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Abstract

Effective coordination of cellular processes is critical to ensure the competitive growth of microbial organisms.
Pivotal to this coordination is the appropriate partitioning of cellular resources between protein synthesis via
translation and the metabolism needed to sustain it. Here, we extend a low-dimensional allocation model
to describe the dynamic control of this resource partitioning. At the core of this regulation is the optimal
coordination of metabolic and translational fluxes, mechanistically achieved via the perception of charged- and
uncharged-tRNA turnover. An extensive comparison with ≈ 60 data sets from Escherichia coli establishes this
regulatory mechanism’s biological veracity and demonstrates that a remarkably wide range of growth phenomena
in and out of steady state can be predicted with quantitative accuracy. This predictive power, achieved with only
a few biological parameters, cements the preeminent importance of optimal flux regulation across conditions and
establishes low-dimensional allocation models as an ideal physiological framework to interrogate the dynamics of
growth, competition, and adaptation in complex and ever-changing environments.

Introduction

Growth and reproduction is central to life. This is particularly true of microbial organisms where the ability to quickly
accumulate biomass is critical for competition in ecologically diverse habitats. Understanding which cellular processes
are key in defining growth has thus become a fundamental goal in the field of microbiology. Pioneering physiological
and metabolic studies throughout the 20th century laid the groundwork needed to answer this question [1–11],
with the extensive characterization of cellular composition across growth conditions at both the elemental [12–14]
and molecular [7, 8, 15, 16] levels showing that the dry mass of microbial cells is primarily composed of proteins
and RNA. Seminal studies further revealed that the cellular RNA content is strongly correlated with the growth
rate [7, 8, 17], an observation which has held for many microbial species [18]. As the majority of RNA is ribosomal,
these observations suggested that protein synthesis via ribosomes is a major determinant of biomass accumulation
in nutrient replete conditions [19–21]. Given that the cellular processes involved in biosynthesis, particularly those of
protein synthesis, are well conserved between species and domains [22–24], these findings have inspired hope that
fundamental principles of microbial growth can be found despite the enormous diversity of microbial species and the
variety of habitats they occupy.

The past decade has seen a flurry of experimental studies further establishing the importance of protein synthesis
in defining growth. Approaches include modern “-omics” techniques with molecular-level resolution [25–38],
measurements of many core physiological processes and their coordination [38–46], and the perturbation of major
cellular processes like translation [39, 47–49]. Together, these studies advanced a more thorough description
of how cells allocate their ribosomes to the synthesis of different proteins depending on their metabolic state
and the environmental conditions they encounter, called ribosomal allocation. Tied to the experimental studies,
theoretical ribosomal allocation models have further been formulated to dissect how ribosomal allocation influences
growth [31, 32, 49–56, 56–64] (see Appendix 1 for a detailed overview of these approaches). Of particular note is an
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array of low-dimensional models which have been developed to describe growth phenomena in varied conditions and
physiological limits that rely on only a few parameters [49, 50, 52, 55, 57, 58, 64–66]. The shared minimalism of these
models suggests that a single, self-consistent framework can by synthesized to rationalize the fundamental aspects
of growth in both static and dynamic environments.

In this work, we build on these low-dimensional allocation models [52,55,60,61,65] and the results from dozens of
experimental studies to synthesize a self-consistent and quantitatively predictive description of resource allocation and
growth. At the core of our model is the dynamic reallocation of resources between the translational and metabolic
machinery, which is sensitive to the metabolic state of the cell. We demonstrate how “optimal allocation”—meaning,
an allocation towards ribosomes which contextually maximizes the steady-state growth rate—emerges when the flux
of amino acids through translation to generate new proteins and the flux of uncharged-tRNA through metabolism
to provide charged-tRNA required for translation are mutually maximized, given the environmental conditions
and corresponding physiological constraints. This regulatory scheme, which we term flux-parity regulation, can
be mechanistically achieved by a global regulator (e.g., guanosine tetraphosphate, ppGpp, in bacteria) capable of
simultaneously measuring the turnover of charged- and uncharged-tRNA pools and routing protein synthesis. The
explanatory power of the flux-parity regulation circuit is confirmed by extensive comparison of model predictions
with ≈ 60 data sets from Escherichia coli, spanning more than half a century of studies using varied methodologies.
This comparison demonstrates that a simple argument of flux-sensitive regulation is sufficient to predict bacterial
growth phenomena in and out of steady-state and across diverse physiological perturbations. The accuracy of the
predictions coupled with the minimalism of the model establishes the optimal regulation and cements the centrality
of protein synthesis in defining microbial growth. The mechanistic nature of the theory—predicated on a minimal set
of biologically meaningful parameters—provides a low-dimensional framework that can be used to explore complex
phenomena at the intersection of physiology, ecology, and evolution without requiring extensive characterization of
the myriad biochemical processes which drive them.

Results

A simple allocation model describes translation-limited growth

We begin by formulating a simplified model of growth which follows the flow of mass from nutrients in the
environment to biomass by building upon and extending the general logic of low-dimensional resource allocation
models [39, 47, 50, 52, 55]. Specifically, we focus on the accumulation of protein biomass, as protein constitutes the
majority of microbial dry mass [67, 68] and peptide bond formation commonly accounts for ≈ 80% of the cellular
energy budget [33, 69]. Furthermore, low-dimensional allocation models utilize a simplified representation of the
proteome where proteins can be categorized into only a few functional classes [48, 50, 52, 54, 61]. In this work, we
consider proteins to be either ribosomal (i.e. directly involved in peptide bond formation using charged-tRNAs),
metabolic (i.e. enzymes catalyzing synthesis of charged-tRNA molecules from environmental nutrients), or being
involved in all other biological processes (e.g. lipid synthesis, DNA replication, and chemotaxis) [47, 48, 50, 52]
(Supplementary Figure 1). Simple allocation models further do not distinguish between different cells but only
consider the overall turnover of nutrients and biomass. To this end, we explicitly consider a well-mixed batch culture
growth as reference scenario where the nutrients are considered to be in abundance. This low-dimensional view
of living matter may at first seem like an unfair approximation, ignoring the decades of work interrogating the
multitudinous biochemical and biophysical processes of cell-homeostasis and growth [48, 51, 59, 70, 71]. However,
at least in nutrient replete conditions, many of these processes appear not to impose a fundamental limit on the
rate of growth in the manner that protein synthesis does [33]. In Appendix 2, we discuss this along with other
simplifications in more detail.

To understand protein synthesis and biomass growth within the low-dimensional allocation framework, consider
the flux diagram (Fig. 1(A), [31, 33, 50, 52, 55]) showing the masses of the three protein classes, precursors which
are required for protein synthesis (e.g. charged-tRNA molecules), nutrients which are required for the synthesis of
precursors, and the corresponding fluxes through the key biochemical processes (arrows). This diagram emphasizes
that growth is autocatalytic in that the synthesis of ribosomes is undertaken by ribosomes which imposes a strict
speed limit on growth [33, 72, 73]. While this may imply that the rate of growth monotonically increases with
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increasing ribosome abundance, it is important to remember that metabolic proteins are needed to supply the
ribosomes with the precursors needed to form peptide bonds. Herein lies the crux of ribosomal allocation models:
the abundance of ribosomes is constrained by the need to synthesize other proteins and growth is a result of how
new protein synthesis is partitioned between ribosomal, metabolic, and other proteins. How is this partitioning
determined, and how does it affect growth?

To answer these questions, we must understand how these different fluxes interact at a quantitative level and
thus must mathematize the biology underlying the boxes and arrows in Fig. 1(A). Taking inspiration from previous
models of allocation [47, 50, 52, 55, 61], we enumerate a minimal set of coupled differential equations which captures
the flow of mass through metabolism and translation [Fig. 1(C)]. While we present a step-by-step introduction of
this model in Appendix 3, we here focus on a summary of the underlying biological intuition and implications of the
approach.

We begin by codifying the assertion that protein synthesis is key in determining growth. The synthesis of
new total protein mass M depends on the total proteinaceous mass of ribosomes MRb present in the system
and their corresponding average translation rate γ [Fig. 1(B, i)]. As ribosomes rely on precursors to work, it is
reasonable to assert that this translation rate must be dependent on the concentration of precursors cpc such that
γ ≡ γ(cpc) [52, 55], for which a simple Michaelis-Menten relation is biochemically well motivated [Fig. 1(B, ii)].
The standing precursor concentration cpc is set by a combination of processes [Fig. 1(B, iii)], namely the production
of new precursors through metabolism (synthesis), their degradation through translation (consumption), and their
dilution as the total cell volume grows. The synthetic process is driven by the abundance of metabolic proteins
MMb in the system and the average metabolic rate ν at which they convert nutrients into charged-tRNAs. While
this rate is in general dependent on the concentration of nutrients in the environment (Supplementary Figure 2 and
Appendix 3, we here focus on a growth scenario in which nutrient concentrations are saturating. In such a scenario,
metabolism operates at a nutrient-specific maximal metabolic rate ν ≡ νmax. Finally, the relative magnitude of the
ribosomal, metabolic, and “other” protein masses is dictated by φRb, φMb, and φO, three allocation parameters
which range between 0 and 1 and follow the constraint φRb + φMb + φO = 1 to describe the allocation of total
protein synthesis. Together, these equations provide a full mathematization of the mass flow diagram shown in Fig.
1 (A).

For constant allocation parameters (φ∗
R, φ∗

M) a steady-state regime emerges from this system of differential
equation. Particularly, the precursor concentration is stationary in time (cpc = c∗pc), meaning the rate of synthesis
is exactly equal to the rate of consumption and dilution. Furthermore, the translation rate γ(c∗pc) is constant
during steady-state growth and the mass-abundances of ribosomes and metabolic proteins are equivalent to the
corresponding allocation parameters, e.g. MRb

M ≡ φ∗
Rb. As a consequence, biomass is increasing exponentially

dM
dt = λM, with the growth rate λ = γ(c∗pc)φ

∗
Rb. The emergence of a steady state and analytical solutions

describing steady growth are further discussed in Supplementary Figures 2 and 3. Notably, dilution is important to
obtain a steady state as has been highlighted previously by Giordano et al. [55] and Dourado et al. [61] but is often
neglected (Appendix 6).

Fig. 1 (C) and (D) show how the steady-state growth rate λ and translation rate γ(c∗pc) are dependent on the
allocation towards ribosomes φ∗

Rb. The figures also show the dependence on the metabolic rate νmax which we
here assert to be a proxy for the “quality” of the nutrients in the environment. The non-monotonic dependence of
the steady-state growth rate on the ribosome allocation and the metabolic rate poses a critical question: What
biological mechanisms determine the allocation towards ribosomes in a particular environment and what criteria
must be met for the allocation to ensure efficient growth?

Different Strategies for Regulation of Allocation Predicts Different Phenomenological Behavior

While cells might employ many different ways to regulate allocation, we here consider three specific allocation
scenarios to illustrate the importance of allocation on growth. These candidate scenarios either strictly maintain the
total ribosomal content (scenario I), maintain a high rate of translation (scenario II), or optimize the steady-state
growth rate (scenario III). We derive analytical solutions for these scenarios [Fig. 1(E) and Appendix 7], and
ultimately compare these predictions to observations with Escherichia coli.

The simplest and perhaps most näive regulatory scenario is one in which the allocation towards ribosomes is
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Figure 1: A simple model of ribosomal allocation and hypothetical regulatory strategies. (A) The flow of mass through
the self-replicating system. Biomolecules and biosynthetic processes are shown as grey and white boxes, respectively. Nutrients
in the environment passed through cellular metabolism to produce “precursor” molecules, here diagrammed as charged-tRNA
molecules. These precursors are consumed through the process of translation to produce new protein biomass, either as
metabolic proteins (purple arrow), ribosomal proteins (gold arrow), or “other” proteins (gray arrow). The mathematical symbols
as used in the simplistic ribosomal allocation model are indicated. (B) Annotated equations of the model with key parameters
highlighted in blue. An interactive figure where these equations can be numerically integrated is provided on paper website.
The steady-state values of (C) the growth rate λ and (D) the relative translation rate γ(c∗pc)/γmax, are plotted as functions of
the allocation towards ribosomes for different metabolic rates (colored lines). (E) Analytical solutions for candidate scenarios
for regulation of ribosomal allocation with fixed allocation, allocation to prioritize translation rate, and allocation to optimal
growth rate highlighted in grey, green, and blue respectively. (F) A list of collated data sets of E. coli ribosomal allocation and
translation speed measurements spanning 55 years of research. Details regarding these sources and method of data collation is
provided in Table S1. A comparison of the observations with predicted growth-rate dependence of ribosomal allocation (G) and
translation speeds (H) for the three allocation strategies. An interactive version of the panels allowing the free adjustment of
parameters is available on the associated paper website (cremerlab.github.io/flux parity).

completely fixed and independent of the environmental conditions. This strategy [scenario I in Fig. 1(E, grey)]
represents a locked-in physiological state where a specific constant fraction of all proteins is ribosomal. This imposes
a strict speed-limit for growth when all ribosomes are translating close to their maximal rate, γ(c∗pc) ≈ γmax. If the

fixed allocation is low (for example, φ
(I)
Rb = 0.2), then this speed-limit could be reached at moderate metabolic rates.

A more complex regulatory scenario is one in which the allocation towards ribosomes is adjusted to prioritize the
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translation rate. This strategy [scenario II in Fig. 1(E, green)] requires that the ribosomal allocation is adjusted such
that a constant internal concentration of precursors c∗pc is maintained across environmental conditions, irrespective

of the metabolic rate. In the case where this standing precursor concentration is large (c∗pc � Kcpc
M ), all ribosomes

will be translating close to their maximal rate.
The third and final regulatory scenario is one in which the allocation towards ribosomes is adjusted such that

the steady-state growth rate is maximized. The analytical solution which describes this scenario [scenario III in
Fig. 1(E)] resembles previous analytical solutions [55, 61]. More illustratively, the strategy can be thought of as one
in which the allocation towards ribosomes is tuned across conditions such that the observed growth rate rests at the
peak of the curves in Fig. 1(E). Notably, this does not imply that the translation rate is constantly high across
conditions (as in scenario II). Rather, the translation rate is also adjusted and approaches its maximal value γmax
only in very rich conditions (high metabolic rates). All allocation scenarios and their consequence on growth are
discussed in further detail in Supplementary Figure 4 and the corresponding interactive figure on the paper website.

E. coli Regulates Its Ribosome Content to Optimize Growth

Thus far, our modeling of microbial growth has remained “organism agnostic” without pinning parameters to
the specifics of any one microbe’s physiology. To probe the predictive power of this simple allocation model
and test the plausibility of the three different strategies for regulation of ribosomal allocation, we performed a
systematic and comprehensive survey of data from a vast array quantitative studies of the well characterized
bacterium E. coli. This analysis, consisting of 26 studies spanning 55 years of research (listed in Supplemental
Table 2) using varied experimental methods, goes well beyond previous attempts to compare allocation models to
data [47, 48, 53–55, 57, 60, 60–63, 65].

These data, shown in Fig. 1(F - H, markers), present a highly-consistent view of E. coli physiology where
the allocation towards ribosomes (equivalent to ribosomal mass fraction in steady-state balanced growth) and the
translation rate demonstrate a strong dependence on the steady-state growth rate in different carbon sources. The
pronounced correlation between the allocation towards ribosomes and the steady-state growth rate immediately
rules out scenario I, where allocation is constant, as a plausible regulatory strategy used by E. coli, regardless of its
precise value. Similarly, the presence of a dependence of the translation speed on the growth rate rules out scenario
II, where the translation rate is prioritized across growth rates and maintained at a constant value. The observed
phenomenology for both the ribosomal allocation and the translation speed is only consistent with the logic of
regulatory scenario III where the allocation towards ribosomes is tuned to optimize growth rate.

This logic is quantitatively confirmed when we compute the predicted dependencies of these quantities on
the steady-state growth rate for the three scenarios diagrammed in Fig. 1(E) based on literature values for key
parameters (outlined in Supplemental Table 1). Deviations from the prediction for scenario III are only evident for
the ribosomal content at very slow growth (λ ≤ 0.5 hr−1) which are hardly observed in any ecologically relevant
conditions and can be attributed to additional biological and experimental factors, including protein degradation [74],
ribosome inactivation [39, 42], and cultures which have not yet reached steady state, factors we discuss in Appendix
8.

Importantly, the agreement between theory and observations works with a minimal number of parameters and
does not require the inclusion of fitting parameters. All fixed model parameters such as the maximum translation
rate γmax and the Michaelis-Menten constant for translation Kcpc

M , have distinct biological meaning and can be either
directly measured or inferred from data (a list is provided in Supplementary Table 1). Furthermore, we discuss the
necessity of other parameters such as the “other protein sector” φO (Appendix 9), its degeneracy with the maximum
metabolic rate νmax, and inclusion of ribosome inactivation and minimal ribosome content (Appendix 8). We
furthermore provide an interactive figure on the paper website where the parametric sensitivity of these regulatory
scenarios and the agreement/disagreement with data can be directly explored. Notably there is no combination
of parameter values that would allow scenario I or II to adequately describe both the ribosomal allocation and
translation speed as a function of growth rate. Notably, our findings are in line with a recent higher-dimensional
modeling study [60] which, based on the optimization of a reaction network with > 200 components, rationalized
the variation in translation speed with growth as a manifestation of efficient protein synthesis. Together, these
results confirm that scenario III can accurately describe observations over a very broad range of conditions, in strong
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support of the popular but often questioned presumption that E. coli optimally tunes its ribosomal content to
promote fast growth [49, 55, 65].

In Appendix 11, we present a similar analysis for Saccharomyces cerevisiae which, in line with previous
studies [34–37], suggests that this eukaryote likely follows a similar optimal allocation strategy, although data for
ribosomal content and the translation reate is scarce. The strong correlation between ribosome content and growth
rate has further been reported for other microbial organisms in line with an optimal allocation [18,38,45,75], though
the absence of translation rate measurements precludes confirmation. An interesting exception is the methanogenic
archaeon Methanococcus maripaludis which appears to maintain constant allocation, in agreement with scenario
I [76]. The presented analysis thus suggests that E. coli and possibly many other microbes closely follow an optimal
ribosome allocation behavior to support efficient growth. Moreover, the good agreement between experiments
and data establishes that a simple low-dimensional allocation model can describe growth with notable quantitative
accuracy. However, this begs the question: how do cells coordinate their complex machinery to ensure optimal
allocation?

Optimal Allocation Results From a Mutual Maximization of Translational and
Metabolic Flux

To optimize the steady-state growth rate, cells must have some means of coordinating the flow of mass through
metabolism and protein synthesis. In the ribosomal allocation model, this reduces to a regulatory mechanism in
which the allocation parameters (φRb and φMb) are dynamically adjusted such that the metabolic flux to provide
new precursors (νφMb) and translational flux to make new proteins (γφRb, equivalent to the steady-state growth
rate λ) are not only equal, but are mutually maximized. Such regulation therefore requires a mechanism by which
both the metabolic and translational flux can be simultaneously sensed.

Thus far, we have referred to the end-product of metabolism as ambiguous “precursors” which are used by
ribosomes to create new proteins. In reality, these precursors are tRNAs charged with their cognate amino acids.
One can think of metabolism as a two-step process where (i) an amino acid is synthesized from environmental
nutrients and (ii) an amino acid is attached to the appropriate uncharged-tRNA. As we assume that nutrients are
in excess in the environment, we make the approximation that the metabolic rate ν is dependent solely on the
uncharged-tRNA concentration ν(tRNAu). This enforces some level of regulation of metabolism; if the uncharged
tRNA concentration is too low, the rate of metabolism slows and does not add to the already large pool of charged
tRNA. But when charged-tRNA is available, translation occurs at a rate γ(tRNAc), forming new protein biomass
and converting a charged-tRNA back to an uncharged state. This process is shown by grey arrows in Fig. 2(A).

To describe the state-dependent adjustment of the allocation parameters (φRb and φMb), we further include
in this feedback loop a regulatory system we term a “flux-parity regulator” [Fig. 2(A), red], which controls the
allocation parameters in response to relative changes in the concentrations of the two tRNA species. Together,
the arrows in Fig. 2 represents a more fine-grained view of a proteinaceous self replicating system, yet maintains
much of the structural minimalism of the simple ribosomal allocation model without requiring explicit consideration
of different types of amino acids [65], inclusion of their myriad synthesis pathways [60], or reliance on observed
phenomenology [42].

The boxes and arrows of Fig. 2(A) can be mathematized to arrive at a handful of ordinary differential equations
[Fig. 2(B)] structurally similar to those in Fig. 1(B). At the center of this model is the ansatz that the ribosomal
allocation φRb is dependent on the ratio of charged- and uncharged-tRNA pools and has the form

φRb

(
tRNAc

tRNAu

)
= (1 − φO)

tRNAc

tRNAu

tRNAc

tRNAu + τ
, (1)

where the ratio tRNAc

tRNAu represents the “charging balance” of the tRNA and τ is a dimensionless “sensitivity parameter”
which defines the charging balance at which the allocation towards ribosomes is half-maximal. Additionally, we
make the assertion that the synthesis rate of new uncharged-tRNA via transcription κ is coregulated with ribosomal
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Figure 2: The regulation of ribosome allocation via a flux-sensing mechanism. (A) A circuit diagram of interactions
between metabolic and translational fluxes with flux-parity regulatory connections highlighted in red. The fluxes are connected
via a positive feedback loop through the generation of mutual starting materials (uncharged- or charged-tRNAs, respectively).
The rates of each flux exhibit semi-autoregulatory behavior in that flux through each process reduces the standing pool of
tRNAs. (B) The governing dynamics of the flux-parity regulatory circuit with key parameters highlighted in blue and flux-parity
regulatory components highlighted in red. (C) The steady-state meabolic (purple) and translational (gold) fluxes plotted as a
function of the ribosomal allocation under the simple allocation model. Vertical red line indicates the steady-state solution of
the flux-parity model under physiological parameter regimes. (D) The steady-state allocation towards ribosomes emerging from

flux-parity regulation (φ
( f lux−parity)
Rb ) relative to the optimal allocation of the simplistic model (φ

(I I I)
Rb ) is shown across different

parameter regimes for the charging sensitivity τ and the uncharged-tRNA transcription rate κ. Red contour demonstrate the
plane of parameter space where the flux-parity regulatory circuit exactly matches the result of optimal allocation. (E) The

relative allocation towards ribosomes (φ
( f lux−parity)
Rb /φ

(I I I)
Rb ) under physiological parameter regimes plotted as a function of the

maximal metabolic rate, νmax.

proteins [77, 78] and has a similar form of

κ

(
tRNAc

tRNAu

)
= κmax

tRNAc

tRNA
tRNAc

tRNAu + τ
, (2)

where κmax represents the maximal rate of tRNA transcription relative to the total biomass.
Numerical integration of this system of equations reveals that the flux-parity regulation is capable of optimizing

the allocation towards ribosomes, φRb, such that the metabolic and translation fluxes are mutually maximized [Fig.
2(C)], thus achieving optimal allocation. Importantly, the optimal behavior inherent to this regulatory mechanism
can be attained across a wide range of parameter values for the charging sensitivity τ and the transcription rate
κmax, the two key parameters of flux-parity regulation [Fig. 2(D)]. Moreover, the emergent optimal behavior of this
regulatory scheme occurs across conditions without the need for any fine-tuning between the flux-parity parameters
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and other parameters. For example, the control of allocation via the flux parity regulation matches the optimal
allocation (scenario III above) when varying the metabolic rate νmax [Fig. 2(E)].

The theoretical analysis presented in Fig. 2 suggests that a flux-parity regulatory mechanism may be a simple
way to ensure optimal ribosomal allocation that is robust to variation in the key model parameters. To test if such
a scheme may be implemented in E. coli, we compared the behavior of the steady-state flux-parity regulatory circuit
within physiological parameter regimes to steady-state measurements of ribosomal allocation and the translation rate
as a function of the growth rate [Fig. 3(A & B)]. Remarkably, the predicted steady-state behavior of the flux-parity
regulatory circuit describes the observed data with the same quantitative accuracy as the optimal behavior defined
by scenario III, as indicated by the overlapping red and blue lines, respectively.

While the flux-parity regulation scheme appears to accurately describe the behavior of E. coli, how are metabolic
and translational fluxes sensed at a mechanistic level? Many bacteria, including E. coli, utilize the small molecule
guanosine tetraphosphate (ppGpp) as a molecular indicator of amino acid limitation and has been experimentally
shown to regulate ribosomal, metabolic, and tRNA genes [79–82]. Mechanistically, ppGpp levels are enzymatically
controlled depending on the metabolic state of the cell, with synthesis being triggered upon binding of an uncharged-
tRNA into an actively translating ribosome. While many molecular details of this regulation remain unclear [42,79–81],
the behavior of ppGpp meets all of the criteria of a flux-parity regulator. Rather than explicitly mathematicizing the
biochemical dynamics of ppGpp synthesis and degradation, as has been undertaken previously [42, 55, 65], we model
the concentration of ppGpp being inversely proportional to the charging balance,

[ppGpp] ∝
tRNAu

tRNAc . (3)

This ratio, mathematically equivalent to the odds of a ribosome binding an uncharged-tRNA relative to binding a
charged-tRNA, is one example of a biochemically-motivated ansatz that can be considered (Appendix 12.4) and
provides a relative measure of the metabolic and translational fluxes.

With this approach, the amount of ppGpp present at low growth rates, and therefore low ribosomal allocation,
should be significantly larger than at fast growth rates where ribosomal allocation is larger and charged-tRNA are in
abundant supply. While our model cannot make predictions of the absolute ppGpp concentration, we can compute
the relative ppGpp concentration to a reference state [ppGpp]0 as

[ppGpp]

[ppGpp]0
=

tRNAu

tRNAc

tRNAu
0

tRNAc
0

. (4)

To test this, we compiled and rescaled ppGpp measurements of E. coli across a range of growth rates from
various literature sources [Fig. 3(C)]. The quantitative agreement between the scaling predicted by Eq. 4 and the
experimental measurements strongly suggests that ppGpp assumes the role of a flux-sensor and enforces optimal
allocation through the discussed flux-parity mechanism.

The Flux-Parity Allocation Model Predicts E. coli Growth Behavior In and Out Of Steady-State

We find that the flux-parity allocation model is extremely versatile and allows us to quantitatively describe aspects
of microbial growth in and out of steady-state and under various physiological stresses and external perturbations
with the same core set of parameter. Here, we demonstrate this versatility by comparing predictions to data for four
particular examples using the same self-consistent set of parameters we have used thus far (Supplementary Table 1).
First, we examine the influence of translation-targeting antibiotics like chloramphenicol [Fig. 3(D)] on steady-state
growth in different growth media [39, 47]. By incorporating a mathematical description of ribosome inactivation via
binding to chloramphenicol (described in Appendix 12), we find that the flux-parity allocation model quantitatively
predicts the change in steady-state growth and ribosomal content with increasing chloramphenicol concentration
[Fig. 3(E, red shades)]. Furthermore, the effect on the translation speed is qualitatively captured [Fig. 3(F, red
shades)]. The ability of the flux-parity allocation model to describe these effects without readjustment of the model
and its core parameters is notable and provides a mechanistic rationale for previously established phenomenological
relations [39, 47].
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Figure 3: The predictive power of flux-parity regulation in steady-state. Measurements of the (A) ribosomal allocation
and the (B) translation rate are plotted alongside the steady-state behavior of the flux-parity regulatory circuit (red dashed line)
and the optimal behavior of scenario III (solid blue line). Points and markers are the same as those shown in Fig. 1(F). (C)
Measurements of intracellular ppGpp concentrations relative to a reference condition (λ0 ≈ 1 hr−1) are plotted as a function of
growth rate alongside the prediction emergent from the flux-parity regulatory circuit (red dashed line). (D-F) Inhibition of
ribosome activity via antibiotic modeled repression of translational flux. Plots show comparison with data for different media
(red shades) with the flux-parity model predictions (dashed lines). (G-I) Inhibition of metabolic and translational fluxes through
excess gene expression. (H) shows data where β-galactosidase is expressed at different levels. Different shades of red correspond
to different growth media. Right-hand panel shows collapse of the growth rates of overexpression of β-galactosidase (squares),
β-lactamase (inverted triangles), and EF-Tu (diamonds) relative to the wild-type growth rate in different media conditions. The
same set of model parameters listed in Supplementary Table 2 has been used to generate the predictions.
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As a second perturbation, we consider the burden of excess protein synthesis by examining the expression of
synthetic genes [Fig. 3(G)]. A decrease in growth rate results when cells are forced to synthesize different amounts
of the lactose cleaving enzyme β-galactosidase in different media lacking lactose [Fig. 3(H, red shades)]. The
flux-parity allocation model (dashed lines) quantitatively predicts the change in growth rate with the measured
fraction of β-galactosidase without further fitting (Appendix 12). The trends for different media (red shades)
quantitatively collapse onto a single line [Fig. 3(I)] when comparing changes in relative growth rates, a relation
which is also captured by the model (dashed black line) and is independent of the overexpressed protein (symbols).
This collapse, whose functional form is derived in Appendix 12, demonstrates that the flux-parity allocation model is
able to describe excess protein synthesis in general, rather than at molecule- or media-specific level.

As the flux-parity regulatory circuit responds to changes in the metabolic and translational fluxes, it can be
used to explore behavior in changing conditions. Consider a configuration where the starting conditions of a culture
are tuned such that the ribosomal allocation φRb, the tRNA charging balance tRNAc/tRNAu, and the ribosome
content MRb/M are set to be above or below the appropriate level for steady-state growth in the environment [Fig.
4(A)]. As the culture grows, the observed ribosomal content MRb/M is steadily adjusted until the steady-state
level is met where it directly matches the optimal allocation [Fig. 4(B)]. This adaptation of the ribosomal content
is controlled by dynamic adjustment of the allocation parameters via the flux-parity regulatory circuit [Fig. 4(C)].
To further test the flux-parity allocation model, we examine how accurately this system can predict growth behavior
under nutritional shifts [Fig. 4(D-F)]and the entry to starvation [Fig. 4(G-I)].

We first consider a nutrient shift where externally-supplied low-quality nutrients are instantaneously exchanged
with rich nutrients. Fig. 4(E) shows three examples of such nutritional upshifts (markers), all of which are well
described by the flux-parity allocation theory (dashed lines). The precise values of the growth rates before, during,
and after the shift will depend on the specific carbon sources involved. However, by relating the growth rates before
and immediately after the shift to the total shift magnitude (as shown in Ref. [58]), one can collapse a large collection
of data onto a single curve [Fig. 4(F, markers)]. The collapse emerges naturally from the model (dashed-line) when
decomposing the metabolic sector into needed and non-needed components (Appendix 12), demonstrating that the
flux-parity allocation model is able to quantitatively describe nutritional upshifts at a fundamental level.

Finally, we consider the growth dynamics during the onset of starvation, another non steady-state phenomenon.
Fig. 4(H) shows the growth of batch cultures where glucose is provided as the sole carbon source in different
limiting concentrations [83] (markers). The cessation of growth coincides with a rapid, ppGpp-mediated increase
in expression of metabolic proteins [79, 84]. Bren et al. [83] demonstrated that expression from a glucose-specific
metabolic promoter (PtsG) rapidly, yet temporarily, increases with the peak occurring at the moment where growth
abruptly stops [Fig. 4(I, solid grey lines)]. The flux-parity allocation model again predicts this behavior [Fig. 4(I,
red lines)] without additional fitting (Appendix 12), cementing the ability of the model to describe growth far from
steady-state.

Discussion

Microbial growth results from the orchestration of an astoundingly diverse set of biochemical reactions mediated by
thousands of protein species. Despite this enormous complexity, experimental and theoretical studies alike have
shown that many growth phenotypes can be captured by relatively simple correlations and models which incorporate
only a handful of parameters [7, 39, 47, 50, 52, 55, 57, 58, 65]. Through re-examination of these works, we relax
commonly invoked approximations and assumptions, include a generalized description of global regulation, and
integrate an extensive comparison with data to establish a self-consistent, low-dimensional model of protein synthesis
that is capable of quantitatively describing complex growth behaviors in and out of steady-state.

Growth emerges as in previous allocation models [47, 50, 55] as a consequence of protein synthesis and the
allocation of ribosome activity towards (i) making new ribosomes, (ii) making the metabolic proteins which sustain
the precursors ribosomes require to translate, and (iii) making other proteins cells require to operate. An optimal
allocation which yields the fastest growth in a given condition is reached when the synthesis of precursors (metabolic
flux) and the consumption of precursors (translational flux) are mutually maximized, a process we term flux-parity
regulation. We analyze how such regulation can be mechanistically achieved by the relative sensing of charged- and
uncharged-tRNA via the abundance of a global regulator (such as ppGpp) which diametrically affects the expression
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Figure 4: The predictive power of flux-parity regulation out of steady-state. (A) Hypothetical initial configurations of
model parameters and variables before begining numerical integration. (B) The equilibration of the ribosomal protein content
(MRb/M). (C) Dynamic adjustment of the ribosomal allocation parameter in response to the new environment. Green and
purple colored lines correspond to the initial conditions of the culture from well above to well below the steady-state values,
respectively. Dashed red line indicates the steady-state solution. (D-E) Nutrient upshifts with increased metabolic flux. (E) The
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a function of the total shift magnitude. (G-I) Exhaustion of nutrients in the environment yields a decrease in the metabolic
flux, promoting expression of more metabolic proteins. (H) Growth curve measurements in media with different starting
concentrations of glucose (0.22 mM, 0.44 mM, and 1.1 mM glucose from light to dark, respectively) overlaid with flux-parity
predictions. (I) The change in total metabolic protein synthesis in the flux-parity model (dashed lines) overlaid with the change
in expression of a fluorescent reporter from a PtsG promoter (solid lines).
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of ribosomal and metabolic genes. Through extensive comparison with 61 data sets from 46 studies, we show
that the flux-parity model predicts the fundamental growth behavior of E. coli with quantitative accuracy. Beyond
the impeccable description of the growth-rate dependent ribosomal content and translation speed across various
carbon sources, the flux-parity model quantitatively captures phenomena out of steady-state (including nutrient
upshifts and response to starvation) and under externally applied physiological perturbations (such as antibiotic
stress or expression of synthetic genes). Notably, the broad agreement across data sets is obtained using a single
core parameter set which does not require any adjustment from one scenario to the next. As such, the flux-parity
model predicts the microbial “growth laws”, providing a mechanistic explanation for previous phenomenological
models formulated to understand them [47, 50, 52]. The finding that these predictions hold so well despite the
overwhelmingly complex nature of the cell further highlights that biological systems are not irreducibly complex but
can be distilled to a small number of fundamental components sufficient to capture the core behavior of the system.

As proteins commonly account for the majority of biomass in microbial organisms and the core processes of
protein synthesis are universally conserved among them, it is likely that protein synthesis is a fundamental growth
constraint across many organisms. Accordingly, flux-parity regulation may be a very general scheme which ensures
the efficient coordination of metabolic and translational fluxes across many microbial organisms. And as our
modeling approach is organism agnostic, it should be transferable to a variety of microbes growing in nutrient-replete
conditions. Indeed, other organisms including S. cerevisiae (Appendix 11) exhibit a strict interdependence between
growth rate and ribosome content [18], as is predicted by the flux-parity model. However, more quantitative data
on ribosomal content, translation speeds, upshift dynamics, and more need to be acquired to fully examine the
commonality of flux-parity regulation in the microbial world.

A common interpretation of previous allocation models is that cells maximize their growth rate in whatever
conditions they encounter [49, 65]. Rather, we believe flux-parity regulation only ensures optimal coordination
between metabolic and translational fluxes. It does not imply that the growth rate itself is maximized or directly
sensed. In particular, the flux-parity model does not assume that the pool of metabolic proteins is tailored to
maximize the metabolic flux and thus growth in the encountered conditions. This is in agreement with an expanding
body of evidence which shows that microbes frequently synthesize metabolic and other proteins which are not
directly needed in the encountered condition and thus impede growth. E. coli, for example, synthesizes a plethora
of different transport proteins when exposed to poor growth conditions even if the corresponding substrates are
not available, collectively occupying a significant portion of the proteome [27, 33, 48, 64]. Accordingly, it has been
observed that cells stop synthesizing these proteins when evolving over many generations in the absence of those
sugars [85, 86].

But why, then, do we observe an optimal allocation between metabolic and ribosomal proteins when the pool of
metabolic proteins itself shows this apparent non-optimal behavior? We posit here that both behaviors emerge from
the adaptation to fluctuating conditions: in contrast to the well-defined static conditions of laboratory experiments,
the continuous ebb and flow of nutrients in natural environments precludes any sense of stability. Accordingly,
the machinery of the cell should be predominantly adapted to best cope with the fluctuating conditions microbial
organisms encounter in their natural habitats. A complex regulation of metabolic proteins is thus expected, including
for example, the diverse expression of nutrient transporters which promote growth in anticipated conditions, rather
than synthesizing only those specific to nutrients that are present in the moment [64].

However, in those fluctuating conditions, flux-parity regulation promotes rapid growth. To illustrate this point,
we consider again a nutrient upshift in which there is an instantaneous improvement in the nutrient conditions.
We compare the predicted response via flux-parity [Fig. 5 (B, red box)] with that predicted by a simpler step-wise
regulation where the allocation solely depends on the environmental condition (and not the internal fluxes) and
immediately adjusts to the new steady value at the moment of the shift [Fig. 5 (B, blue box)]. The dynamic
reallocation by flux-parity facilitates a sharp increase in the allocation towards ribosomes [Fig. 5(C)], resulting
in a rapid increase in instantaneous growth rate compared to the step-wise reallocation mechanism [Fig. 5(D)],
suggesting that flux-parity is advantageous in fluctuating environments. As its regulation solely depends on the
internal state of the cell (particularly, the relative abundance of charged- to uncharged-tRNA) it holds independently
of the encountered conditions. This stands in contrast to the regulation of metabolic proteins, where both the
external and internal states dictate what genes are expressed. As a result, optimal coordination between metabolic
and translational fluxes occurs ubiquitously across conditions and not only in those that occur in natural habitats
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Figure 5: Flux parity allocation as a strategy to adapt to fluctuating conditions. (A) Ribosome reallocation strategies
upon a nutrient upshift. After a nutrient upshift, cells either dynamically reallocate their ribosomes given flux-parity regulation
(top, red) or they undergo stepwise reallocation from one steady-state value to the next (bottom, blue). (B) The allocation
dynamics for both strategies in response to a nutrient upshift. (C) The instantaneous growth rate for both strategies over
the course of the shift. Dashed red and solid blue lines correspond to model predictions for optimal allocation and flux-parity
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cells undergo a two-component decision making protocol defining what metabolic genes should be expressed (top) and how the
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of biomass at a given characteristic growth rate.
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and drive adaptation. These broader conditions include steady-state growth within the laboratory, with the “growth
laws” observed under those conditions emerging as a serendipitous consequence.

In summary, we view the process of cellular decision making as having two major components [Fig. 5(D)]: (i)
determining what metabolic genes should be expressed given the environmental and physiological state and (ii)
determining how ribosomes should be allocated given the metabolic and translational fluxes. Flux-parity regulation
can explain the latter but many details of the former remain enigmatic. Additional studies are thus required to
understand how the regulation of metabolic genes depends on encountered conditions and how it is shaped by
adaptation to specific habitats. However, the ability of this theory to predict complex phenotypes across scales
suggests that it can also act as a basis to answer these questions, and thereby galvanize an integrative understanding
of microbial life connecting physiology, ecology, and evolution.

Data and Code Availability

This work is accompanied by a website (cremerlab.github.io/flux parity) which houses a suite of interactive
figures to help the reader gain an intuition for the way the theory operates. Data sets can be downloaded individually
from this website. Alternatively, all data and Python code used in this work can be cloned as a GitHub repository
(github.com/cremerlab/flux parity). This repository and its releases are also available via Zendodo with the
DOI: 10.5281/zenodo.5893800.
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Supplementary Figures
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Supplementary Figure 1: Coarse grained description of biomass and the proteome Low-dimensional allocation models
consider in their simplest form growth of a clonal population within a well-mixed environment. Biomass is described in a
highly simplified manner focusing in the simplest case on protein synthesis alone [50, 52], with different protein species jointly
considered by a few different protein classes. Here, metabolic proteins (purple), ribosomal proteins (gold), or “other” proteins
(gray).
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Supplementary Figure 2: Precursor synthesis and growth when nutrients are not saturating. In general, the environmental
conditions microbes encounter changes rapidly and nutrient availability commonly limits growth. Growing batch cultures, fox
example run out of nutrients eventually and growth stops. The allocation modeling framework can account such a dynamics by
including metabolic rates which depend on the nutrient concentrations in the environment. In the simplest case, one nutrient
source is considered (concentration n) with the metabolic rate ν(n) depending on the concentration in a Michaelis-Menten
manner with a maximal metabolic rate being reached only at high nutrient concentrations (A,i). The dynamics of precursors is
given by a balance of synthesis, consumption, and dilution (A,ii), replacing the corresponding equation of the simple model
in [Fig. 1(B,iv)]. The modeling of growth further requires the explicit modeling of nutrient concentrations. This dynamics
depends on the specifics of the environment and, depending on the environment, can become very complex with multiple sources
and sinks affecting the nutrient concentration. Here, we consider a typical batch culture scenario in which cells grow under
well-mixed conditions. Nutrients are provided only initially and nutrient concentrations are falling because of consumption (A,iii).
(B-D) Resulting temporal variation of nutrient concentrations (C), biomass accumulation (D), and precursor concentration (E)
when integrating the model equations and using a parameter set descriptive of E. coli growing in a glucose-minimal medium
with a growth rate ≈ 1 hr−1 and a starting glucose concentration of 10mM. As experimentally observed, initially abundant
nutrients are consumed and biomass accumulates (exponential phase) until nutrients are exhausted and growth stops (saturation
phase) (B and C). Importantly, precursor concentrations (D) quickly reach a constant plateau which lasts until nutrients become
scare (cnt � Kcnt

M and ν(cnt) ≈ νmax). During this transient period (shaded regions) the synthesis of precursors matches the

consumption by protein synthesis and dilution, meaning
dcpc
dt = 0. Given a constant precursor concentration c∗pc, the translation

rate γ(c∗pc) is also constant. As a consequence, the protein pool approaches a steady composition dictated by the allocation

parameters ( MRb
M = φRb, MMb

M = φMb and MO
M = φO). With precursor concentrations and protein composition remaining

constant, the system is in a steady-state and biomass accumulates exponentially over time, dM
dt = γ(c∗pc)φRb M ≡ λM. This is

the steady state regime we focus on in the main text. Note that the steady state growth regime readily emerges when we
consider dilution (see Supplementary 6). Model parameters are provided in Supplemental Table 1. Biomass units are converted
to optical density assuming at OD600nm = 1, there are 109 cells per mL and 109 amino acids per cell. An interactive version of
these dynamics can be found on the paper website.
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Supplementary Figure 3: Modeling predictions of steady growth behavior. (A) Variation of the precursor concentration
with varying allocation parameters (φR) and maximal metabolic rate (νmax). (B C) Corresponding trends of translation and
growth rate as also shown in Fig. 1 (C) and (D). Corresponding boxes show the analytical expression describing the steady-state
precursor concentration, translation speed, and growth rate with details of the derivation provided in Appendix 7. Used model
parameters provided in Supplementary Table 1. Colors indicate different metabolic rates νmax= 0.2 - 12.5 hr−1.
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Supplementary Figure 4: Three different allocation scenarios. The variation of precursor concentration (A), translation
rate (B), and growth rate (C) with changing metabolic rate is shown for the three allocation scenarios introduced in the main
text; fixed allocation (scenario I, black lines), prioritizing fast translation (scenario II, green lines), and growth-optimal allocation
(scenario III, blue lines). Plotted are the analytical solutions provided in Fig. 1(E) and derived in Appendix 7. The resulting
relations between growth rate and translation as well as growth rate and ribosome content are shown in Figure 1(G,H). We here
discuss the consequence of these allocation scenarios in more detail. Scenario I - fixed allocation: In this scenario, allocation
is fixed and does not vary with conditions. Locking in the ribosome allocation to φRb = 0.25 (A, black line), for example,
carries strong consequences for translation and growth rates (B and C, black lines). When conditions are poor (νmax is small),
the translation rate is significantly lower than the maximal rate as there are too many ribosomes competing for a small pool
of precursors (B). The translation and growth rates increase with the metabolic rate νmax until the influx of precursors is
sufficiently high such that all ribosomes are translating close to their maximum and growth-rate is at its optimal value. Further
increasing the metabolic rate does not increase the growth rate [plateau of black curve in (B)] as all ribosomes are already
translating close to their maximum rate. Scenario II - prioritizing fast translation: In this scenario, allocation is adjusted such
that translation rates are maintained at a high value. This is achieved by tuning the allocation between ribosomes and metabolic
proteins such that a constant precursor concentration c∗pc � Kcpc

M is maintained. For example, at higher metabolic rates, the
metabolic proteins can sustain a higher influx of precursors allowing a larger allocation towards ribosomal proteins φR (green
lines). Scenario III - optimizing growth: In this scenario, allocation is tuned to optimize growth rate across conditions, meaning
that the fastest growth rate is achieved given a set metabolic rate and other model parameters. For example, the allocation
towards ribosomes φRb is adjusted with the metabolic rate such that the growth rate rests at the peak of the curves shown in
Fig. 1(C) (blue lines). Accordingly, the growth rate continues to increase with higher metabolic rates always exceeding the
growth rate of scenario I and II (C, green line)]. Model parameters follow the reference set for E. coli (Supplementary Table 1).

Black lines correspond to a constant allocation φ
(I)
Rb = 0.20 and green lines correspond to a constant precursor concentration

c∗pc ≈ 10Kcpc
M , yielding a constant translation rate of γ(c∗pc) ≈ 0.9γmax. An interactive version of these figure panels is available

on the paper website.
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