New Results
A Guide for Quantifying and Optimizing Measurement Reliability for the Study of Individual Differences
View ORCID ProfileTing Xu, Jae Wook Cho, View ORCID ProfileGregory Kiar, View ORCID ProfileEric W. Bridgeford, View ORCID ProfileJoshua T. Vogelstein, View ORCID ProfileMichael P. Milham
doi: https://doi.org/10.1101/2022.01.27.478100
Ting Xu
1Department of Brain Development, Child Mind Institute, New York, USA
Jae Wook Cho
1Department of Brain Development, Child Mind Institute, New York, USA
Gregory Kiar
1Department of Brain Development, Child Mind Institute, New York, USA
Eric W. Bridgeford
2Johns Hopkins University, Baltimore, Maryland, USA
Joshua T. Vogelstein
2Johns Hopkins University, Baltimore, Maryland, USA
Michael P. Milham
1Department of Brain Development, Child Mind Institute, New York, USA
3Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
Article usage
Posted January 28, 2022.
A Guide for Quantifying and Optimizing Measurement Reliability for the Study of Individual Differences
Ting Xu, Jae Wook Cho, Gregory Kiar, Eric W. Bridgeford, Joshua T. Vogelstein, Michael P. Milham
bioRxiv 2022.01.27.478100; doi: https://doi.org/10.1101/2022.01.27.478100
Subject Area
Subject Areas
- Biochemistry (13187)
- Bioengineering (10028)
- Bioinformatics (32132)
- Biophysics (16556)
- Cancer Biology (13634)
- Cell Biology (19380)
- Clinical Trials (138)
- Developmental Biology (10470)
- Ecology (15536)
- Epidemiology (2067)
- Evolutionary Biology (19839)
- Genetics (13115)
- Genomics (18167)
- Immunology (13272)
- Microbiology (31084)
- Molecular Biology (12937)
- Neuroscience (67837)
- Paleontology (496)
- Pathology (2089)
- Pharmacology and Toxicology (3624)
- Physiology (5647)
- Plant Biology (11646)
- Synthetic Biology (3250)
- Systems Biology (7942)
- Zoology (1795)