
Building model prototypes from time-course data

Alan Veliz-Cuba
University of Dayton

Stephen Randal Voss
University of Kentucky

David Murrugarra
University of Kentucky

April 6, 2022

Abstract

A primary challenge in building predictive models from temporal data
is selecting the appropriate network and the regulatory functions that
describe the data. Software packages are available for equation learning of
continuous models, but not for discrete models. In this paper we introduce
a method for building model prototypes that consist of a network and a set
of discrete functions that can explain the time course data. The method
takes as input a collection of time course data or discretized measurements
over time. After model inference, we use our toolbox to simulate the
prototype model as a stochastic Boolean network. Our method provides a
model that can qualitatively reproduce the patterns of the original data and
can further be used for model analysis, making predictions, and designing
interventions. We applied our method to a time-course, gene expression
data that were collected during salamander tail regeneration. The inferred
model captures important regulations that were previously validated in
the research literature. The toolbox for inference and simulations is freely
available at github.com/alanavc/prototype-model.

1 Introduction

The process of constructing discrete models from experimental data has several
steps that have been studied in parallel. The main steps involved in this process
are discretization, network inference and network selection, model interpolation,
and stochastic simulations. Although these steps have been studied independently
[3, 5, 6, 8, 11, 17, 18, 22], few tools exist that provide an automated and easily
customizable pipeline to quickly create model prototypes. Equation learning
(EQ) methods for differential equation (DE) models start with a collection of
time course data and then “recovers” the governing equations using a library of
functions [2, 7]. Many methods for EQ for DE models are based on formulating
the inference problem as a parameter estimation problem that can be solved
via optimization techniques [2, 7]. Analogue methods for equation learning of

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

github.com/alanavc/prototype-model
https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

data
discretization

(2.1)

network
inference

(2.2)

network
selection

(2.3)

model
interpolation

(2.4)

stochastic
simulation

(2.5)

time-course
data

discrete
data

best
networks

single
network

discrete
model

simulated
trajectories

x
1

0

1

x
2

x
3

time course 1

time course 2
time

x
1

x
2

x
3

time

discrete time course 1

discrete time course 2
time

time

0

1

0

1

0

1

0

1

0

1

x1(t+1)=f1(x)

x2(t+1)=f2(x)

x3(t+1)=f3(x)

novel time course

time

Figure 1: Flowchart showing the steps in model creation from data and the
sections where each step is described. Starting from experimental time courses,
we first transform the data into discrete values (in this case Boolean). Using
algebraic techniques, we find the best networks that explain the data. Each
network found will be consistent with all discrete time courses. We select the
best network from the networks found and then find a discrete model that fits all
the discrete data. This will result in a discrete model that can be simulated and
compared with the original data. The model can also be run with new initial
conditions or for longer time to create novel time courses that can be used to
make predictions.

discrete models that can learn both the network and the functions are still under
development. Some of these existing methods can provide network candidates
(i.e., possible wiring diagrams) that can explain the data. Other methods can
provide candidate functions based on interpolating the data.

In this paper we present an implementation of several algorithms, which
together, form a pipeline for prototyping models from time-course data. Our
approach is modular so that each module can be modified or even replaced as
the user sees fit. It is written in Matlab/Octave and does need any external
toolboxes or libraries.

The starting point of our method is real numerical time-course data that is
internally discretized. Our focus is the construction of Boolean models, but we
show with a toy model how our method also works for mixed-state models where
variables can have different number of states. As an application, we construct a
model prototype using gene expression data for several time points which was
collected during tail regeneration experiments in axolotls.

2 Methods

Here we describe the methods for model selection (i.e., network and regulatory
functions) and the framework for simulations.

We assume that we are given time courses of the form s1 → s2 → . . .→ sr,
where si = (si1, . . . , s

i
n) ∈ S = S1 × · · · × Sn. Here Si is a finite set of all the

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

time course 1

2

1

0
0 1 2

2

1

0
0 1 2

x1

time time

x2

time course 1

Figure 2: Values of x1 and x2 for the time courses. Variable x1 can be considered
as having 3 levels, whereas variable x2 has 2 levels. The dashed lines show how
the range of the data can be divided into regions (3 regions for x1 and 2 for x2),
which will determine the discretization.

values that the i-th variable can take. Note that if Si = {0, 1}, then we have a
Boolean network.

Example 2.1. To illustrate the methods, we use an example with the following
four time courses.

(1) (0.1, 1.1, 1.9, 0.9, 0.2)→ (0.0, 0.2, 0.2, 0.1, 0.1)→ (0.0, 1.1, 0.1, 1.9, 2.1)
(2) (1.9, 0.1, 0.9, 0.1, 0.0)→ (0.9, 1.1, 0.1, 1.9, 2.1)→ (1.1, 0.9, 0.1, 1.9, 2.0)
(3) (0.2, 1.1, 1.9, 0.9, 1.1)→ (0.1, 0.0, 0.2, 0.1, 0.1)
(4) (0.1, 0.9, 2.1, 1.1, 2.1)→ (0.2, 0.1, 0.2, 0.1, 1.1)

2.1 Discretization

We implemented a simple discretization method based on binning data by
dividing the range of the data into equally spaced regions. The time courses
suggest that the number of levels for variables x1, x2, x3, x4, x5, are 3, 2, 3, 3, 3,
respectively. For example, by plotting the values of x1 and x2 for each trajectory
(Fig. 2), we see that x1 has 3 distinctive levels and x2 has 2 distinctive levels.
For x1, all values below the dotted line will be mapped to 0 (low); all values
between the dotted and dashed lines will get mapped to 1 (medium); and all
values above the dashed line will get mapped to 2 (high). For x2, all values
below the dotted line will be mapped to 0 (low); and all values above the dotted
line will get mapped to 1 (high).

Then, the discrete time courses are given below.
(1) 01210→ 00000→ 01022
(2) 20100→ 11022→ 11022
(3) 01211→ 00000
(4) 01212→ 00001
In this case S = {0, 1, 2} × {0, 1} × {0, 1, 2} × {0, 1, 2} × {0, 1, 2}.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.2 Network Inference

To find the wiring diagrams that are consistent with a collection of time courses of
the form s1 → s2 → . . .→ sr we use the algebraic framework introduced in [18].
This framework takes partial information about the evolution of a network
s→ f(s) and returns all the minimal wiring diagrams that are consistent with
the data. This approach guarantees that for each minimal wiring diagram there
exists a network that fits the data such that each interaction is activation or
inhibition.

To use the framework in [18], we first note that each time course s1 → s2 →
. . .→ sr implies that sj+1 = f(sj) for j = 1, . . . , r − 1, where f is the network
one is trying to infer. This results in a set D ⊆ S such that f(s) is known for
every s ∈ D.

Example 2.2. In Example 2.1, D = {01210, 00000, 20100, 11022, 01211, 01212}.
Then, the partial information we have is given by the table

x f(x)
01210 00000
00000 01022
20100 11022
11022 11022
01211 00000
01212 00001

Table 1: Partial information for example.

Then, using the algebraic techniques in [18] results in all minimal wiring
diagrams that are consistent with the data. For each variable xi in the network,
the algebraic framework returns W1, . . . ,Wk, where each Wj is a minimal wiring
diagram for variable i. For our example we obtain Table 2.

xi minimal wiring diagrams for xi (+/− indicate activation/inhibition)

x1 {x+
1 }, {x

−
2 , x

+
3 , x

+
4 }

x2 {x−3 }, {x
−
2 , x

+
4 }, {x

+
1 , x

−
4 }, {x

+
1 , x

−
2 }

x3 {} (no variable affects x3, constant function)
x4 {x−3 }, {x

−
2 , x

+
4 }, {x

+
1 , x

−
4 }, {x

+
1 , x

−
2 }

x5 {x−3 , x
+
5 }, {x

−
2 , x

+
4 , x

+
5 }, {x

+
1 , x

−
4 , x

+
5 }, {x

+
1 , x

−
2 , x

+
5 }

Table 2: Minimal wiring diagrams.

By selecting one wiring diagram for each xi, we obtain a (global) wiring
diagram that is consistent with the data. For example, if we select {x−2 , x

+
3 , x

+
4 }

for x1, {x+
1 , x

−
2 } for x2, { } for x3, {x+

1 , x
−
2 } for x4, and {x+

1 , x
−
2 , x

+
5 } for x5, we

obtain the wiring diagram shown in Fig. 3. To compare different wiring diagrams
we can use the adjacency matrix representation.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

x1

x2 x3

x4 x5

0 -1 1 1 0
1 -1 0 0 0
0 0 0 0 0
1 -1 0 0 0
1 -1 0 0 1

Figure 3: Example of wiring diagram consistent with the data. Left: wiring
diagram. Right: Adjacency matrix representation.

2.3 Wiring diagram selection

The network inference described in Section 2.2 could return several minimal
network candidates for each variable. That is, for a given time course data, there
might be several networks that explain the data and that are minimal. The
method will return all candidate wiring diagrams. In order to select one model
out of all possible options, we calculate the “best network” by including only
the most frequent interactions from the network candidates. For each variable,
xi, we quantified the frequency q+ji of positive interactions xj xi across all

possible network candidates and the frequency q−ji of negative interaction xj xi

across all possible network candidates for all j = 1, . . . , n. Then we construct
an adjacency matrix W ∗ by considering only the most frequent interactions.
If conflicts arise (that is, when q−ji = q+ji for some j), then we discard those
interactions. Subsequently, for each row of W ∗, say W ∗i , we calculate the distance
with each possible wiring diagram of xi (these are represented as rows). Finally,
we construct an adjacency matrix W with rows corresponding to the rows with
minimum distances.

Example 2.3. For the network in Example 2.1, we calculated the frequencies
which are given in Table 3 (only nonzero frequencies shown). Then, we compute

xi Frequencies q+ji/q
−
ji of activations/inhibitions Total

x1 q+11 = 1, q−21 = 1, q+31 = 1, q+41 = 1 4
x2 q+12 = 2, q−22 = 2, q+32 = 1, q+42 = 1, q−42 = 1 7
x3 NA 0
x4 q+14 = 2, q−24 = 2, q−34 = 1, q−44 = 1, q+44 = 1 7
x5 q+15 = 2, q−25 = 2, q−35 = 1, q+45 = 1, q−45 = 1, q+55 = 4 11

Table 3: Frequencies of interactions on minimal wiring diagrams.

an adjacency matrix W ∗ from the table of frequencies that contains the most
frequent interactions and discards conflicting interactions (i.e., the cases where

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

q−ji = q+ji).

W ∗ =


1 −1 1 1 0
1 −1 −1 0 0
0 0 0 0 0
1 −1 −1 0 0
1 −1 −1 0 1


Then, for each row of W ∗, say W ∗i , we calculate the distance with each possible
wiring diagram of xi (these are represented as rows). Then we construct an
adjacency matrix with rows corresponding to the rows with minimum distances.
Then matrix after the distance calculations is:

W =


0 −1 1 1 0
1 −1 0 0 0
0 0 0 0 0
1 −1 0 0 0
1 −1 0 0 1


The reason for why we take a distance approach is because there might not

be a truth table satisfying the for W ∗ but there is certainly one for W as shown
in Example 2.2.

2.4 Fitting Model to Data

After one wiring diagram has been selected from the family of minimal wiring
diagrams, we proceed to construct a function that fits the data. Although there
are known formulas for interpolation, we are interested in monotone interpolation,
that is, we need to find a network that not only fits the data, but one whose
signs of interaction match the wiring diagram selected.

We illustrate our approach with wiring diagram {x+
1 , x

−
2 } for variable x4.

Since it is guaranteed that there is a monotone function h(x1, x2) that fits the
data for variable x4, then we consider the table 1 with only x1 and x2 in the
first column (inputs) and only x4 in the second column (output).

(x1, x2) h(x1, x2)
01 0
00 2
20 2
11 2
01 0
01 0

Table 4: Partial information for variable x4 with wiring diagram {x+
1 , x

−
2 }.

We now rewrite this table as a truth table, where some entries are unknown.
To fill in the table, we use the fact that the function increases with respect

to x1 and decreases with respect to x2. For example, since h(2, 1) ≥ h(1, 1) = 2,

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

(x1, x2) h(x1, x2)
00 2
01 0
10 ?
11 2
20 2
21 ?

Table 5: Incomplete truth table for variable x4 with wiring diagram {x+
1 , x

−
2 }.

it follows that h(2, 1) = 2. Similarly, since 2 = h(0, 0) ≤ h(1, 0) ≤ h(2, 0) = 2, it
follows that h(1, 0) = 2. In this way, we obtain the value of the missing entries.
This process can be done for all wiring diagrams and for all variables.

(x1, x2) h(x1, x2)
00 2
01 0
10 2
11 2
20 2
21 2

Table 6: Complete truth table for variable x4 with wiring diagram {x+
1 , x

−
2 }.

2.5 Stochastic Framework

For the simulations we will use the stochastic framework introduced in [12]
referred to as Stochastic Discrete Dynamical Systems (SDDS). This framework
is a natural extension of Boolean networks and is an appropriate setup to
model the effect of intrinsic noise on network dynamics. Consider the discrete
variables x1, . . . , xn that can take values in finite sets S1, . . . , Sn, respectively.
Let S = S1 × · · · × Sn be the Cartesian product. A SDDS in the variables
x1, . . . , xn is a collection of n triplets

F = {fi, p↑i , p
↓
i }

n
i=1

where

• fi : S → Si is the update function for xi, for all i = 1, . . . , n.

• p↑i ∈ [0, 1] is the activation propensity.

• p↓i ∈ [0, 1] is the degradation propensity.

The stochasticity originates from the propensity parameters p↑i and p↓i , which
should be interpreted as follows: If there would be an activation of xk at

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

0

1

1

2

20
time

1 20
time

3 4 5 6

data stochastic simulations
x1

x2

x3

x5

x4

0

1

2

Figure 4: Comparison between data (only first time course shown) and stochastic
simulations. Using the discretization of the initial condition of the data, 01210,
we can use the model obtained to simulate the system for any artibtrary number
of steps.

the next time step, i.e., if s1, s2 ∈ Sk with s1 < s2 and xk(t) = s1, and

fk(x1(t), . . . , xn(t)) = s2, then xk(t + 1) = s2 with probability p↑i . The degrada-

tion probability p↓i is defined similarly. SDDS can be represented as a Markov
chain by specifying its transition matrix in the following way. For each variable
xi, i = 1, . . . , n, the probability of changing its value is given by

Prob(xi → fi(x)) =


p↑i , if xi < fi(x),

p↓i , if xi > fi(x),

1, if xi = fi(x),

and the probability of maintaining its current value is given by

Prob(xi → xi) =


1− p↑i , if xi < fi(x),

1− p↓i , if xi > fi(x),

1, if xi = fi(x).

Let x, y ∈ S. The transition from x to y is given by

axy =

n∏
i=1

Prob(xi → yi). (1)

Notice that Prob(xi → yi) = 0 for all yi /∈ {xi, fi(x)}.

3 Applications

In this section we apply our method to a time-course, gene expression data
that were collected during salamander (axolotls – Ambystoma mexicanum)
tail regeneration. Modeling gene interactions can provide confirmatory and
novel information for developing hypotheses about the actions of cell-signaling
molecules and transcription factors that orchestrate tissue regeneration.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.1 Gene expression data from experiments in axolotls

Using our method, we generated a Boolean network model for a set of 10 genes
that were expressed differently during axolotl tail regeneration under control
conditions [16]. Seven of the genes are ligands (AREG, FGF9, BMP2, INHBB,
and WNT5A) or negative feedback regulators (DUSP6, NRADD) of cell signaling
pathways, Sp7 is a bone-specific transcription factor, Hapln3 is a cell adhesion
molecule and Phlda2 is an intracellular protein. We label these genes using the
following variables:

x1 = AREG, x2 = PHLDA2,
x3 = FGF9, x4 = BMP2,
x5 = NRADD, x6 = HAPLN3,
x7 = SP7, x8 = Wnt5-a,
x9 = INHBB, x10 = DUSP6.

(2)

In Figure 5 we show the wiring diagram obtained using our method. This
network presents gene-by-gene interactions for the given gene expression data set.
We note that the well-established inhibitory effect of Dusp6 on FGF signaling is
captured by this network [9], and that the network implicates Inhbb as a key
activator/integrator of BMP, WNT, and FGF signaling.

Figure 5: Wiring diagram for the genes in Equation 2. Blue edges represent
activation while red edges inhibition.

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

0 2 4 6

9
9.5
10

10.5
Data

AREG

0 2 4 6
0

0.5

1
Simulations

AREG

0 2 4 6

8

8.5

9
PHLDA2

0 2 4 6
0

0.5

1
PHLDA2

0 2 4 6
4

5

6

G
e
n
e
 E

x
p
re

s
s
io

n

FGF9

0 2 4 6
0

0.5

1

A
v
e
ra

g
e
 E

x
p
re

s
s
io

n

FGF9

0 2 4 6
9.4
9.6
9.8
10

10.2
10.4

BMP2

0 2 4 6
0

0.5

1

BMP2

0 2 4 6

Time Points

8

9

NRADD

0 2 4 6

Time Steps

0

0.5

1

NRADD

Figure 6: Data vs simulations of the first five genes in Equation 2. The plots in
the left panel are experimental data while the ones in the right are simulations,
100 runs all initialized at 1100000001.

The Boolean network corresponding to the wiring diagram in Figure 5 is
giving by a function F = (f1, . . . , f10) : {0, 1}10 → {0, 1}10 in the variables
x1, . . . , x10, where each coordinate function fi : {0, 1}10 → {0, 1} represents how
the future value of the i-th variable depends on the present values of the other
variables. We provide the function in Appendix B as a collection of truth tables.

Simulations using the framework SDDS [12] was performed initializing the
system at the initial state 1100000001. This initialization represents a discretized
version of the actual data at time 0.

To validate this model we compare the experimental data versus the simula-
tions that are shown in Figures 6-7. These figures were obtained from 100 runs.

From Figures 6-7, one can see that the simulated data captures the main
patterns of the original data. This model can further be used to attractor
analysis, control, modularity, etc.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

0 2 4 6

10

10.5

11

Data

HAPLN3

0 2 4 6
0

0.5

Simulations

HAPLN3

0 2 4 6
6.5

7

SP7

0 2 4 6
0

0.5

1

SP7

0 2 4 6
9

10

11

G
e
n
e
 E

x
p
re

s
s
io

n

Wnt5-a

0 2 4 6
0

0.5

A
v
e
ra

g
e
 E

x
p
re

s
s
io

n

Wnt5-a

0 2 4 6

6

7

8

Inhbb

0 2 4 6
0

0.5

1

Inhbb

0 2 4 6

Time Points

9.8

10

10.2

DUSP6

0 2 4 6

Time Steps

0

0.5

1

DUSP6

Figure 7: Data vs simulations of the last five genes in Equation 2. The plots in
the left panel are experimental data while the ones in the right are simulations,
100 runs all initialized at 1100000001.

4 Discussion

Discrete models have been successfully to model biological systems [20,22]. Al-
though several discrete modeling packages exist for their analysis (e.g., Plantsim-
lab [4], Boolnet [13], BNReduction [19], Ginsim [14], casQ [1], WebMaBoSS [15]),
they require an existing model or the wiring diagram to be created by the user.
Few tools exist that provide an automated and easily customizable pipeline
to quickly create model prototypes. Our toolbox allows the creation of model
prototypes easily, which can then be used by existing modeling packages for
validation, modification, or extension.

Equation learning methods in general require large amounts of data which
might not be feasible in practice [2, 7]. Furthermore, those approaches require
knowledge of the form of the functions (some times called a library of functions)
a priori, which may be unfeasible for unknown interactions. Even if the form of
the functions is known for continuous modeling, the model obtained can be the
result of parameter estimation being stuck in a local minimum. In contrast, our
method can be used even with a limited number of time points. Importantly, our
approach finds all minimal wiring diagrams, which can be seen as the discrete

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

version of finding all local minima in parameter estimation for continuous models.
Furthermore, our approach does not need to know the form of the functions
a priori. We note that the discrete model resulting from our approach can be
converted into a continuous model using existing approaches such as [10,21].

For the purpose of reproducibility, we provide all the data and the code that
we use in our toy example and application which can be accessed through this
link: github.com/alanavc/prototype-model.

References

[1] Sara Sadat Aghamiri, Vidisha Singh, Aurélien Naldi, Tomáš Helikar, Sylvain
Soliman, and Anna Niarakis. Automated inference of Boolean models from
molecular interaction maps using casq. Bioinformatics, 36(16):4473–4482,
2020.

[2] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering gov-
erning equations from data by sparse identification of nonlinear dynamical
systems. Proceedings of the national academy of sciences, 113(15):3932–3937,
2016.

[3] Elena S Dimitrova, M Paola Vera Licona, John McGee, and Reinhard
Laubenbacher. Discretization of time series data. Journal of Computational
Biology, 17(6):853–868, 2010.

[4] S Ha, E. Dimitrova, D. Hoops, S.and Altarawy, M. Ansariola, D. Deb,
J. Glazebrook, R. Hillmer, H. Shahin, F. Katagiri, J. McDowell, M. Megraw,
J. Setubal, B. M. Tyler, and R. Laubenbacher. PlantSimLab - a modeling
and simulation web tool for plant biologists. BMC Bioinformatics, 20(1):508,
2019.

[5] Franziska Hinkelmann and Abdul Salam Jarrah. Inferring biologically rele-
vant models: nested canalyzing functions. International Scholarly Research
Notices, 2012, 2012.

[6] Abdul Salam Jarrah, Reinhard Laubenbacher, Brandilyn Stigler, and
Michael Stillman. Reverse-engineering of polynomial dynamical systems.
Advances in Applied Mathematics, 39(4):477–489, 2007.

[7] John H Lagergren, John T Nardini, G Michael Lavigne, Erica M Rutter,
and Kevin B Flores. Learning partial differential equations for biological
transport models from noisy spatio-temporal data. Proceedings of the Royal
Society A, 476(2234):20190800, 2020.

[8] Reinhard Laubenbacher and Brandilyn Stigler. A computational algebra
approach to the reverse engineering of gene regulatory networks. J Theor
Biol, 229(4):523–37, Aug 2004.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

github.com/alanavc/prototype-model
https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

[9] Chaoying Li, Daryl A Scott, Ekaterina Hatch, Xiaoyan Tian, and Suzanne L
Mansour. Dusp6 (mkp3) is a negative feedback regulator of fgf-stimulated
erk signaling during mouse development. 2007.

[10] Santosh Manicka, Kathleen Johnson, David Murrugarra, and Michael Levin.
Biological regulatory networks are less nonlinear than expected by chance.
bioRxiv, 2021.

[11] David Murrugarra and Reinhard Laubenbacher. The number of multistate
nested canalyzing functions. Physica D: Nonlinear Phenomena, 241(10):929–
938, 5 2012.

[12] David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, Seda Arat, and Reinhard
Laubenbacher. Modeling stochasticity and variability in gene regulatory
networks. EURASIP Journal on Bioinformatics and Systems Biology,
2012(1):5, 2012.

[13] Christoph M ussel, Martin Hopfensitz, and Hans A Kestler. BoolNet - an R
package for generation, reconstruction and analysis of Boolean networks.
Bioinformatics, 26(10):1378–1380, 2010.

[14] A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, and C. Chaouiya.
Logical modelling of regulatory networks with ginsim 2.3. Biosystems,
97(2):134–139, 2009.

[15] Vincent Noël, Marco Ruscone, Gautier Stoll, Eric Viara, Andrei Zinovyev,
Emmanuel Barillot, and Laurence Calzone. Webmaboss: A web interface for
simulating boolean models stochastically. Frontiers in molecular biosciences,
8, 2021.

[16] Larissa V Ponomareva, Antony Athippozhy, Jon S Thorson, and S Randal
Voss. Using ambystoma mexicanum (mexican axolotl) embryos, chemical
genetics, and microarray analysis to identify signaling pathways associated
with tissue regeneration. Comparative Biochemistry and Physiology Part C:
Toxicology & Pharmacology, 178:128–135, 2015.

[17] Brandy Stigler, Abdul Jarrah, Michael Stillman, and Reinhard Lauben-
bacher. Reverse engineering of dynamic networks. Annals of the New York
Academy of Sciences, 1115(1):168–177, 2007.

[18] A. Veliz-Cuba. An algebraic approach to reverse engineering finite dynamical
systems arising from biology. SIAM Journal on Applied Dynamical Systems,
11(1):31–48, 2012.

[19] Alan Veliz-Cuba, Boris Aguilar, Franziska Hinkelmann, and Reinhard
Laubenbacher. Steady state analysis of boolean molecular network mod-
els via model reduction and computational algebra. BMC Bioinformatics,
15:221, 2014.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

[20] Alan Veliz-Cuba and Brandilyn Stigler. Boolean models can explain bista-
bility in the lac operon. Journal of Computational Biology, 18(6):783–794,
2011.

[21] Dominik M Wittmann, Jan Krumsiek, Julio Saez-Rodriguez, Douglas A
Lauffenburger, Steffen Klamt, and Fabian J Theis. Transforming boolean
models to continuous models: methodology and application to t-cell receptor
signaling. BMC systems biology, 3(1):1–21, 2009.

[22] David J Wooten, Jorge Gómez Tejeda Zañudo, David Murrugarra, Austin M
Perry, Anna Dongari-Bagtzoglou, Reinhard Laubenbacher, Clarissa J Nobile,
and Réka Albert. Mathematical modeling of the candida albicans yeast
to hyphal transition reveals novel control strategies. PLoS computational
biology, 17(3):e1008690, 2021.

A Code Usage

Here we show how the Matlab code is used. All code files and examples can
be found at Github github.com/alanavc/prototype-model. The toy example
and application are included.

The input files must be in the form of trajectories (one line per state of
the system). Different trajectories must be in different files and all trajectories
files must have the same prefix in the name. For example, timecourse1.txt,
timecourse2.txt, timecourse3.txt, timecourse4.txt, etc. For our example

in Methods, the content of timecourse1.txt would be the following.

0.1,1.1,1.9,0.9,0.2

0.0,0.2,0.2,0.1,0.1

0.0,1.1,0.1,1.9,2.1

Once we are in the folder codes, we can discretize the data. Prior to this we
need to specify the prefix for the time course files and the file where the data
will be saved.

> clear all

> time_course_prefix=’timecourse’;

> num_levels=[3,2,3,3,3];

> file_for_disc_data=’data0.mat’;

> % discretize data

> addpath(’discretize_data’)

> discretize(time_course_prefix,num_levels,file_for_disc_data)

Then, we generate all minimal wiring diagrams using the Matlab function
generate_wiring_diagrams. Prior to this, we need to specify the file where we
will save all wiring diagrams.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

github.com/alanavc/prototype-model
https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

> %create wiring diagrams

> file_for_wiring_diagrams=’WD0.mat’;

> addpath(’create_WD’)

> generate_wiring_diagrams(file_for_disc_data,file_for_wiring_diagrams)

To select the best wiring diagram we use the command select_best_wiring_diagram

as follows.

> %select wiring diagram

> addpath(’select_WD’)

> W=select_best_wiring_diagram(file_for_wiring_diagrams);

The variable W is a matrix that contains the best wiring diagram that fits
the data. The user can modify this to account for prior knowledge or to try any
other of the wiring diagrams (found in file WD0.mat) for exploration.

We use the function generate_monotone_functions to create the model
that fits the data and has the wiring diagram given. The model will be saved as
a truth table for each variable.

> %create model

> file_for_model=’model0.mat’;

> addpath(’create_Model’)

> generate_monotone_functions(time_course_prefix,W,file_for_model)

To simulate the model we use the following code.

> %simulate model

> addpath(’simulate_model’)

> init_state = [0 1 2 1 0];

> num_simulations = 100;

> num_steps = 6;

> num_vars = 5;

> % Propensity matrix

> propensity_matrix = 0.8*ones(2,num_vars);

> mean_trajectories = simulate(file_for_model,propensity_matrix,init_state,num_steps,num_simulations);

The mean trajectories are saved in mean_trajectories and can be plotted
using standard Matlab commands.

B Inferred Model

Here we describe the inferred model for the data in the Results section. We
used n = 10 genes and the number of input variables in each Boolean function is
given by the following vector:

nv = [2, 4, 3, 2, 2, 3, 3, 2, 2, 2].

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

The maximum number of inputs is m = 4. In Table 7 we list the input variables
for each gene. The table is a m-by-n matrix usually referred as varF . Since the
number of variables may vary between different functions, only the first nv(i)
elements are relevant in the ith column of varF . The remaining spots in each
column are set to -1 so that the whole table can be encoded as a matrix.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

9 6 6 2 2 7 6 2 2 6
10 7 7 9 9 9 7 9 9 7
-1 9 10 -1 -1 10 9 -1 -1 -1
-1 10 -1 -1 -1 -1 -1 -1 -1 -1

Table 7: Input variables for each gene in Table 8.

In Table 8 we put the truth table in compact form usually referred as F . This
table has size 2m-by-n. Since the length of the truth tables may vary between
different functions, only the first 2nv(i) bits are relevant in the ith column of
F . The remaining spots in each column are set to -1 so that the whole table
can be encoded as a matrix. The entries of the columns of F are ordered in
lexicographic order is the binary input arrays.

The propensities that we used for the simulations are all equal to 0.9. That
is, p↑i = p↓i = 0.9 for all i = 1, . . . , 10.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1 1 1 1 1 0 1 1 0
0 0 0 1 1 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1 1 1
-1 1 0 -1 -1 1 0 -1 -1 -1
-1 0 0 -1 -1 0 0 -1 -1 -1
-1 1 1 -1 -1 1 0 -1 -1 -1
-1 0 0 -1 -1 0 1 -1 -1 -1
-1 0 -1 -1 -1 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1 -1 -1 -1 -1

Table 8: Truth tables (in compact form) for the inferred functions for the data
in the Results section.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

data
discretization

(2.1)

network
inference

(2.2)

network
selection

(2.3)

model
interpolation

(2.4)

stochastic
simulation

(2.5)

time-course
data

discrete
data

best
networks

single
network

discrete
model

simulated
trajectories

x
1

0

1

x
2

x
3

time course 1

time course 2
time

x
1

x
2

x
3

time

discrete time course 1

discrete time course 2
time

time

0

1

0

1

0

1

0

1

0

1

x1(t+1)=f1(x)

x2(t+1)=f2(x)

x3(t+1)=f3(x)

novel time course

time

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

time course 1

2

1

0
0 1 2

2

1

0
0 1 2

x1

time time

x2

time course 1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

x1

x2 x3

x4 x5

0 -1 1 1 0
1 -1 0 0 0
0 0 0 0 0
1 -1 0 0 0
1 -1 0 0 1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

0

1

1

2

20
time

1 20
time

3 4 5 6

data stochastic simulations
x1

x2

x3

x5

x4

0

1

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 6, 2022. ; https://doi.org/10.1101/2022.01.27.478080doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.27.478080
http://creativecommons.org/licenses/by-nc-nd/4.0/

