Abstract
Humans can implicitly learn complex perceptuo-motor skills over the course of large numbers of trials. This likely depends on our becoming better able to take advantage of ever richer and temporally deeper predictive relationships in the environment. Here, we offer a novel characterization of this process, fitting a non-parametric, hierarchical Bayesian sequence model to the reaction times of human participants’ responses over ten sessions, each comprising thousands of trials, in a serial reaction time task involving higher-order dependencies. The model, adapted from the domain of language, forgetfully updates trial-by-trial, and seamlessly combines predictive information from shorter and longer windows onto past events, weighing the windows proportionally to their predictive power. As the model defines a prior over window depths, we were able to determine the extent to which the internal predictions of individual participant depended on how many previous elements.
Already in the first session, the model showed that participants had begun to rely on two previous elements (i.e., trigrams), thereby successfully adapting to the most prominent higher-order structure in the task. The extent to which local statistical fluctuations influenced participants’ responses waned over subsequent sessions, as subjects forgot the trigrams less and evidenced skilled performance. By the eighth session, a subset of participants shifted their prior further to consider a context deeper than two previous elements. Finally, participants showed resistance to interference and slow forgetting of the old sequence when it was changed in the final sessions. Model parameters for individual subjects covaried appropriately with independent measures of working memory. In sum, the model offers the first principled account of the adaptive complexity and nuanced dynamics of humans’ internal sequence representations during long-term implicit skill learning.
Author summary A central function of the brain is to predict. One challenge of prediction is that both external events and our own actions can depend on a variably deep temporal context of previous events or actions. For instance, in a short motor routine, like opening a door, our actions only depend on a few previous ones (e.g., push the handle if the key was turned). In longer routines such as coffee making, our actions require a deeper context (e.g., place the moka pot on the hob if coffee is ground, the pot is filled and closed, and the hob is on). We adopted a model from the natural language processing literature that matches humans’ ability to learn variable-length relationships in sequences. This model explained the gradual emergence of more complex sequence knowledge and individual differences in an experiment where humans practiced a perceptual-motor sequence over 10 weekly sessions.
Competing Interest Statement
The authors have declared no competing interest.