implemented to construct microbial interactions using the longitudinal microbiome data 125 

from one subject. MDSINE can jointly analyze multiple time series, but requires Matlab 126 

programming. Web-gLV (http://web.rniapps.net/webglv) can be used for modeling, 127 

visualization, and analysis of microbial populations, but can only handle limited number 128 

of samples. In summary, there are several limitations of gLV in analyzing the longitudinal 129 

microbial data. (1) gLV based models capture the interactions using a single averaged 130 

effect, thus they are not well-suited for noisy data. (2) Some methods estimate almost all 131 

possible edges without incorporating variable selection techniques. (3) gLV estimates the 132 

growth rate of each taxon marginally, therefore, ignores the intrinsic dynamic correlations 133 

of the repeated measurements. (4) gLV does not account for random processes which 134 

forms essential part of any biological system. (5) With the increased number of species 135 

and time span of prediction, the simulation output is prone to numerical errors. For 136 

example, Web-gLV can only simulate a maximum of 10 species at a time for at most 100 137 

time points. (6) As DBN, gLV is not suitable for sparse, compositional, and irregular 138 

sampled microbiome data. 139 

In Ives et al. [30], the stability of a microbial community is determined by three key 140 
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interrelated components of microbial community structure: diversity, species composition, 141 

and interaction pattern among species. They viewed the dynamics of a microbial 142 

community as a stochastic process and proposed to use a first-order multivariate 143 

autoregressive process (MAR (1)) time-series model to disentangle the effects of these 144 

three components on community stability and to estimate the stability properties of a 145 

community by estimating the strengths of interactions between species. This method is 146 

widely used to estimate the stability of ecosystems (e.g., lake, ocean) based on culture-147 

dependent microbial data[31, 32]. Usually a few (four or five) key microbes are detected 148 

with high frequency in each ecosystem in time-series measurements over a long period, 149 

and their abundances are rarely zero. In contrast, our MIME study will yield microbiome 150 

data from approximately nine time points over half a year from 80 subjects in three groups 151 

in the complete study—a relatively smaller number of repeated microbiome samples but 152 

from a relatively larger number of microbial communities (subjects) than what would be 153 

the case for an ecosystem study. Moreover, the 16S rRNA sequencing and qPCR 154 

methods used in this study provide absolute abundances for a staggering number of taxa, 155 

which include a large number of zero values. Because the MAR modeling methods 156 

require the normality assumption, they are not appropriate for analyzing data from 157 

sequence-based longitudinal microbiome studies. Therefore, we propose an 158 

autoregressive zero-inflated mixed effects model (ARZIMM) to address the special 159 

features of data instead. Its novelties are threefold. First, we propose to use a zero-160 

inflated Poisson autoregressive model to model the excessive zero abundances and the 161 

non-zero abundances separately. Second, the random effects in the proposed model can 162 

investigate the underlining dynamic pattern shared within the group. Third, the 163 
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employment of regularization techniques and network inference in our model enables the 164 

identification of the core dynamic patterns. The proposed ARZIMM estimates the strength 165 

of interactions between taxa, which is required to estimate the stability properties of a 166 

community, and identify key active taxa efficiently by using all of the longitudinal 167 

sequencing data. ARZIMM has been implemented in an open-source software package 168 

(https://github.com/Hlch1992/ARZIMM), and provides a useful tool for formulating, 169 

understanding, and implementing longitudinal microbiome data analysis.  170 

In the following Material and Method section, we introduce the ARZIMM framework, 171 

discuss the quantification of microbial stability based on the estimated microbial 172 

interaction matrix, and investigate the conditions under which there exist a strict-sense 173 

stationary distribution. Then in the Result section, we evaluate ARZIMM using extensive 174 

simulation studies to show that it outperforms the conventional methods, and apply 175 

ARZIMM to the MIME study to illustrate network visualization and inference. In the end, 176 

we conclude with Discussion section. 177 

2. Material and Method 178 

2.1. ARIZMM Model 179 

As illustrated in Figure 2, ARZIMM can be considered as a two-part model which 180 

comprises a logistic component and an autoregressive component. To address zero 181 

inflation, we consider the zero-inflated mixture model because it assumes both sampling 182 

zeros (due to the low sequencing depth) and structural zeros (being truly absent) exist in 183 

the data. Specifically, the logistic component models the structure zeros of taxa in the 184 

samples, and the autoregressive component models the non-structure-zero abundances 185 

of the taxa under the assumption that the changes in abundances from time 𝑡 − 1 to time 186 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.26.477892doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477892
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝑡 depend only on the observed abundances at time 𝑡 − 1 and other time-independent 187 

covariates and the observed abundances before time 𝑡 − 1 have no direct effect. Since 188 

the goal of ARZIMM is to characterize microbial interactions and community stability 189 

during a short period after a strong external perturbation like the antibiotic usage in our 190 

MIME study, we assume there are no other time-dependent factors exist to affect the 191 

microbial stability.  192 

Notation and Model Specifications 193 

Let 𝑌  denote the observed absolute abundance of bacterial taxon 𝑚 (𝑚 = 1, . . . , 𝑀) for 194 

subject 𝑖 at time 𝑡 (𝑖 = 1, 2, . . . , 𝑛, 𝑡 = 1, . . . , 𝑇 ), and we model 𝑌  with a conditional 195 

mixture distribution as follow: 196 

 
                           𝑌 |Ѵ ( )~

0 𝑝
𝑖𝑚

𝐹(𝑦 |Ѵ ( ); 𝜃𝑖𝑡𝑚, 𝜙 ) 1 − 𝑝
𝑖𝑚

                         

(1)                          

 

where Ѵ ( ) represents all information that is known at time (𝑡 − 1) for individual 𝑖, 197 

including the observed absolute abundance 𝑌 ( ) and later defined coviariates 𝑾  and 198 

𝒁 . The parameter 𝑝  represents the probability of the observation 𝑌  being structural 199 

zero and is assumed time independent. Furthermore, 𝐹 is assumed to be an exponential 200 

dispersion family distribution with the canonical parameter 𝜃  and the dispersion 201 

parameter 𝜙 . Both Poisson and negative binomial (NB) distributions can be used as to 202 

model absolute abundance. Below we illustrate the detailed modelling using Poisson 203 

model.   204 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.26.477892doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477892
http://creativecommons.org/licenses/by-nc-nd/4.0/


The mixture probability parameters 𝒑 = (𝑝 ,…, 𝑝 )′ are modeled by the logistic 205 

regression: 206 

 𝑙𝑜𝑔𝑖𝑡(𝒑 ) = 𝑨𝑾 + 𝒂  (2) 

where 𝑾 = (1, 𝑤 , … , 𝑤 )′ consists of intercept and 𝑙 time independent covariates for 207 

individual 𝑖, the parameter 𝑨 = (𝑨𝟏, … , 𝑨𝑴)′ is an 𝑀 × (𝑙 + 1) matrix whose elements 𝐴  208 

is the effect of covariate 𝑗 on the zero proportion of taxon 𝑚. 𝒂 = (𝑎 , … , 𝑎 )′ is an 𝑀 ×209 

1 vector of random intercepts to model the within-subject heterogeneity of being zero for 210 

individual 𝑖  and has the joint multivariate normal distribution 𝒩(𝟎, 𝜮 ). 211 

The canonical parameters for Poisson distribution is 𝜃 = log𝐸(𝑌 ).  We introduce the 212 

auto-regressive model by relating 𝜽 = (𝜃 , … , 𝜃 )  to the 𝑖  individual’s observed log-213 

transformed absolute abundance vector at time 𝑡 − 1: 𝒀 ( ) = (log 𝑌 ( ) +214 

1 , … , log 𝑌 ( ) + 1 )  (where the pseudo count 1 is added to avoid the undefined 215 

logarithm when the absolute abudance is zero), and 𝒁 = 1, 𝑍 , … , 𝑍 , the intercept 216 

and 𝑞 time-independent covariates of individual 𝑖 by  217 

𝜽 |𝒀 ( ) = 𝑩𝒀 ( ) + 𝑪𝒁 + 𝜼                      (3) 218 

where 𝑩 is an 𝑀 × 𝑀 matrix whose element 𝐵  gives the effect of the abundance of 219 

taxon 𝑗 on the growth rate of taxon 𝑚, 𝑪 is an 𝑀 × (𝑞 + 1) matrix whose element 𝐶  gives 220 

the effect of covariate 𝑗 on taxon 𝑚, and 𝜼 = (𝜂 , . . . , 𝜂 )′ is time-independent random 221 

intercepts. Note that, as an autoregressive model, 𝜼  is correlated with the fixed effect 222 

𝒀 ( ) and this dependency can be tracked all the way back to the initial observation 𝒀 . 223 

Because the standard random effects model has assumption that the random effects are 224 
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independent to the other covariates in the model, in order to derive the random effect type 225 

maximum likelihood (ML) estimators, we use the Chamberlain type projections[33] to get 226 

around this correlation. Specifically, we project  𝜼  onto the time 0 observations 𝒀  by: 227 

                                                     𝜼 = 𝜫𝒀 + 𝒃                                                    (4) 228 

where 𝜫 is an 𝑀 × 𝑀 matrix with diag(𝜫) = (𝜋 , … , 𝜋 )′ and off-diagonal components 229 

being zero. The components of 𝜫 represent how much variation in 𝜼  is due to the 230 

dependence on subject 𝑖’s initial value 𝒀 . 𝒃 = (𝑏 , . . . , 𝑏 )  is an 𝑀 × 1 vector, 231 

representing the independent subject-specific random effect and follows a joint 232 

multivariate normal distribution 𝒩(𝟎, 𝚺 ). 233 

In the model, our primary interest is to estimate matrix 𝑩, which measures the strengths 234 

of interactions between taxa. For a microbial community with a given number of species, 235 

its stability or dynamics status depends on the changes in the species’ population growth 236 

rates due to perturbation, which immediately cause the changes in the population growth 237 

rates of other species via species-species interactions[34]. Interaction between species 238 

can be viewed as a filter that amplifies the variability in species’ population growth rates 239 

caused by perturbation.  240 

Note that we choose Poisson distribution because of its nice stationary distribution 241 

property in the autoregressive model which is crucial for our following stability 242 

investigation. To deal with the over-dispersion of microbiome data, we implemented the 243 

quasi-Poisson model [35] in the simulation and real data analysis.  244 

Penalized ML Estimation and Variable Selection  245 

To define the joint likelihood of the longitudinal microbial absolute abundance data 𝒀 , 246 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.26.477892doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477892
http://creativecommons.org/licenses/by-nc-nd/4.0/


we assume that the vector of time independent random effects 𝐜 = (𝒂 , 𝒃 )  underlies 247 

both the zero and autoregressive generative processes and these random effects account 248 

for the within-subject group heterogeneity in the multivariate logistic component and the 249 

multivariate autoregressive component. Denote 𝑫 = (𝑩, 𝑪) = (𝑫𝟏, . . . , 𝑫𝑴) , 𝝓 =250 

(𝜙 , . . . , 𝜙 ) , and 1[⋅] as the indication function that when [·] meets, 1[⋅]  = 1, otherwise, 251 

1[⋅]  = 0. Formally, we have the joint likelihood function as: 252 

ℒ(𝑫, 𝑨, 𝜫, 𝝓, 𝝈)253 

= 𝑓 𝑦 𝜃 (𝑏 ), 𝜙 , 𝑝 (𝑎 ) 𝑔 𝒄 𝜮(𝝈) 𝑑𝒄        (5) 254 

where 𝑓  is the conditional probability density function and given as 255 

𝑓 (𝑦 |𝜃 (𝑏 ), 𝜙 , 𝑝 (𝑎 )) = [𝑝 + (1 − 𝑝 )𝑓(𝑦 = 0|𝜃 , 𝜙 )]  256 

× [(1 − 𝑝 )𝑓(𝑦 |𝜃 , 𝜙 )] .                                                    (6)   257 

The function 𝑔(𝒄 |𝜮(𝝈)) is the joint distribution of 𝐜 , and 𝜮(𝝈) =
𝜮 𝜮

𝜮 𝜮
 represents 258 

the corresponding 2𝑀 × 2𝑀 covariance matrix, where 𝝈 accounts for all unique non-zero 259 

elements of 𝜮. For the model and computational simplicity, we assume 𝐶𝑜𝑣(𝒂 , 𝒃 ) =260 

𝛴 = 0, i.e. 𝒂𝒊 and 𝒃  are independent. 261 

Assuming that the true underlying fixed effects 𝑨 and 𝑫 are sparse, we advocate a Lasso-262 

type approach, which adds an ℓ -penalty for the fixed-effects to the likelihood function. 263 

Thus, we consider the following objective function: 264 

                                     𝑄 = −2logℒ + ∑ [ 𝜇 ||𝑫𝒎|| + 𝜇 ||𝑨𝒎|| ].                   (7) 265 

Maximization of the penalized log-likelihood function corresponding to equation (7) with 266 
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respect to (𝑫, 𝑨, 𝜫, 𝝓, 𝝈) is a computationally challenging task. This is mainly because 267 

both integrals with respect to the random effects and the zero-inflated structure do not 268 

have analytical solutions. Following the conventional methods, we propose to implement 269 

a Laplace approximation on the integral of random effects in equation (7) and use the 270 

Expectation-Maximization (EM) algorithm to calculate the expectation and compute 271 

parameters iteratively, in which the label of zero is treated as "missing data". The tuning 272 

parameters are selected using Bayesian information criterion (BIC). 273 

2.2. Stability Properties 274 

The existence of a stationary distribution has been investigated for the log-linear Poisson 275 

auto-regression model based on the perturbation technique [36]. Here, we prove the 276 

existence of a stationary distribution of a zero-inflated Poisson mixed-effect auto-277 

regression model in Theorem 1 utilizing the theory of Markov chains which has been 278 

proposed to prove the existence of a stationary distribution of a general class of time 279 

series count models [37]. The detailed proof is provided in the Supplementary Material, 280 

Section 3.   281 

Theorem 1.  Assuming that time-independent parameters 𝜼  and 𝒑  are known, if all 282 

eigenvalues of matrix 𝑩 lie inside the unit circle, a strict-sense stationary ergodic process 283 

{𝒀 } ∈𝐍 will exist, where 𝐍 denotes the set of natural numbers.  284 

With this Theorem, we can first show that for a microbial community, its dynamic process 285 

{𝒀 } ∈𝐍 has a stationary distribution by proving that all eigenvalues of matrix 𝑩 lie inside 286 

the unit circle. Then, following Ives et al. [30], we consider the return rate and reactivity 287 

as two stability measures based on the variability of the stationary distribution for MAR 288 

(1) model. Specifically, return rate depends on the rate at which the perturbed microbial 289 
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community approaches the stationary distribution and reactivity, assesses how strongly 290 

population-level microbiome abundances are pulled towards the mean of the stationary 291 

distribution. Both are bounded by the largest eigenvalue of 𝑩, denoted by max(𝝀 ). In 292 

general, a smaller max(𝝀 ) indicates the perturbed microbial community approaches its 293 

stationary distribution faster, or a system is less reactive, then the microbial community is 294 

more stable. The detailed proof is deferred in the Supplementary Material, Section 3.2. 295 

Based on the theory in Ives et al. [30], for a community with multiple species, the 296 

covariance matrix of the stationary distribution depends on the covariance matrix of the 297 

process error and the interactions between species captured in the matrix 𝑩. As illustrated 298 

in our Figure 1, when the external perturbation(blue arrow) acts on the community, the 299 

ball(microbial community) sitting in a deep bowl in state 2 which represents a relatively 300 

stable system, will return to its stationary state faster than the ball sitting in a shallow bowl 301 

in state 1 which represents a less stable system. In a stable system, the variance of 302 

stationary distribution is only slightly greater than the variance of process error and the 303 

variance of species interaction is small. In contrast, in a less stable system, the species 304 

interaction will amplify the environmental variance and create large variance in the 305 

stationary distribution, therefore the variance of species interaction is large, assuming the 306 

process errors are similar in the compared two states.  Thus, the difference between the 307 

variances of stationary distribution of different communities can be attributed to species 308 

interactions. The smaller of the variance of matrix 𝑩, the more stable of the study microbial 309 

community. 310 

3. Results 311 

3.1. Simulation Study 312 
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We have conducted extensive simulation studies to evaluate the performance of ARZIMM 313 

in both model fitting and variable selection by comparing it with the competing methods: 314 

penalized Poisson auto-regression (Poisson), penalized log-normal multivariate auto-315 

regression (MAR), and extended generalized Lotka-Volterra (gLV) equations using 316 

Bayesian algorithm (MDSINE) [38]. The brief descriptions of these methods are provided 317 

in the Supplementary Material: Section 2. 318 

3.1.1. Simulation Design 319 

We generated the longitudinal absolute abundances from zero-inflated Poisson 320 

distribution with parameters 𝑝  and 𝜃  for each taxon. Since our focus is on the 321 

estimation of the interaction matrix 𝑩,  which depends on the non-zero part, we adopted 322 

a simple simulation design for the zero inflation proportions 𝒑 = (𝑝 , . . . , 𝑝 )′.  We 323 

ignored the individual variations in 𝒑  by dropping the random effect term 𝒂  in equation 324 

(2). With model 𝑙𝑜𝑔𝑖𝑡(𝒑 ) = 𝑨𝑾  and by controlling the values of 𝑾 and 𝑨 respectively, 325 

we set the zero inflation proportions 𝒑  for 20 taxa to mimic the observed sparsity in real 326 

data as 327 

𝒑 = (0.72, 1.00, 0.96, 0.34, 0.50, 0.56, 0.94, 0.84, 0.98, 1.00,  328 

                                  0.78, 0.68, 0.96, 1.00, 0.38, 0.56, 0.82, 1.00, 0.28, 1.00)′                (8) 329 

The detailed values of 𝑾 and 𝑨 are provided in the Supplementary Material, Section 4.  330 

We generated the non-zero absolute abundances from Poisson distribution with their 331 

𝜽 = (𝜃 , . . . , 𝜃 )  defined as 𝜽 = 𝑩𝒀 ( ) + 𝒃 + 𝒃 , where the intercept 𝒃  was set 332 

to be the mean log-transformed non-zero absolute abundances of taxa in MIME real data, 333 

and the random effects 𝒃 ~𝒩(𝟎, 𝑑𝑖𝑎𝑔(𝜮 )) with 𝑑𝑖𝑎𝑔(𝜮 )~10𝒩( . , . ). We assumed that 334 

the interaction matrix 𝑩 was sparse by randomly selecting 5% of its elements to be non-335 
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zero. Three interaction matrices were considered with varied informative absolute effect 336 

strengths: high (𝐵 ~10𝒩( . . . )), medium (𝐵 = √0.1𝛽 ), and low (𝐵 = 0.1𝐵 ), for 337 

the non-zero elements 𝐵 . In addition, we designed four simulation scenarios: Scenario 338 

1 with 𝑑𝑖𝑎𝑔(𝜮 ) = 𝟎 and 𝒑 = 𝟎, considered as the benchmark situation where subjects 339 

are homogeneous and taxa are all presented; Scenario 2 with  𝑑𝑖𝑎𝑔(𝜮 )~10𝒩( . . . ) and 340 

𝒑 = 𝟎, where subjects are heterogeneous and taxa are all presented; Scenario 3 with 341 

𝑑𝑖𝑎𝑔(𝜮 ) = 𝟎 and 𝒑  as in (8), where subjects are homogeneous and taxa have zero 342 

inflated structure; and Scenario 4 with  𝑑𝑖𝑎𝑔(𝜮 )~10𝒩( . . . ) and 𝒑  as in (8), where 343 

subjects are heterogeneous and taxa have zero inflated structure. 344 

In each scenario, we generated 500 independent repetitions for 𝑛 = 20 or 50 subjects, 345 

𝑇 = 10 or 20 time points, and 𝑀 = 20 taxa for each sample to evaluate the performance 346 

of ARZIMM.  347 

3.1.2. Simulation Results  348 

We first compared the model fittings of ARZIMM, Poisson, and MAR methods using mean 349 

normalized squared error score (MNSES), as suggested in the prior studies [39-42]. 350 

MNSES is defined as 
× ×

(
 
)  with 𝑦  being the estimated 𝑦  and 𝜎  being 351 

the estimated standard error of 𝑦 . The closer the MNSES is to 1, the better model fitting 352 

the method has. Since MDSINE only provides the estimates of interactions among 353 

species without their variance estimates, it was excluded from this comparison. Table 1 354 

and Supplementary Table S1 summarize the median and interquartile range (IQR) of 355 

MNSES over 500 replications for these three methods. Overall, the medians of MNSES 356 

for ARZIMM are all around the expected value of 1 in various settings across four 357 

scenarios, which indicates the good fitness and robustness of ARZIMM in dealing with 358 
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excess zeros and the correlation among repeated measures at the same time, as well as 359 

its satisfying estimation accuracy on the microbial interaction parameters.  However, the 360 

other two methods: Poisson and MAR, both exhibit inferior performance. The Poisson 361 

model is only competent in Scenario 1, when subjects are homogeneous and no excess 362 

zeros are present. In Scenarios 2-4, when any factor, excess zero or subject 363 

heterogeneity, presents, the predicted values based on the Poisson model deviate greatly 364 

from the observed values. Comparing the considered two factors, Poisson model is more 365 

sensitive to the subject heterogeneity and presents larger deviations with it. Due to the 366 

invalid normality assumption and lack of consideration of the correlation among the 367 

longitudinal measurements, the MAR model exhibits the worst performance among three 368 

methods with enormous deviation especially in Scenarios 3 and 4, which confirms the 369 

inappropriateness of using conventional statistical methods which require the normality 370 

assumption to analyze the microbiome data.   371 

Next, we evaluated the variable selection performance for ARZIMM, Poisson, MAR, and 372 

MDSINE in terms of true positive rate (TPR; mathematically equals to the power) and 373 

false positive rate (FPR; mathematically equals to the type I error). Specifically, TPR 374 

quantifies the probability of a significant interaction identified by one method given that 375 

the interaction effect is truly nonzero; and FPR quantifies the probability of a significant 376 

interaction identified by one method given that the interaction effect is truly zero. The 377 

simulation results for 50 subjects with 20 time points are summarized in Figure 3 and all 378 

the other simulation results with different subject numbers and time points are deferred 379 

to Supplementary Figure S1, because they have a similar pattern as seen in Figure 3. 380 

Figure 3 shows that the FPRs of ARZIMM are all at or below the nominal level (5%) across 381 
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different simulation regimes and effect sizes, and its TPR estimates exhibit a sensible 382 

and consistent pattern as they increase as the interaction effect gets stronger across four 383 

scenarios. As expected, the FPR and TRP estimates of Poisson and ARZIMM models 384 

are coincident under Scenario 1, because when subjects are homogeneous and taxa 385 

don’t have excess zeros, ARZIMM model is reduced to Poisson model. However, in 386 

Scenarios 2-4, because simple Poisson model fails to take care of the excess zeros or 387 

subject heterogeneity, it suffers from the inflated false positives, while ARZIMM does not. 388 

For the other two methods, both MAR and MDSINE perform poorly on controlling false 389 

positive rates for all simulation scenarios, because MAR fails to fit the skewed and highly 390 

sparse microbiome data, while MDSINE captures the interactions based on the averaged 391 

effect over subjects in a group but completely ignores the randomness at the subject level 392 

process which is the essential characteristic of any biological system. In summary, 393 

ARZIMM outperforms the other competitors in handling the excess zeros and subject 394 

heterogeneity well with controlled FPR and satisfactory TPR.  395 

To further investigate the performance of informative interaction selection, we calculate 396 

Matthew correlation coefficient (MCC), defined as 
∗ ∗

( )( )( )( )
, and F-397 

score, defined as 
( )/  

, where TP gives the number of selected interactions being 398 

true positive, FP gives the number of selected interactions being false positive, TN gives 399 

the number of unselected interactions being true negative, and FN gives the number of 400 

selected interactions being false negative. MCC ranges from −1 to 1, where value 1 401 

indicates perfect agreement between truth and selection, value −1 indicates perfect 402 

disagreement, and value 0 indicates that the selection is random with respect to the truth. 403 

F-score ranges from 0 to 1, where value 1 indicates that there are neither false negatives 404 
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nor false positives and value 0 only indicates no true positives are reported. As expected, 405 

MCC and F score are comparable to each other and increase as effect size increases 406 

(Supplementary Figure S2). This consistent pattern is observed across four scenarios for 407 

ARZIMM but not for Poisson nor MAR models. Similar to TPR and FPR estimates, the 408 

MCC and F score values of Poisson and ARZIMM models are coincident under Scenario 409 

1. However, in other situations, both Poisson and MAR perform poorly with low MCC and 410 

F score values. 411 

As for the computational cost, ARIZMM took about 2.4 hour to complete the estimation 412 

and bootstrap inference for a simulated dataset with 50 subjects, 20 timepoints, and 20 413 

taxa. 414 

3.2  Real Data Application  415 

We applied ARZIMM methods to the MIME study. The MIME study is an ongoing 416 

randomized trial on 80 healthy volunteers with one control group (ctrl) and two antibiotic 417 

groups (amoxicillin, amx, and azithromycin, azm); antibiotics are provided for a 1-week 418 

period at the start of the trial. The main microbiome research goal of the MIME study is 419 

to evaluate the effects of antibiotics on microbial profiles at both the community and 420 

taxonomical levels. With ARIZMM, we propose a different perspective to evaluate the 421 

effect of antibiotics through the investigation of microbial interaction and community 422 

stability across groups.  Because the clinical trial is still ongoing and only partial data are 423 

available, the following data analysis is done on a subset of MIME data including only 11 424 

subjects who were randomized to two groups: 4 ctrls and 7 azms. The main purpose of 425 

this analysis is to illustrate how to use ARIZMM, not for the scientific conclusion. For each 426 

subject, we collected two baseline microbiome samples, three samples during the course 427 
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of antibiotics, and five post-antibiotic samples. The gut microbiota of these individuals 428 

were profiled using 16S rRNA gene targeted sequencing on the Illumina MiSeq platform. 429 

To obtain the microbial absolute abundances, we multiplied the relative abundances of 430 

OTUs by the sample density 1.1g/cm3 and the number of universal 16S rRNA per gram 431 

measured using qPCR [43]. In our analysis, samples that collected before treatment in 432 

both antibiotic groups were excluded. The abundances of taxa were agglomerated at the 433 

genus level and taxa were further filtered if (1) the average relative abundances over all 434 

samples are less than 0.1%, and (2) the taxa are presented in less than 5 samples within 435 

each group. 436 

First, Figure 4A shows a comparison of the relative abundance (top panel) and the 437 

absolute abundances determined by quantitative sequencing (bottom panel) of the 438 

dominant bacterial genera in 99 fecal samples from 11 subjects (blocks) across seven to 439 

nine time points (shown from left to right within each block) of this preliminary dataset. It 440 

is evident that the relative abundance and absolute abundance data present different 441 

information about the microbial profiles, and that the total bacterial load changes over 442 

time for each subject (i.e., within each block). Thus it is essential to study the microbial 443 

interactions using the absolute abundance data.  444 

Then, we evaluate the model fitting of the log-normal distribution (used in MAR(1)) and 445 

zero-inflated over-dispersed Poisson distribution (used in ARZIMM) on the available 446 

subset of MIME data using chi-square goodness of fit test at 5% significance level taxon 447 

by taxon. Out of 45 taxa in the control group, 1 and 44 of their absolute abundances were 448 

fitted well (p>0.05) by log-normal distribution and zero-inflated over-dispersed Poisson 449 

distribution respectively. The log-normal distribution fails to fit the data well when 450 
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microbial taxa’s absolute abundance data are left-skewed and sparse (two examples are 451 

illustrated in Figure 4B). 452 

Next we demonstrate how to conduct inference for microbial interactions and community 453 

stability with ARZIMM on MIME data. First, we fit ARZIMM to ctrl and azm groups 454 

separately, adjusting for age, gender, and BMI, to get their estimated interaction matrix 455 

𝑩s. Table 2 reports the characteristics of microbial interaction matrix estimates 𝑩s. 456 

Defining the interaction effect as informative if its 𝐵 ’s 95% bootstrap confidence interval 457 

(based on 100 bootstrap samples) does not contain zero, we identified 125 and 105 458 

informative interactions, respectively, in azm and ctrl groups. Their interaction effects are 459 

illustrated using networks in Figure 5. With more informative interactions, the azm groups 460 

have bigger and more complex networks than the ctrl group (first row of Figure 5), while 461 

the control group has more large estimated interaction effects than those in azm group 462 

as showed in Table 2 and the last three rows of Figure 5. This observation indicates that 463 

the antibiotic treatment reduce the strength of the interactions among the taxa and create 464 

more variations with more weak interactions among taxa, thus reduce its stability.  In the 465 

last row of Table 2, based on our stability theory we report the stability properties of the 466 

studied microbial communities. The ctrl group has the lower estimates of maximum 467 

eigenvalue squared 0.11 comparing to the azm group’s maximum eigenvalue squared 468 

0.32, which indicates that the control microbial community is more stable than the 469 

antibiotic communities.    470 

Figure 6 provides additional information on the network feature comparison between ctrl 471 

and azm groups. Figure6A displays the distribution of the positive and negative 472 

informative interaction estimates separately. The ratios between the numbers of positive 473 
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and negative interactions are both around 1:1 in two groups. Figure 6B presents the 474 

frequency distribution of vertex degree of all the taxa in each group and they are all skew 475 

to the right. In the figure, a vertex represents a taxon in a community and its vertex degree 476 

is the number of informative interaction effect it has with the other taxa. By defining 477 

average neighbor degree as the average number of a given taxon’s neighbor vertices’ 478 

degrees, Figure 6C shows that the average neighbor degree is negatively correlated with 479 

the vertex degree in azm antibiotic treated group, but not in the control group. This 480 

indicates that there may be a group of taxa interacting with each other actively in the 481 

antibiotic group. It would be interesting to identify such sub-community with additional 482 

effort.  483 

Discussion 484 

In this paper, we propose ARZIMM, an analytic platform which estimates the microbial 485 

interactions and community stability using longitudinal microbiome data. ARZIMM tackles 486 

the zero-inflated absolute abundance with a mixture distribution of zero and exponential 487 

dispersion distribution family, and enhances statistical efficiency by utilizing a random-488 

effects term to account for the correlations among repeated measurements.  489 

It is well-known that microbial correlations calculated from relative abundances are 490 

distorted by the compositional nature of microbiome data, and are insufficient in tracking 491 

microbial dynamics[44]. We advocate to investigate the microbial correlations using 492 

longitudinal absolute abundances which can be determined by combining gene amplicon 493 

sequencing with auxiliary total DNA quantitation data. qPCR is one of the most commonly 494 

used strategies to quantify total DNA[45] and has been implemented in various statistical 495 

analyses[46, 47]. Other alternative methods to quantify the absolute abundances include 496 
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the combination of the sequencing approach (16S rRNA gene) with robust single-cell 497 

enumeration technologies (flow cytometry)[48] and the usage of synthetic chimeric DNA 498 

spikes[49]. 499 

Plenty of zero-inflated mixed effects models have been recently proposed to handle the 500 

excess zeros in microbiome abundance data such as zero-inflated Poisson, negative 501 

binomial and quasi-Poisson models[50, 51]. However, none of the existing methods 502 

estimates the microbial interactions and community stability. To fill this gap, we extended 503 

a zero-inflated Poisson model with auto-regression and random effects modeling, which 504 

plays crucial role in efficiently handling the individual heterogeneity and enable the 505 

investigation of microbial interactions.  506 

We investigated two community stability measurements derived from ARZIMM: the return 507 

rate and reactivity, to further understand ecological dynamics. The estimated interaction 508 

matrix 𝑩 from the ARZIMM model serves the basis to calculate the largest eigenvalue of 509 

𝑩: max (𝜆𝑩), which determines the return rate of the mean of the transition distribution 510 

from the departure to the mean of the stationary distribution.  We proposed to measure 511 

the reactivity of a microbial community by the expected change of the stationary 512 

distribution’s mean in distance from one time point to the next time point. In ARZIMM, 513 

higher reactivity coincides with larger eigenvalues of 𝑩, thus governed again by max (𝜆𝑩). 514 

Other measures of community stability, such as variance of the stationary distribution 515 

[30], warrant further investigations. 516 

It is worth noting that by utilizing the ARZIMM model framework, the time-dependent 517 

perturbation (for instance, diet) can also be assessed flexibly in both the autoregressive 518 

part and the logistic part in the model. However, the stability based on the microbial 519 
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interactions has to be interpreted with caution, since the mean of stationary distribution 520 

changes along with the time-dependent covariates.  521 

We have demonstrated that ARZIMM outperforms the competing methods and exhibits 522 

its feasibility for examining microbial interactions and stability based on longitudinal 523 

microbial data. We applied our method to a real human microbiome study of antibiotic 524 

treatment and elucidated the microbial interaction network of bacteria from antibiotic and 525 

non-antibiotic groups separately. The application of ARZIMM to temporal microbiome 526 

data shows great promise. Still, the development of accurate predictive models will 527 

require further developments. For example, the method used here to infer microbial 528 

interactions may be expanded by adding functional information as well as phylogenetic 529 

information. Although this method is primarily developed for the gut microbiota, it may be 530 

potentially applied to longitudinal data from any ecological systems. Since interactions 531 

between members of microbial communities are primary driving forces for the long-term 532 

stability[52], the corresponding stability properties will provide useful principles for 533 

community dynamics. 534 

Note that the proposed ARIZMM assumes the probability of observing a zero count for a 535 

taxon is constant over time. The reason is two-fold. 1) One major goal of ARIZMM is to 536 

derive the inference on the stability of the microbial community over a certain period.  With 537 

the constant probability of observing a zero count assumption, the stability inference will 538 

solely depend on the estimation of the taxon-by-taxon interaction matrix B. Otherwise, a 539 

stationary distribution won’t exit. 2) Using the MIME data, we estimated the proportions 540 

of zeros (denoted as 𝑞 ) for all taxa by group at all time points, then calculated the 541 

mean(𝑞 ) and standard deviation (𝑆𝐷 ) over all the time points and the coefficient of 542 
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variation (𝐶𝑉 = 𝑆𝐷 /𝑞 , 𝑚 = 1, … , 𝑀) to evaluate their temporal variations. The median 543 

of 𝐶𝑉  over all taxa in the control, Amoxicillian and Azithromycin groups are 0.16, 0.12, 544 

and 0.34 respectively. This results reveal two observations: 1) the temporal variations of 545 

𝑞  in most taxa are relative weak; and 2) the temporal variation of the proportions of zero 546 

is heterogeneous and there may be no one perfect model fitting all the taxa well. Thus, 547 

we believe our assumption that 𝑝   is constant over time is valid and pragmatic. To further 548 

check the robustness of our proposed model, we conducted additional simulation by 549 

introducing extra randomness when we generate the probability of observing a zero count 550 

across the time points, while analyze the data using our proposed model. Our results 551 

show that the moderate temporal variation in probability of zero count does not affect 552 

ARIZMM’s performance much in capturing the informative interactions by estimating B 553 

when the absolute effect strengths of interaction matrices is high(FDR<0.05) or medium 554 

(FDR <0.15). The detailed simulation design and results are reported in the 555 

Supplementary Material Section 4.2 and Figure S3.  556 

The proposed method, ARZIMM has a few limitations and future works are needed to 557 

improve it. ARZIMM adopts a simple correlation structure that the random effects in the 558 

multivariate logistic component and the multivariate autoregressive component 𝒂𝒊 and 559 

𝒃  are assumed independent. We took this parsimonious model based on our 560 

experience[53, 54] in modeling the longitudinal microbiome data to ease the 561 

computational burden. The more general random effects structure with cross-part 562 

correlations can provide more robust modeling, however, can suffer from model 563 

convergence as well. Further investigation is warranted.   564 

 565 
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Table 1: Simulation results for all settings under scenario 1 and 4 Poisson refers to the penalized Poisson autoregression model 
and MAR refers to penalized log-normal multivariate autoregression model. The reported value is median (IQR) of mean normalized 
squared error score (MNSES) calculated over 500 simulations for each setting. 𝑁 refers to the number of subjects, and 𝑇 refers to 
the number of time points. Scenarios 2 and 3 are deferred to Supplementary Material.  

Methods 
Effect size 

ARZIMM Poisson MAR 
High Median Low High Median Low High Median Low 

Scenario 1 
N T Median (IQR) 
20 10 0.98 0.98 0.98 1.00 0.99 1.00 47 50 52 

  (0.97-0.99) (0.97-0.99) (0.97-0.99) (0.99-1.01) (0.984-1.00) (0.99-1.00) (33-77) (35-80) (37-80) 
50 20 0.99 0.99 0.99 1.00 1.00 1.00 123 115 114 

  (0.99-1.00) (0.99-1.00) (0.99-1.00) (1.00-1.01) (1.00-1.00)  (1.00-1.00) (86-192)  (78-187)  (80-177) 
Scenario 4 

N T Median (IQR) 

20 10 
0.95  

 
0.92 0.91 30.59 18.87 18.46 30071.82 29390 22435 

  (0.87-2.30) (0.86-1.10) (0.86-1.02) (21.90-41.51)  (15.26-21.95) (14.77-21.80) (8984-133153) (13929-77371) (10251-50171) 
50 20 1.09   0.92 0.85 40.31 31.08 30.30 211141 110656 93579 

  (1.05-1.20) (0.90-0.93) (0.85-0.86) (36.80-43.63)  (30.25-31.76) (29.65-30.95) (118860-473551) (80809-202068) (66942-167227) 
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Table 2: The characteristics of networks. 
Group description Azithromycin Control 

Sample size 7 4 
Number of time points 9 9 

Number of taxa 49 45 
Number of informative interactions 125 105 

Number of |𝐵 | < 0.1 73 45 

Number of 0.1 ≤ |𝐵 | <  0.25 30 29 

Number of 0.25 ≤ |𝐵 | <  0.5 17 14 

Number of |𝐵 | ≥  0.5 5 17 

Informative interaction percentage (%) 5.21 5.19 
Maximum eigenvalue squared 0.32 0.11 

 

FIGURE LEGENDS 

Figure 1: Schematic of the evolution of microbial community states in response to external 

perturbation. External perturbation (blue arrows) can affect microbial community composition 

(shown in a pie chart), defined as a community state.  For each state, the ball-in-basin diagram 

portrays stability measured by the variance in the stationary distribution of the location of the ball. 

White arrows indicate the reaction of microbial community to the perturbation.  

Figure 2: Graphical representation of ARZIMM model and analytic techniques. 

Figure 3: Simulation results of variable selection performance. Poisson refers to the 

penalized Poisson auto-regression model and MAR refers to penalized log-normal multivariate 

auto-regression model. MDSINE refers to the method with extended generalized Lotka-Volterra 

(gLV) equations using a Bayesian algorithm.  Mean (and 95% confidence interval) of false positive 

and true positive rates are reported for 500 simulations with 50 subjects and 20 time points in four 

scenario: (A) no zero-inflated structure and no heterogeneity, (B) heterogeneity but no zero-

inflated structure, (C) zero-inflated structure but no heterogeneity, and (D) both zero-inflated 

structure and heterogeneity. 

Figure 4: MIME study microbiome data. (A) Difference between relative abundances (top 

panel) and absolute abundances based on qPCR ( bottom panel) of dominant genera in XX fecal 
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samples obtained from 21 subjects (block) at 7–9 time points (x-axis) each. (B) Distribution of 

absolute abundances of two representative genera from the MIME study, shown in the left and 

right panels, respectively. For each genus, the absolute abundance is fitted with a log-normal 

distribution (red line) or a two-part distribution: a zero part (dark green line shown in right panel) 

and a non-zero part fitted with an over-dispersion Poisson distribution (blue line).  

Figure 5: Interaction network. Estimated interaction network for: (A) azithromycin (azm), and 

(B) control groups, displaying (1) all selected interactions, (2) interactions with |𝐵 | ≥ 0.1, (3) 

interactions with |𝐵 | ≥ 0.25,  and (4) interactions with |𝐵 | ≥ 0.5. Each node represents a 

taxon at the genus level, the size of which shows the degree of that taxa and the color of which 

shows the phylogenetic Order level for each taxon. Each edge with arrow represents an 

interaction effect, the width of which represents the absolute effect size on a log10 scale, with the 

color showing a positive (orange) or negative (blue) effect. 

Figure 6: Characteristics of estimated interactions. (A) The effect size of estimated 

informative interactions, wherein the x-axis represents the log10 scaled absolute effect size, the 

y-axis represents the count of informative interactions, and the colors represent the positive or 

negative effects. (B) Histogram of vertex degree, wherein given a vertex, vertex degree is defined 

as the counts of edges upon the vertex. (C) The average neighbor degree (y-axis) versus vertex 

degree on a log-log scale (x-axis). The average neighbor degree is the average number of a given 

taxon’s neighbor vertices’ degrees. Dotted lines represent 95% confidence limits. 
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