New Results
Tracking human skill learning with a hierarchical Bayesian sequence model
View ORCID ProfileNoémi Éltető, View ORCID ProfileDezső Nemeth, View ORCID ProfileKarolina Janacsek, View ORCID ProfilePeter Dayan
doi: https://doi.org/10.1101/2022.01.27.477977
Noémi Éltető
1Max Planck Institute for Biological Cybernetics, Tübingen, Germany
Dezső Nemeth
2Lyon Neuroscience Research Center, Université de Lyon, Lyon, France
3Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
4Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
Karolina Janacsek
5Centre for Thinking and Learning, Institute for Lifecourse Development, Universtiy of Greenwich, London, United Kingdom
3Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
Peter Dayan
1Max Planck Institute for Biological Cybernetics, Tübingen, Germany
6University of Tübingen, Tübingen, Germany

Article usage
Posted January 27, 2022.
Tracking human skill learning with a hierarchical Bayesian sequence model
Noémi Éltető, Dezső Nemeth, Karolina Janacsek, Peter Dayan
bioRxiv 2022.01.27.477977; doi: https://doi.org/10.1101/2022.01.27.477977
Subject Area
Subject Areas
- Biochemistry (9599)
- Bioengineering (7095)
- Bioinformatics (24866)
- Biophysics (12619)
- Cancer Biology (9958)
- Cell Biology (14357)
- Clinical Trials (138)
- Developmental Biology (7953)
- Ecology (12108)
- Epidemiology (2067)
- Evolutionary Biology (15989)
- Genetics (10927)
- Genomics (14743)
- Immunology (9870)
- Microbiology (23678)
- Molecular Biology (9486)
- Neuroscience (50875)
- Paleontology (369)
- Pathology (1539)
- Pharmacology and Toxicology (2683)
- Physiology (4017)
- Plant Biology (8657)
- Synthetic Biology (2397)
- Systems Biology (6436)
- Zoology (1346)