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7

Abstract Behavioural feedback is critical for learning in the cerebral cortex. However, such feedback is often not8

readily available. How the cerebral cortex learns efficiently despite the sparse nature of feedback remains unclear. In-9

spired by recent deep learning algorithms, we introduce a systems-level computational model of cerebro-cerebellar10

interactions. In this model a cerebral recurrent network receives feedback predictions from a cerebellar network,11

thereby decoupling learning in cerebral networks from future feedback. When trained in a simple sensorimotor12

task the model shows faster learning and reduced dysmetria-like behaviours, in line with the widely observed func-13

tional impact of the cerebellum. Next, we demonstrate that these results generalise to more complex motor and14

cognitive tasks. Finally, the model makes several experimentally testable predictions regarding (1) cerebro-cerebellar15

task-specific representations over learning, (2) task-specific benefits of cerebellar predictions and (3) the differential16

impact of cerebellar and inferior olive lesions. Overall, our work offers a theoretical framework of cerebro-cerebellar17

networks as feedback decoupling machines.18

19

Introduction20

Learning ultimately depends on environmental feedback1,2. To learn efficiently animals and humansmustmake good21

use of this feedback to update their internal models of the world3,4. However, external sensory feedback is inherently22

delayed and incomplete, thereby reducing the rate and extent of learning in neuronal circuits3. These observations23

suggest that the brain may employ a general mechanism to facilitate learning when external feedback is not readily24

available.25

The cerebellum is a region of the brain specialised in building predictive models4,5. In the classical view, the cere-26

bellum learns predictive internal models on the motor domain5–10. Consistent with this view are a large body of27

experimental observations for which cerebellar dysfunction causes motor learning deficits. However, more recently,28

cerebellar dysfunction has also been associated with impaired language processing, cognitive associative learning29

and workingmemory11–15. Moreover, an increasing body of behavioural12,14,16–20, anatomical21,22 and imaging23 stud-30

ies alludes to a role of the cerebellum in cognition in animals and humans. Taken together, these studies suggest that31

the cerebellum learns internal models for both motor and non-motor functions in line with the proposed universal32

functional role of the cerebellum across the brain, including the cerebral cortex9,24–26.33

Despite growing experimental evidence there are no specific computational models aiming to capture the func-34

tional roles of cerebro-cerebellar interactions during learning of motor and non-motor tasks. Building on recent deep35

learning developments we theorise that the cerebellum predicts future cerebral feedback signals given current cere-36

bellar activity. This feedback predicted by the cerebellum is then sent back to the cerebral network to drive learning.37
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Specifically, we model a given cerebral area as a recurrent neural network27–30 which receives feedback predictions38

from a feedforward, cerebellar, network6,7. This view of cerebro-cerebellar interactions is in line with the classical for-39

ward models of cerebellar function6,7, in that in our model the cerebellummakes forward predictions (i.e. generates40

cerebral feedback predictions) given current cerebral activity.41

We test our model on a range of sensorimotor, pattern recognition and visual-language tasks. Using these tasks42

we demonstrate that cerebellar predictions conveyed to the cerebral cortex facilitate learning. Moreover, models43

without a cerebellar component exhibit slower learning and dysmetria-like behaviours, consistent with a wide range44

of behavioural observations11,14,31,32. Our results indicate that the cerebellar-mediated facilitation of cerebral learning45

relies on the ability of the cerebellum to provide effective cerebral feedback predictions. Finally, we make several46

experimentally testable predictions regarding cerebro-cerebellar representations, task-specific temporal feedback,47

cerebro-cerebellar activity coupling and the different contributions of cerebellar output and inferior olive lesions for48

task learning.49
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Figure 1. Cerebro-cerebellar networks as feedback prediction machines. (a) A recurrent cerebral cortical network A learns
through feedback given by a task-specific prediction error module ETask computed at the end of a task fbT (top red arrow). The
cerebellum aims to continuously predict the feedback expected by the cerebral network f̂bt (blue) given current cerebral activity at
(black). The cerebellar network (i.e. granule cells; GC and Purkinje cells; PC) learns through prediction errors (bottom red arrow)
computed at the inferior olive (diamond) by comparing predicted feedback f̂bt with actual feedback fbt (light blue). Shaded boxes
represent multiple cerebral areas and cerebellar modules that may be interacting in parallel (see Fig. S1 for the same framework
applied to decoupling across multiple brain areas). (b) Example of cerebro-cerebellar model unfolded in time in which the cerebral
network learns to associate a cue given at t1 (x1, green) with feedback received at the end of the task, tT (cf. Fig. 2). At the end of the
task the cerebral network A receives external sensory feedback fbT (red), which is transmitted to the cerebellar network as cerebral
feedback fbT (light blue). Here we highlight a case of cerebral feedback horizon stopping at the end of the task T , but feedback
may also be available earlier in the task (dashed red arrows). The cerebellum generates cerebral feedback predictions f̂bT (blue)
given cerebral activity aT (black), and learns using inferior olive (diamond) error signals (red arrow). Before tT cerebral feedback
may not be readily available, thus the cerebellum learns through self-predictions. In this case the inferior olive (diamond) compares
old cerebellar predictions (e.g. f̂bi ) with the new one (e.g. f̂bT ) to generate cerebellar learning signals (red arrow; see main text and
Methods for details).

Results50

A systems-level computational model of cerebro-cerebellar interactions51

In order to understandhowcerebellar computationsmay shape cerebral processing, we introduce a cerebro-cerebellar52

systems-level model based on a recent deep learning algorithm33. In line with previous work we model a given cere-53

bral cortical area A as a recurrent neural network (RNN)27–30 which is coupled with a cerebellar module C – cerebro-54

cerebellar RNN (ccRNN). Wemodel the cerebellar module as a simple feedforward network C (Fig. 1a) in line with the55

cerebellar architecture6,7,9. The input layer of the cerebellar network receives cerebral cortical activity a and models56

the Granule cells (GCs), which project to the output layer, modelling the Purkinje cells (PCs) that provide cerebellar57

predictions back to the cerebral cortex (Methods). To capture the dimensionality expansion observed between cere-58
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bral and cerebellar networks34,35 we constrain our model withM � N , whereM corresponds to the number of GCs59

and N the number of cerebral neurons and use the same ratio found experimentally M
N
∼ 4.60

We study the behaviour of ourmodel in a range of tasks. To train themodel we use a prediction error function Etask61

which compares themodel output with task-specific external feedback. Using standard gradient descentmethods we62

generate feedback signals of a specific temporal horizon (see example of a RNN unrolled in time in Fig. 1b), fbt , which63

is then used to update the RNN input and recurrent weights (Fig. 1a; see Methods). For computational efficiency and64

in line with previous models we use a time-discrete approximation of time-continuous RNN models28.65

Following our theoretical proposal the cerebellar module C continuously learns to predict cerebral feedback fbt66

given cerebral cortical activity at . The cerebellar network is optimised through error signals computed by comparing67

the actual cerebral feedback fbt at time t with the cerebellar predicted feedback f̂bt . We postulate that this compari-68

son is done in an inferior olive-like structure, ECt = (fbt− f̂bt)
2, that generates error signals which are used to optimise69

the cerebellar network (see Methods). However, similar to the external feedback, actual cerebral feedback is not al-70

ways available, which would impact the ability of the cerebellar network to learn online to produce effective feedback71

signals. To circumvent this problem we propose that the cerebellum learns using its own feedback predictions when72

cerebral feedback is not available (Fig. 1b)33. This leads to the following target feedback f̄bt ∼ fbt + C(at+1) where73

fbt is the true cerebral feedback and C(at+1) = f̂bt+1 is a self-prediction term which enables the cerebellum to learn74

online (see full details in Methods).75

Cerebro-cerebellar model facilitates learning in a simple sensorimotor task76

Inspired by classical sensorimotor studies in the cerebellum, we first test a simple visuo-motor task11,31,32,36,37. In this77

task the model must draw a straight line in a two-dimensional space towards one of seven target locations given a78

target-specific cue at the start of the task (Fig. 2a, top left). We train a cerebro-cerebellar RNN (ccRNN) and a cerebral-79

only RNN (cRNN) to perform this task (see full details in Supplementary). To train the models we provide teaching80

feedback by comparing the cerebral network output with the optimal trajectory (i.e. a straight line between starting81

and end points; Fig. 2a). In addition, this feedback is delayed with respect to the initial cue and incomplete (i.e. only82

available every few time steps). This models a more realistic setting in which task feedback is not always readily83

available. When this feedback is available at time t we calculate the prediction error as Etask = (lt − l̂t)
2, where lt and84

l̂t denote the desired and current model two-dimensional trajectory (i.e. set of feedback points; cf. Fig. 2 schematic),85

given by a linear readout on the network activity at (Methods). In particular, here we consider a feedback interval at86

every other time step for both cRNN and ccRNN (but see Fig. 4 for more general cases).87

During learning the ccRNN model achieves near-zero error after a relatively small number of training sessions,88

while the cRNN, which lacks the cerebellar component, also learns butmore slowly andwith higher variability (Fig. 2b).89

These observations are in line with a large body of cerebellar experiments11,31,32. In addition, we also observe differ-90

ences at the level of model output trajectories. While the ccRNN produces smooth and straight trajectories, the cRNN91

displays a much more variable trajectory towards all targets (Fig. 2b). Due to the sparse task feedback in the absence92

of a cerebellar network, the cRNN is not able to learn a correct trajectory in points for which there is no direct feed-93

back thus overshooting the target trajectory. In cerebellar patients, this effect is referred to as dysmetria38 which in94

the motor domain results in ataxia. Ataxia is the lack of coordination and fine control during voluntary movements, a95

defining symptom resulting from cerebellar malfunction11,38. To evaluate the degree of dysmetria-like output in our96

models we measure the error between the model output and the optimal trajectory (i.e. a straight line in this case;97

see Methods). When applying this measure, the ccRNN shows a clear reduction in ataxia-like behaviour compared to98

cRNN (Fig. 2c).99

To highlight the conditions for which the cerebellummay facilitate learning in cerebral networks we test different100

lengths of cerebral feedback horizon (Methods). Our results show that the ccRNN only facilitates learning for short to101

medium feedback horizons (<50%, Figs. 2d, S2). These results suggest that the cerebellum is particularly important102

for cerebral learning in conditions in which cortical networks do not have internal effective feedback available for103

learning. This is consistent with experimental observations showing that the cerebellum becomes more important104

in the presence of challenging task conditions for which cerebral feedback might be short39. In contrast, for long105

cerebral feedback, having a cerebellar module harms learning. In this case the cerebral network has the level of106

feedback required to learn effectively, thus the noise inherent in the cerebellar feedback can impair learning. This107

observation suggests that the brain may use intermediate brain structures, such as the thalamus and the pons to108
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Figure 2. Cerebro-cerebellarmodel improves learning in a simple line drawing sensorimotor task. (a) Schematic of amacaque
monkey performing a simple line drawing task (top left). A cerebro-cerebellar RNN (ccRNN) in the macaques brain receives the cue-
specific input and learns to produce the desired trajectory (top right). There are 6 possible targets (coloured dashed circles) and
feedback (dashed black line) is provided at a regular interval (bottom; see Methods). In the example shown the model must draw
a straight line towards the green target. (b) Error between model output and desired target trajectories for cerebellar RNN (gray,
cRNN) and cerebro-cerebellar RNN (orange, ccRNN). Insets: Model trajectory produced for all cues after learning. (c) Dysmetria score
for cRNN and ccRNN. The dysmetria score quantifies how smooth the movement is after learning (Methods). (d) Normalized model
mean squared error (MSE) after learning for different cerebral feedback horizons. Feedback horizon is denoted as percentage of
the total task sequence. Arrow indicates feedback horizon used by the cerebral network in the other panels. (e) Euclidean distance
between the two leading cue principal components for the recurrent neural network in both the cRNN (grey) and ccRNN (orange)
models. Arrows highlight training sessions of cue-specific principal components (PCs) plotted on the right for early (i), early-mid (ii),
mid (iii) and late (iv) learning, for both cRNN (top) and ccRNN (bottom). (f) Explained variance of the RNN for bothmodels cRNN (gray)
and ccRNN (orange). Bar plot shows explained variance for the top five cue-specific PCs. Circular plot shows the total explained for
cue (medium-dark colours), time (light colours) and cue-time interaction (dark colours) task variables. (g) Euclidean distance between
the different cue-specific two-dimensional components for the cerebellar network (orange, ccRNNmodel). Arrows indicate training
sessions highlighted on the right as in (e). (h) Explained variance of the cerebellar network as in (f). ***: p<0.001, ****: p<0.0001.
Error bars represent mean ± SEM across 10 different initial conditions of the model.
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gate cerebro-cerebellar interactions depending on task properties (see Discussion).109

Next, to gain insight into how cerebral and cerebellar neuronal representations evolve jointly during learning, we110

use a dimensionality reduction method (demixed principal component analysis (PCA); see Methods). Demixed PCA111

(dPCA) enables us to extract low-dimensional neuronal representations that capture maximum variance across task112

variables. First, we focus on the two most informative cue-specific principal components using the neural activities113

of the recurrent neural network for both cRNN and ccRNN (see all components in Figs. S3,S4 and S5). Next, we114

calculated the two-dimensional Euclidean distance across the 7 different possible cues (Methods). Our results show115

that the ccRNN cerebral network is characterised by a stronger increase in separation of stimulus components over116

learning when compared to the cRNN cerebral network (Fig. 2e). To contrast task-specific components with general117

temporal information, we compare the level of cue-specific and time-specific explained variance in both models.118

ccRNN captures overall more cue-specific explained variance when comparedwith cRNN (Fig. 2f) which demonstrates119

that ccRNN encodes more task-relevant information, which requires the model to associate the cue information with120

specific output trajectories. Next, we applied dPCA to the activity of cerebellar neurons. Since the cerebellar module121

facilitates cue-to-target learning we expected cerebellar representations to be mostly dominated by task-specific122

information. This is indeed what we find, our results show that the distance between cue-related components is123

stronger during periods of high learning (Fig. 2g; compare with Fig. 2b), and that most of the variance is explained by124

cue-specific PCs (95.4%; Fig. 2h).125

Overall, our results suggest that in the context of a simple sensorimotor task, cerebellar-mediated decoupling of126

cerebral feedback enables faster learning and smoother motor trajectories. In addition, it makes a number of ex-127

perimentally testable predictions about the evolution of task-specific cerebro-cerebellar representations throughout128

learning.129

Cerebro-cerebellar model improves learning in complex sensorimotor and discrimination tasks130

Next, to test whether the results from the simple visuomotor task generalise to more realistic settings we explore131

a range of more advanced sensorimotor tasks. We introduce two tasks in which the models are trained to draw132

digits given complex spatiotemporal sensory inputs. For these tasks we build on a standardmachine learning dataset133

consisting of 10 (from0 to 9) two-dimensional handwritten digits (see example in Fig. 3a; MNIST dataset40). In contrast134

to the previous task in which sensory input was only provided at the start of the task, here the model receives a part135

of a handwritten digit at any given point in time (i.e. a row of 28 pixels; see Methods). We refer to this task setting136

in which input is provided over time as online. Given this input then we consider two task variants (Fig. 3a) in which137

the model has to either (i) draw a straight line (online line drawing (LD) visuomotor task) or (ii) draw a digit (online138

digit drawing (DD) visuomotor task. Both tasks provide a more realistic model of drawing tasks (Fig. 2) in which lines139

must be drawn given complex continuous sensory input. As in the previous task we consider cases of sparse task140

feedback.141

As in the simple visuomotor task, here the ccRNN learns faster (Fig. 3b) than cRNN while showing a strong re-142

duction in dysmetria-like trajectories (Fig. 3c). The ccRNN also facilitates learning when in the presence of short to143

medium feedback horizon in the cerebral network (Fig. 2d), and we find that dysmetria-like trajectories are reduced144

in the ccRNN model (Fig. 3c).145

To test whether our observations in the sensorimotor tasks generalise to other task domains we train the model146

in a visual discrimination task. In this task the model receives the same handwritten digits presented sequentially147

over time but now must discriminate between the 10 classes of digits (online visual discrimination task, Fig. 3a). In148

line with the results in the visuomotor tasks, we find that ccRNN also facilitates learning in this task, achieving higher149

accuracy after only 10 training sessions (Fig. 3b). Here we use the certainty the model has about the current class150

as a measure of dysmetria of thought41 (see Methods). Similarly to the tasks above, we find that dysmetria-like151

behaviours are reduced in the ccRNNmodel, which in this case shows that model produces more accurate decisions152

(Fig. 3c). Finally, in line with previous tasks a cerebellar module facilitates learning in the presence of weak cerebral153

feedback (Figs. 3d, S6). These results are in line with the growing number of studies implicating the cerebellum in154

sensory discrimination and decision making tasks19,42,43.155
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Figure 3. Cerebro-cerebellar model improves learning in online complex sensorimotor and sensory discrimination tasks.
(a) Model behaviour across three tasks using a dataset of handwritten digits, each presented sequentially to the network (Methods
and main text). Online line drawing (LD) visuomotor task: given temporally varying visual input the model is trained to draw a
straight line (top left). Online digit drawing (DD) visuomotor task: given temporally varying visual input the model is trained to draw
a digit following a template (top middle); Target trajectories are in dotted grey and model output is coloured by digit. Online visual
discrimination task: pattern recognition variant in which the model is trained to discriminate between 10 different digits given as
input sequentially (a row at a time; green box; top right). (b) Learning curves for the three tasks for both cerebral RNN (gray, cRNN),
cerebro-cerebellar RNN (orange, ccRNN). The cerebral network in all tasks uses approx. 10% of the cerebral feedback horizon (cf. d).
(c) The dysmetria score quantifies the irregularity in movement during the testing phase of themodel (online LD and DD visuomotor
tasks) or the uncertainty in the sensory discrimination (online visual discrimination task). (d) CcRNN model performance relative to
cRNN across different degrees of cerebral feedback horizon. ns denotes no significance (p=0.921 in the online LD visuomotor and
p=0.567 in the online DD visuomotor). Arrow indicates the feedback horizon used in (b). **: p<0.001 ***: p<0.0001, ****: p<0.0001.
Error bars represent mean ± SEM across 10 different initial conditions of the model.

Cerebellar-mediated learning facilitation depends on task feedback interval156

In sensorimotor tasks there are physiological constraints inherent to animals and humans which impose limits on157

the rate at which external feedback is available44–46. To determine the rate of external feedback for which cerebel-158

lar predictions are most valuable we trained the model in two tasks (simple LD and LD visuomotor tasks) with a159

range of external feedback intervals. This feedback interval defines the rate at which external feedback is available160

for learning, resembling sensorimotor feedback which is typically sporadic rather than continuous11,47,48. We find161
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Figure 4. Cerebellar-mediated facilitation of learning depends on task feedback interval. (a) Learning curves for short (light
red), medium (red) and long (dark red) levels of feedback interval for both the simple and online LD visuomotor tasks and both
models cRNN (gray) and ccRNN (orange). Degrees of redness (b) Difference in task error between ccRNN and cRNN for varying
degrees of task feedback intervals (not significance, p=0.406). Degrees of red in arrows indicate the respective interval in (a) while
the white arrow indicates the feedback interval used in Fig. 2 and Fig. 3, respectively. Task feedback interval given as a percentage
of the total task time. (c) Difference in dysmetria score between for varying degrees of task feedback interval (not significance,
p=0.0577 for simple LD and p=0.444 (40%), p=0.209 (50%) for online LD). **: p<0.01, ***: p<0.001, ****: p<0.0001. Error bars
represent mean ± SEM across 10 different initial conditions.

that when external feedback is given at short intervals there is little advantage of the feedback predictions from the162

cerebellar component for both the simple LD and online LD visuomotor tasks (Fig. 4a,b). When the interval between163

external sensory feedback is increased, the benefits of the cerebellar-to-cerebral feedback predictions for learning in164

the ccRNNmodel become clear. In contrast, for long feedback intervals the feedback is too infrequent for both cRNN165

and ccRNN to be able to successfully learn the task. Next we evaluate the degree of dysmetria using the metrics in-166

troduced above. We observe qualitatively similar results: a model without a cerebellar network (cRNN) exhibits more167

variable trajectories for medium to long task feedback intervals (Fig. 4a). These results imply that whether cerebellar-168

to-cerebral feedback is beneficial for learning and leads to dysmetria-like behaviours depends on the rate of task169

feedback.170

Similarity between cerebellar and cerebral feedback is task and learning dependent171

The cerebro-cerebellar facilitation of learning shown above depends on the ability of the cerebellum to provide the172

cerebral network with effective feedback predictions. To study the level of similarity between the cerebellar predicted173

feedback and the theoretically optimal cerebral feedback as provided by gradient descent methods, we calculated174

the cosine similarity between cerebellar predictions and the optimal cerebral feedback in a range of tasks (Methods).175

First, we measure the cosine similarity for tasks in which external sensory feedback is only provided at the end of176

the task – a variant of the simple LD task with feedback only at the end and the online visual discrimination. This task177

setup allows for an easier interpretation of the similarity between cerebellar and cerebral feedback which should178

decay gradually from the end to the beginning of the task sequence. Indeed, we observe that the cerebellar-cerebral179

feedback similarity is higher closer to the point in which external sensory feedback is available (i.e. end of the task;180

Fig. 5a,b top; cf. Figs. 2, 3) and remains high over learning in particular for later points in the task (Fig. 5a,b bottom).181
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Figure 5. Similarity between cerebellar and cerebral feedback is task and learning dependent. (a) Cerebro-cerebellar cosine
similarity throughout tasks sequences which do not require intermediate external feedback: simple line drawing with feedback only
at the end of the task (LD end-only) and online visual discrimination (n.s. simple LD visuomotor p=0.212 (0%), p=0.520(25%), n.s.
online LD visuomotor p=0.312 (0%), p=0.06 (25%), p=0.067(50%), p=0.386(60%). Here and in subsequent panels red arrows indicate
points in which external feedback is available. Cosine similarity throughout the tasks is calculated across all training sessions (see
Methods).(b) Cerebro-cerebellar cosine similarity over learning for three time points in the task: early (turquoise), mid (blue) and late
(purple) in the task (cf. (a)). (c) Cerebro-cerebellar cosine similarity throughout the sequence for tasks with intermediate external
feedback: simple line drawing (LD), online LD, online digitdrawing (DD). (d) Cerebro-cerebellar cosine similarity over learning for
three different time points in the task (early, mid and late as in (b)). Dashed black line represents zero similarity. **: p<0.01, ***:
p<0.001, ****: p<0.0001. Error bars represent mean ± SEM across 10 different initial conditions.

Next, we analyse the cosine similarity for conditions in which external feedback is available throughout the task.182

For this we consider the same visuomotor tasks as above (simple LD visuomotor, online LD visuomotor and online LD183

visuomotor). In these tasks we observe more complex dependencies of the cerebro-cerebellar feedback similarity on184

task properties (Fig. 5c,d). For the simple LD taskweobserve that the predictionsmadeduring earlier points in the task185

are more similar than those at later points (Fig. 5c). These results suggest that the model is first learning to align later186

points in the task and gradually learns to adjust earlier points which are closer to the cue-specific information that187

defines the trajectory that the model must take. Interestingly, this behaviour is less prominent in the two other tasks,188

online LD and DD visuomotor tasks, that are characterised by relatively more complex task-specific sensory input189

occurring throughout the task. For these two more complex tasks and in contrast to the simple LD the similarity190

remains high throughout learning for later time points (Fig. 5d), which reflects the more challenging nature of these191

tasks and the need to continuously predict feedback as the task is never fully learnt.192

These results make non-trivial predictions on when the cerebellum is able to better align with the cerebral feed-193

back, which depend on task complexity, the properties of the task feedback, the exact task position and the learning194

stage.195

Learning shapes cerebro-cerebellar activity coupling196

The cosine similarity results show that the cerebellar module learns to predict cerebral feedback. Because the cere-197

bellum maps cerebral activity onto (predicted) cerebral feedback, this suggests changes in the coupling between198

cerebellar and cerebral neuronal representations throughout learning. To study the degree of cerebro-cerebellar199

coupling we calculate the pairwise correlations between neurons in the cerebral recurrent neural network and the200

neurons of the cerebellar network (Methods). Although we observe a relatively small rise in the average cerebro-201

cerebellar coupling during the first few training sessions, as training progresses, there is a consistent decrease of the202

correlations (Fig. 6a).203
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Figure 6. Cerebro-cerebellar neuronal activity coupling over learning. (a) Box plot showing the mean and distribution of pair-
wise cerebro-cerebellar absolute correlation coefficients over learning for four tasks: simple LD, online LD, online DD and online
visual discrimination. Fully fixed ccRNN (i.e. without any form of plasticity in both networks) is given for reference (dashed line).
(b) Change in first two principal components of cerebro-cerebellar pair-wise correlation coefficients over learning (all components
available in Fig. S7). (c) Cumulative plot of cerebro-cerebellar pairs with positive and negative changes in absolute correlation coef-
ficients in early (session 1), mid (session 25) and late (session 80) learning. Error bars represent mean ± SEM across 10 different
initial conditions.

To study more subtle changes in the correlation structure we use standard principal component analysis of the204

pairwise correlations (Fig. 6b). The first principal component reflects the changes in the average cerebro-cerebellar205

coupling (Fig. 6b). The second principal component shows a delayed increase with respect to the first, followed by a206

sustained decrease in the cerebro-cerebellar coupling (see Fig. S7 for remaining components). These results are con-207

sistent with the need for the cerebellum to provide more effective feedback and thus be more coupled in the earlier208

learning phases. To study learning periods of consistent increases or decreases in coupling as training progresses we209

tracked the changes in correlations of cerebro-cerebellar pairs in early, mid and late learning (Figs. 6c). We observe210

that early in learning – when most learning occurs – a large part of the population shows a consistent increase in cor-211

relations, but this rapidly changes as learning progresses with only a very small number of pairs showing increases212

in correlations later in learning.213

To better assess the contribution of a plastic cerebellum to the cerebro-cerebellar coupling, we analysed a ccRNN214

in which the cerebellum does not learn. In this case we can still observe changes in cerebro-cerebellar coupling over215

learning for some tasks, which reflect changes in the RNN itself, but these are weaker when compared to the normal216

ccRNN (Fig. S8a). In this case cerebro-cerebellar correlations remain high throughout learning compared to a ccRNN217

with a plastic cerebellum. This is supported by their low-dimensional representations: whereas a plastic cerebellum218

leads to principal components that approach near-zero values after the initial learning phase (Fig. 6b, S7), in the case219

of the fixed cerebellum the principal components continue to fluctuate throughout learning (Fig. S8).220

Although our model suggests a long-term decrease decrease in the cerebro-cerebellar activity coupling, it high-221

lights sub-populationswhich increase their coupling during specific periods of learning. This observation follows from222

our proposal in that the cerebellum is trained to map cerebral neuronal activity on cerebral feedback which depend223

on learning.224
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Differential impact of cerebellar output and inferior olive on learning225
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Figure 7. Inactivating cerebellar output and inferior olive have a differential impact on learning. (a) Complete cerebellar
lesion at different points during learning. Vertical lines represent at which point during training the cerebellar was inactivated in the
ccRNN model. In gray and orange show the baseline performances of the cerebral RNN and ccRNN, respectively. (b) Normalised
error after cerebellar lesion throughout learning with respect to ccRNN (n.s. simple LD visuomotor p=0.062 (session 150), p=0.162
(session 475)). Gray denotes normalised error for cRNN. (c) Complete inferior-olive lesion at different points during learning. Vertical
lines represent point of lesion of the ccRNN model. In gray and orange are shown the baseline performances of the cerebral RNN
and ccRNN, respectively. (d) Normalised error after inferior-olive lesion throughout learning with respect to ccRNN. Gray denotes
normalised error for cRNN. *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. Error bars represent mean ± SEM across 10
different initial conditions.

In experimental neuroscience a common paradigm is to inactivate the cerebellum in order to study its role in226

learning and behaviour. Here we perform in silico lesion experiments to reveal the impact of the modelled cerebellar227

feedback predictions during learning. First, we test cerebellar output lesions at different points in learning. In all228

tasks we observe that inactivating the output of the cerebellar module in early learning impairs further learning229

and performance (Fig. 7a,b). This is expected as the cerebellar network provides feedback predictions that facilitate230

cerebral learning. Interestingly, we observe that when the cerebellum is suddenly removed learning becomes worse231

than the baseline model. This is likely due to the additional time taken to adapt to a new learning trajectory which no232

longer relies on cerebellar prediction. However, cerebellar lesions performed later in learning do not have an impact233
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in the simple LD visuomotor task, which is explained by the fact that for this task the model can achieve near-zero234

error, thus learning signals provided by the cerebellum are no longer needed. However, for all the online tasks we235

observe that inactivating the cerebellum even at later stages damages learning. In these more realistic tasks the236

cortical network still relies on the feedback provided by cerebellum as it does not fully learn the task. Our results237

indicate that lesion studies should reveal a task-dependent nonlinear role of the cerebellum on cerebral learning.238

Next, we assess the impact of disrupting cerebellar learning by modelling a complete lesion of our inferior olive-239

like error module (Methods). This manipulation effectively stops cerebellar learning, thereby impacting on the ability240

of the cerebellum to provide informative feedback learning signals to the cerebral network which may prevent the241

cerebral network from learning. For all of the tasks that wemodel, inactivating cerebellar learning has a strong impact242

throughout training, making themodel return to naive performance (Fig. 7c,d). Thus, simulated "inferior olive" lesions243

predicts that if the cerebellum cannot learn it would result in a stronger negative impact in task learning than ablating244

the cerebellum itself. This further suggests that it is critical for the cerebellum to learn rapidly to be able to provide245

informative predictions.246

Cerebro-cerebellar model facilitates learning in a visual-language task247
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Figure 8. Cerebro-cerebellar model facilitates learning in a visual-language task. (a) Schematic of the model used in a visual-
language task. The image is first processed by a (pretrained) convolutional neural networkmodelling the visual cortex. The resulting
feature vector is then provided to the cerebral RNNwhich is trained to predict the next word given the previous words of a provided
“gold standard” caption to the image. The cerebellum module C is only applied to the cRNN. (b) Learning curves in bits per word
(BPW), lower values indicate better understanding of the language, on validation set for cerebral feedback horizon of four timesteps
(inset shows complete learning curve). (c) Two example images from the validation set with corresponding model captions and
gold standard captions (black). (d) Normalised model performance across different degrees of feedback horizon in the cerebral
network (p=0.891 (40%), p=0.116 (45%). (e) Normalised caption score (Methods) as a function of caption length (p=0.075 (short),
p=0.189(medium)). *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. Error bars represent mean± SEM across 10 different initial
conditions.

Our framework does not only apply to sensorimotor tasks, but should generalise to virtually any task within the248
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grasp of current neural networks models. To test the generability of our model and inspired by cognitive tasks in249

which cerebellar patients have shown deficits49 we test our models in a caption generation task. In this task the250

network needs to generate a textual description for a given image. All models have two components: a pretrained251

convolutional neural network (CNN) to extract a lower dimensional representation of the image, and a cRNNor ccRNN252

on top which is trained to map the low dimensional visual input to captions that describe the image. (Fig. 8a).253

We use a standard machine learning dataset50 and the networks are trained to predict the next word (Methods).254

In contrast to the previous tasks here we use a form of unsupervised learning, in which the prediction error module255

only uses the data itself (i.e. words) to generate teaching signals (Supplementary). We find that ccRNN models can256

exhibit faster learning (Fig. 8b) (Fig. 8d) and better generalisation51 (Fig. S9) when in the presence of short cerebral257

feedback horizons (≤ 40%). All models produce reasonable captions for images unseen during training, but ccRNN258

models tend to produce captions that better capture the context and semantics of the task (Figs. 8c, S10), consistent259

with cerebellar deficits14.260

Finally, we use a language metric (SPICE52) to measure the quality of the generated captions. These results show261

that the ccRNNgenerates richer captions (Fig. 8e) and that it is particularly beneficial for longer captions. This suggests262

that ccRNN is able to learn richer visuo-language contextual information.263

Discussion264

Inspired by recent deep learning developments, here we have introduced a systems-level computational model in265

which cerebellar networks predict cerebral feedback (Fig. 1). In this scheme cerebro-cerebellar loops decouple cere-266

bral cortical networks from future feedback signals. We show that the ccRNN model accelerates learning and im-267

proves task behaviour in a range of sensorimotor and cognitive tasks (Figs. 2, 3 and 8). Our results are consistent268

with observedmotor and cognitive deficits in cerebellar patients. Our model makes a number of predictions in terms269

of (1) task properties (Figs. 4 and 5), (2) cerebro-cerebellar representations and coupling (Figs. 2 and 6), and (3) the270

differential role of the cerebellum and the inferior olive throughout learning (Fig. 7).271

Experimental studies have shown that incomplete or delayed external sensory feedback is important for learn-272

ing45,53,54. Our model proposes that the cerebellum plays an important role in facilitating motor learning when in the273

presence of incomplete or delayed feedback. Furthermore, our work suggests that cerebro-cerebellar networks are274

ideally placed to facilitate learning when task feedback is presented intermittently, at medium frequencies with re-275

spect to task sequence. Similarly, our results suggest that cerebellum-dependent dysmetria should bemore prevalent276

for tasks with intermediate to long inter-feedback intervals. Although there is a wide range of studies investigating277

the role of external sensory feedback in learning53,55 and the precise timing of feedback is known to be important for278

cerebellar function10,56, it remains to be tested what are the optimal properties of task feedback for learning. Taken279

together, we suggest cerebellar-mediated feedback predictions to be particularly important for temporally challeng-280

ing tasks with sparse feedback.281

Our representational analyses demonstrate that the cerebellum develops task-specific representations. Recent282

fMRI studies have observed that different regions of the cerebellum encodes task-specific representations for dif-283

ferent domains23,57. Similarly, our model predicts the need for different cerebellar modules to provide feedback284

estimations to the cerebral cortex for specific task domains. We have also studied the level of coupling between cere-285

bellar and cerebral neural activity. Our results demonstrate an initial rise in correlations which coincides with steep286

periods of learning followed by a general decay in the coupling during the remaining periods of learning. This general287

decay in coupling is also reflected in our simulated cerebellar lesions which echo the existing literature in that after288

a task is consolidated in the cerebrum it becomes less cerebellar-dependent58,59.289

In line with previous theoretical accounts6,7,9 we suggest that the cerebellar error function is computed by the290

inferior olive, which drives learning in the cerebellum via the climbing fibres. This cerebellar error function is a com-291

bination of true sensory feedback and self-predicted (bootstrapped) error signals (Fig. 1b), which is analogous to the292

bootstrapping principles commonly used in reinforcement learning60. The use of self-predictions in the cerebellum293

suggests the existence of different forms of feedback to the inferior olive from potentially multiple cerebellar mod-294

ules, consistent with cerebellar-inferior olive connectivity61. Moreover, when ablating the inferior olive lesions we295

show that task performance become severely impaired. This is due to the cerebellum being unable to learn, thereby296

providing outdated feedback signals back to the cerebral cortex. These results suggest non-trivial consequences of297

lesions for cerebro-cerebellar interactions.298
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While our model is consistent with experimental observations, there are several biological features that we have299

not considered. In particular, experimental studies suggest that the cerebellum can influence cerebral learning pro-300

cesses via its projections to the thalamus62–65. This is in line with ccRNN where the cerebellum predicts feedback301

signals that contribute directly to cerebral learning. However, we have assumed direct long-range projections with302

the cerebral cortex whereas in biology these projections are mediated through the thalamus and pons. It is possi-303

ble that both structures may provide bottlenecks that filter out non-relevant information, such as poor estimated304

feedback (Figs. 2d, 3d) that would impair cerebral learning. In addition, cerebellar-thalamic-cerebral projections are305

known to target distal dendrites of pyramidal cells66,67, which have been proposed to encode feedback error signals306

by a number of models as used by deep learning models68,69. These dendritic-encoded error signals are akin to the307

gradient descent errors that we use to model cortical feedback signals. In future work it would be of interest to308

combine our work with these biologically plausible gradient descent models.309

Throughout this paper we have assumed the existence of cerebral prediction error modules, which compare the310

output of a given cerebral area with a desired task output to generate a feedback teaching signal for the cerebral cor-311

tex. There is evidence of prediction errors across different brain areas, for example sensorimotor prediction errors312

in the neocortex70,71 or reward prediction errors in the VTA1,72. For simplicity, here we have focused on supervised313

(Figs. 2,3) and unsupervised (Fig. 8) prediction errors, but these can in principle be readily replaced by reward-based314

prediction errors1,73. This would predict reward-specific encodings in the cerebellum as observed recently74–76. In-315

deed, ourmodel is of particular relevance to reinforcement learning due to prevalence of sparse and delayed rewards316

(Fig. 4).317

Finally, our model shares common features with classical internal models of the cerebellum (6,7; Table S1). In318

the forward model of sensorimotor control, the cerebellum receives an efferent copy of the motor commands and319

the respective external sensory feedback8,77. With these two input streams the forward model learns to predict320

the sensory consequences of motor commands. We and others have argued that a similar predictive model can in321

principle be applied to higher order brain regions such as the prefrontal cortex and the temporo-parietal cortex which322

are involved in planning of cognitive behaviour and decision making16,17,24,26 (Fig. 1a). In line with forward models the323

cerebellar module of ccRNN receives an efferent copy of the cerebral neural activity and cerebral feedback. Given324

these signals the cerebellum learns to predict future cerebral feedback.325

Overall, our work offers a novel theoretical framework with which to study cerebro-cerebellar interactions, being326

consistent with experimental observations whilemaking a large number of testable predictions acrossmultiple levels327

of interrogation.328
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Methods512

In all our experiments we model a cerebral area A as a long short-term memory recurrent neural network (LSTM)78513

with parameters θwhich has recently beenmapped onto corticalmicrocircuits79. A (trained) linear readout is attached514

to the LSTM output states which provides the final model output to which a supervised error module E task, which515

below we refer to as E .516

In the cerebro-cerebellar RNN model (ccRNN) we attach a feedforward cerebellar module C with independent517

parameters Ψ to the RNNwith reciprocal connections (Fig. 1). The cerebellar module is equivalent to the “synthesiser”518

as used by Jaderberg et al. 33 in the backward case. That is, the cerebellar module receives a copy of the RNN activity519

at (both cell and output LSTM states) and sends back a prediction of the future feedback (or error gradients) with520

respect to that activity, C(at).521

To generate the desired cerebral temporal feedback (error gradients) we use backpropagation through time522

(BPTT). To highlight the link between BPTT-derived feedback and the cerebellar predicted feedback we start out from523

first principles closely following Jaderberg et al. 33 . BPTT is used as the standard solution for updating parameters θ in524

deep learning. In an ideal world one would have access to all error signals within a task of length T ,
∑T

t Et , and derive525

the resulting parameter updates as θ ← θ − α∆θ where ∆θ =
∑T

t′=t

∂Et′
∂θ

, but this is impractical as it would require526

information about all possible future error signals. Instead, in practice BPTT over a time horizon K is commonly used527

(Fig. 1)528

T∑
t′=t

∂Et′

∂θ
=

(
K∑

t′=t

∂Et′

∂at

)
∂at
∂θ

+

(
T∑

t′=K+1

∂Et′

∂aK

)
∂aK
∂θ

T∑
t′=t

∂Et′

∂θ
≈

(
fbt′ + f̂bt′>K

∂aK
∂at

)
∂at
∂θ

(1)

∆θ ≈

 fbt︸︷︷︸
cerebral feedback

+ C(aK )︸ ︷︷ ︸
cerebellar feedback

∂aK
∂at

 ∂at
∂θ

where fbt′ denotes the cerebral feedback and C (aK ) cerebellar predictions of future feedback and ∂aK
∂at

represents the529

temporal changes in cerebral activity. These equations help make clear the distinction between cerebral feedback530

modelling feedback within current horizon K and cerebellar feedback predicting future horizons. Note that if we set531

C (at′) = 0 then we simply have standard truncated-BPTT over a time horizon K , as commonly used in deep learning.532

A key consequence of the cerebellum predicting future feedback is that strong or long feedback signals (i.e. T � 0)533

are no longer necessary, thus decoupling learning in the cerebral network from future feedback signals. For this534

reason we focus on weak forms of BPTT with relatively small temporal horizons, in which wemodel only K time steps535

of feedback into the past from an error signal E , this is known as truncated BPTT. In our experiments the size of K536

- which we report as a percentage of the task length (cerebral temporal gradient) - varies but is generally small. For537

example, for the simple line drawing task we used a one-step BPTT (i.e. K = 1; Fig. 2). Note in the main text as we538

focus on describing a simpler case of K = 1 (as used in the simple line drawing task) we use C(at) to refer to the539

cerebellar feedback prediction from the end of the current horizon, i.e. C(at) = C(aK ) ∂aK
∂at

.540

Cerebellar learning541

The cerebellar parameters Ψ are themselves learnt but to optimise a distinct, specialised error E IO which we posit542

to be computed at the inferior olive, the classical teacher of the cerebellar cortex6,7. This is defined by the difference543

between cerebellar output and a target feedback signal ¯fbt , i.e. E IO
t = ||C(at) − ¯fbt ||. Similar to the cerebral network544

we update cerebellar parameters using gradient descent: Ψ← Ψ− αIO∆Ψ, where ∆Ψ = ∂E IO

∂Ψ
.545

Ideally we would simply set the target feedback as the true (desired) cerebral feedback. However, this would546

require an arbitrary long number of steps of true cerebellar feedback, exactly what we propose that is not required547

with a cerebellar network. How should the cerebellum itself learn about the future feedback? One elegant solution,548

which we take from Jaderberg et al. 33 , is to combine the currently available error with bootstrapped future cerebellar549

predictions (i.e. self-predictions). Formally, using the same notation as equation 1, the trained target for C(aT ) is550

¯fbT =
∂E≤2T

∂aT
+ C(a2T )

∂a2T

∂aT
(2)
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Note the resemblance of equation 2 to equation 1: in each case we consider a mixture of nearby “cerebral” error551

signals beyond which we rely on cerebellar prediction. It is also useful to compare equation 2 with standard reinforce-552

ment learning rules (e.g. temporal difference learning algorithm) which rely on similar bootstrapping principles60.553

Other biological mappings of our framework554

Here we describe other possible mappings between the proposed framework (cerebellum as a decoupling machine)555

and forward and feedback processing in the cerebral cortex.556

Cerebellum as a spatial feedback decoupler557

Our paper focuses on temporal problems being solved by a cerebral area modelled as a recurrent neural network558

(RNN) to which a cerebellar network provides predictions of the future errors/feedback with respect to that area. An559

analogous biologically relevant system also arises, however, when one considers cerebral processing in space using560

feedforward computations involving several distinct regions (Fig. S1).561

This setup - where the “main” (cerebral) network is a feedforward composition of multiple brain regions - was also562

considered in Jaderberg et al.. Now, as opposed to predicting errors which occur strictly at later points in time, the role563

of the cerebellar network is to predict errors which occur in later brain regions. The result is that an earlier region has564

access to its feedback (predicted by the cerebellum) without the need to wait for the later forward/back propagation565

of spatial activity. Formally, if we assume cerebral processing as a sequence {ai}Ni=1 of feedforward computations:566

A(x) = (aN ◦ aN−1 ◦ · · · ◦ a1)(x) which defines a final error function E
(
A(x)

)
, then the cerebellar network can provide567

predicted feedback at a given brain area as soon as its activities are computed: C(ai ) := ˆfbi = ∂̂E
∂ai
≈ ∂E

∂ai
.568

This perspectivewould effectly feedback processing across the brain. This interpretation of themodel is consistent569

with cerebellar-thalamo-cerebral projections targeting distal dendrites, which have been proposed as the site of error570

or feedback encoding which underlie efficient learning68,69.571

Cerebellum as a forward decoupler572

In classical cerebellar theory, the complement to the forward model hypothesis is the inverse model, in which the573

cerebellum predicts motor commands5, or even implicit mental predictions to solve a problem24, directly . Again we574

can consider this under the proposed framework, but now using its forward prediction version.575

In this case the role of the cerebellum is not to predict future feedback activity, but the feedforward activity itself,576

i.e., C(ai) = âj for some later region j > i . âj is fed as a replacement to region j , making it forward decoupled from a577

potentially slower intermediate processing aj ◦ aj−1 ◦ · · · ◦ ai+1.578

Functionally this would provide the organismwith fast inputs (e.g. motor commands or potentialmental solutions)579

without the need for potentially slower cerebral processing (Fig. S1b). We also point out the relevance of direct predic-580

tions of later activity in the temporal case, where the cerebellum strictly predicts motor activity at later timesteps, as581

suggested in80. A broad comparison between this framework and the cerebellar internal model hypothesis is shown582

in Table S1.583

Experimental details584

To reduce learning instability we scale the cerebellar predicted feedback (Eq. 1) by 0.133. Both cerebral and cerebellar585

parameters are optimised using the feedback described above together with ADAM for overall learning efficiency81.586

Training the model involves iterating over training sessions for a given dataset, which is split into batches. For better587

learning stability model parameters were updated at the end of each batch.588

In each experiment all initial RNN parameters are drawn from an uniform distribution U(− 1√
nRNN

, 1√
nRNN

), where589

nRNN is the number of RNN units. The weights of the readout network and the feedforward weights of the cerebellar590

network (other than the final layer) are initialised according to U(−bk , bk) where bk denotes the “kaiming bound” as591

described by He et al. 82 (slope a =
√

5), and the biases are draw from U(− 1√
nin

, 1√
nin

), where nin denotes the input size592

of the layer. The last layer (both weights and bias) of the cerebellar network is zero-initialised, so that the estimated593

feedback at the start are zero33.594

During learning, we employ truncated BPTT as follows. Given an input sequence of N timesteps x1, x2, ... , xN and595

an temporal horizon K , we divide the sequence into K sized truncations. In other words, the sequence is now made596
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up truncations of (x1, ... , xK ), ... , (x(m−1)K+1, ... , xmK ), (xN−r , ... , xN), where N = mT + r for positive integers m, r with597

0 ≤ r < K . Note that, along with the value K , how well the sequence is divided into truncations (i.e. values m, r ) can598

itself influence learning (e.g. Fig. 3d).599

In the all visuomotor tasks, to test the effect of predicted feedback against the availability of task feedback signals600

which occur at any timestep where an external teaching signal is provided, we vary the external feedback interval.601

Given feedback interval n, the target is only available every n timesteps. This is analogous to the rate at which one602

receives sensory information whilst performing a task (e.g. drawing freehand).603

In general, (standard) hyperparameters were selected by hand after a few trial runs. We used the PyTorch library604

for all neural network models. Our implementation is based on that of github.com/koz4k/dni-pytorch. The code used605

for our experiments is available at https://github.com/neuralml/ccDNI.606

Delta and normalised error607

To calculate the delta and normalised error with respect to a given model we take the difference or ratio of total608

errors during learning (all training sessions). For example, the normalised error of ccRNN with respect to cRNN is609

error(ccRNN)
error(cRNN)

. Note that in the ablation case we compare against an "healthy" ccRNN and only consider the respective610

errors post-ablation. e.g. the normalised error for a model with cerebellar ablation at session 50 is error(ablated)>50

error(ccRNN)>50
.611

Cerebro-cerebellar coupling612

To analyse how the coupling between the cerebral and cerebellar networks changes over learning we consider the613

(absolute) Pearson correlation between a given cerebral (LSTM) unit and a given unit in the cerebellar hidden (gran-614

ular) layer over different bins during training. Values given are the average correlation over all RNN/cerebellar unit615

pairs.616

Computing details617

All experiments were conducted on the BluePebble super computer at the university of Bristol; mostly on GPUs618

(GeForce RTX 2080 Ti) and some on CPUs. We estimate the total compute time (including unreported results) to be619

in the order of ∼ 2000 hours.620

Simple line drawing visuomotor task621

In the line drawing task, an LSTM network receives a discrete input cue which signals the network to either (1.) stay at622

zero or (2.) draw a line in 2D space over a period of 10 timesteps. Here we set 6 distinct non-zero input-target pairs623

{(xi , yi )}6
i=1, where each input xi is a (one dimensional) integer ∈ {±1,±2,±3}, y1 = 0 throughout, and the remaining624

targets {yi}6
i=2 are lines whose end points lie equidistantly on a circle centred on the origin with radius 10. To make625

the task more realistic we also consider a 7th target in which the network must remain quiet at the centre of the626

drawing screen, which models periods in which the animal is not actively performing the task. Once an input cue627

is received at timestep t0, the model receives no new information (i.e. all future input is set to zero). The model is628

trained to minimise the mean squared error (MSE) between its output and the cue-based target.629

The cerebral network is modelled by one hidden layer of 50 LSTM units and the cerebellar network by one hidden630

layer of 400 neurons. The learning rate is set to 0.001. Each epoch comprises of 20 batches with 50 randomised631

examples. Unless explicitly stated we use a truncation size of K = 1 which covers 10% of the total task duration.632

Model results are averaged over 10 random seeds (with error bars), where each seed determines the initial weights633

of the network.634

Online visuomotor tasks635

For each online visuomotor task (Fig. 3) we use a standard dataset of handwritten digits (MNIST dataset). The model636

receives the same temporal input input, and the tasks are only differentiated by the desired model output. Given a637

28 × 28 handwritten digit as input, at timestep i the model receives the pixels from row i of the image, so that the638

input is of dimension 28 and is presented over 28 timesteps.639

In each case we have one hidden layer of 30 LSTM units in the main model and one hidden layer of 300 hidden640

units in the feedforward cerebellar network. Data was presented in batches of 50 with a learning rate of 0.0001.641
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Training and validation data was assigned a 4 : 1 split, containing 48000 and 12000 distinct image/number pairs642

respectively. Unless explicitly stated, the truncation value was K = 3 which is ∼ 10% of the task duration. Model643

results are presented over 10 random seeds.644

Online line drawing visuomotor task645

In this variant each number 0-9 MNIST image is allocated an associated xy position on the edge of a circle centred at646

0 with radius 10, and must follow a line of equally spaced points towards that position (Fig. 3a, left). With the model647

output being a vector of size 2, the training loss is defined at the end by the mean squared error (MSE) between the648

output of the model and the points forming the target line.649

Online digit drawing visuomotor task650

Like the online line drawing task, in this variant the model outputs a sequence of 2D coordinates corresponding to651

the input image. The target sequence however is now of a highly non-linear form, and in this case is a template of652

the number given as input (Fig. 3a, middle). The model is then trained at to minimise the MSE between the model653

output and that target shape.654

For each digit, the corresponding target drawing lies in [0, 1] × [0, 1], such that the gap between each successive655

point is equivalent. All model drawings begin in the top left corner (except for digit 1 which begins below-right). MSE656

scores are reported as 100 times their raw values to ease comparison with the line drawing case.657

Online visual discrimination658

This case differs to the others as it is a classification (or decision making) task, where at the end of the presentation659

of the MNIST image the model must decide which number the digit belongs to (between 0 and 9). Since the decision660

is only made at the end of the sequence and targets are unavailable at intermediate points, this is a task with hard661

temporal credit assignment. The output of the model is a vector with probabilities of size 10 (one entry for each662

number), and the model was trained to maximise the likelihood of the target number using a standard cross-entropy663

error function.664

Visual-language task665

The architecture for the caption generation task consists of a pretrained convolutional neural network (CNN) coupled666

with an RNN (LSTM). The cerebellar network only communicates with the LSTM. The LSTM network has one layer of667

256 LSTM units and the cerebellar network has two hidden layers (i.e. here we explicitely model a layer of Granule668

Cells and one of Purkinje Cells) of 1024 neurons.669

The process from image to model-generated caption follows previous work83 and is described next. As part of im-670

age preprocessing and data augmentation, which helps preventmodel overfitting, a given image is randomly cropped671

to size 224 × 224, flipped horizontally with even chance, and appropriately normalised to be given to a pretrained672

Resnet model84. A feature vector X of size 256 is thus obtained and passed to the LSTM at timestep 0. The LSTM673

is subsequently presented the “gold standard” caption {wi}ni=1 one word per timestep, each time learning to predict674

the next word (unsupervised task); i.e., at timestep t the model learns P(wt |X , {wi}t−1
i=1 ). The network simultaneously675

learns a word embedding so that each word wi is first transformed to a feature vector of size 256 before being given676

as input to the LSTM (as illustrated in (Fig. 8a). With a preset vocabulary of 9956 distinct words, the final output of the677

model (P(wi )) is a probability vector of size 9956.678

We found the models to be generally prone to overfitting the training data. For this reason, we apply dropout679

(during training as described by Srivastava et al. 85 ) on the input to the LSTM, where a given input element is set to680

zero with p = 0.5 probability. Once training is complete the models can generate their own captions to previously681

unseen images (Figs. 8, S10). Given an image at timestep 0, the model output at timestep i is the word with the682

highest probability, and the same word is then provided as input to the model at timestep i + 1. In this way the model683

can autonomously output an entire sequence of words which forms a predicted caption. In the (highly) rare case684

where the model generates a sequence of > 20 words, we consider only the first 20 words as its caption.685

We used the COCO training data set ILSVRC-2012-CLS 1 50 which holds 414113 image-caption pairs with 82783686

1This is a commonly used dataset available for our purposes under a Creative Commons license.
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unique images while the held-out validation set (used for Fig. 8b, c) holds 202654 with 40504 unique images; note687

that each image therefore has ∼ 5 distinct gold standard captions. Training takes place in batches of 100 image-688

caption pairs, with a learning rate of 0.001. Model performance is averaged over 10 random seeds. The performance689

is quantified in bits per word, whichmeasures how good themodel is at predicting the validation set. More specifically690

if a model assigns high probability to the test set (low BPW) it means it is not surprised by it hence indicating a good691

understanding of the language.692

In order to judge the models beyond their learning curves in BPW, we quantify their ability to generate captions693

using variety of language modelling metrics popular in the field of language evaluation. In particular, we compare694

model-generated captions against the gold standard captions using standard metrics in language modelling. We use695

the Semantic Propositional Image Caption Evaluation or SPICE metric, referred to as caption score. This metric has696

been shown to be more accurate as it better captures the semantic structure of the generated captions52.697

Our code implementation is based on https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/698

image_captioning.699

Demixed principal component analysis700

To study the response dynamics specific to task variableswe performdemixed principal component analysis (dPCA)86.701

Demixed PCA extracts low-dimensional components that explain maximum population variance constrained by task-702

specific variables, such as the input stimulus. As a result we obtain principal components that are specific to task703

variables. The simulated neural data we provide as input to dPCA is a three-dimensional array (n, s, t) with neuronal704

activity (concatenated across seeds), stimulus identity and time, respectively.705

Statistical analysis706

Because the initial conditions of these type of models influence its learning trajectory we run our models across 10707

different randomly chosen seeds. Significance was then tested using a paired t-test across the different seeds on the708

relative changes (e.g. ccRNN relative to cRNN). Significance levels are represented as * (p < 0.05), ** (p < 0.01), ***709

(p < 0.001) and **** (p < 0.0001).710

Measuring cerebro-cerebellar feedback similarity711

The learning curves of ccRNN plotted against cRNN with a limited feedback horizon highlights the benefit of the712

feedback predicted by the cerebellar network. This indicates that the predicted feedback can indeed approximating713

the desired cerebral feedback. To verify this, we quantified the cerebro-cerebellar feedback similarity using cosine714

similarity - “cossimilarity” - between the predicted feedback and the optimal temporal cerebral feedback (as derived715

by gradient descent). Specifically given two arbitrary vectors x and y716

cossimilarity(x, y) =
x · y

||x||2||y||2
(3)

where x is the predicted feedback and y the true optimal feedback, · denotes the dot product and ||||2 the Euclidean717

norm.718

It is important to emphasise that the true feedback is never actually provided to the model (as it goes beyond719

the feedback horizon K considered). Instead the cerebellum only learns through a combination of cerebral feedback720

within horizon K and a bootstrapped term (see details above). This measure allow us to evaluate howmuch informa-721

tion about this ideal feedback can the cerebellum approximate. The final result is shown in Fig. 5a. To provide the722

reader with intuition about how having external feedback available just at the end, which would lead to a gradual loss723

of the ability of the cerebellum to make good predictions for earlier points in the task, we highlight two task variants724

in which the task error is only defined at the end visual discrimination and a simple line drawing variant where the725

external task feedback is only provided at the end of the task.726
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Supplementary Information727
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Supplementary Figure S1. Cerebellum as decoupling machine in feedforward multi-area networks. (a) Illustration of decoupling
feedback processing. The cerebellum makes predictions of the feedback expected by brain area 2, decoupling the main network
from downstream brain areas (dashed red arrow). (b) Case of decoupling feedforward processing. The cerebellum predicts the
forward activity expected by brain area 3, thereby approximating (and decoupling) the forward computations between brain area 1
and 3 (dashed black arrow). Note that the cerebellum could, in principle, approximate feedback and feedforward processing across
many more brain areas (i.e. brain area 2 could be expanded in multiple brain areas).

Supplementary Table S1. Relationship between the internalmodels of the cerebellumwith decouplingmachines33. The properties
of the forwardmodel of the cerebellum canbe set against those of feedback decoupling (blue); similarly, the properties of the inverse
model of the cerebellum can be set against those of forward decoupling (red). The internal models here focus on the classical
motor control setting but can be extended to cognition, where for example a “mental model” replaces the “controlled object”24.
Abbreviations: MM, main model; temp., temporal; spat. spatial.

Forward Model Feedback Decoupling Inverse Model Forward Decoupling

controller
cerebral

(motor) cortex
main model (MM) cerebellum synthesiser

input
motor

state/command
area state*

sensory/desired
state

(temp.) area state*
(spat.) upstream state*

output
prediction

future state (temp.) future gradient
(spat.) downstream gradient

motor command (temp.) future state
(spat.) downstream state

output
destination

cerebral
(motor) cortex

MM: same area
controlled
object

(temp.) MM: same area
(spat.) MM: downstream area
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Supplementary Figure S2. Learning for different cerebral feedback horizons for the line drawing task (cf. Fig. 2d). Feedback
horizon is given as percentage of task duration (10 time steps). Results presented in main text (Fig. 2b) shown on top row along with
RNN trained with full horizon (i.e. cerebral feedback horizon = 100%).
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Supplementary Figure S3. Demixed PCA of cRNN network at the beginning and end of learning (cf. Fig. 2e,f). Early and late
learning corresponds to training session 1 (top a-d) and 200 (bottom e-h), respectively. (a, e) Cumulative variance explained by PCA
(black) and dPCA (red) components. (b, f) Demixed principal components for cue, time and cue/time interaction task variables. In
each subplot there are 7 lines corresponding to the 7 cues (cf. Fig. 2a). (c, g) Explained variance for individual demixed principal
components. Pie chart shows how the total variance is split between different task variables. (d, h) Dot product between all pairs of
the first 15 demixed principal components (upper-right triangle) and correlations between all pairs of the first 10 demixed principal
components (bottom-left triangle). Stars denote statistical significance (p < 0.05).
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Supplementary Figure S4. Demixed PCA of ccRNN cerebral network at the beginning and end of learning (cf. Fig. 2e,f). Early and
late learning corresponds to training session 1 (top a-d) and 200 (bottom e-h), respectively. (a, e) Cumulative variance explained by
PCA (black) and dPCA (red) components. (b, f) Demixed principal components for cue, time and cue/time interaction task variables.
In each subplot there are 7 lines corresponding to the 7 cues (cf. Fig. 2a). (c, g) Explained variance for individual demixed principal
components. Pie chart shows how the total variance is split between different task variables. (d, h) Dot product between all pairs of
the first 15 demixed principal components (upper-right triangle) and correlations between all pairs of the first 10 demixed principal
components (bottom-left triangle). Stars denote statistical significance (p < 0.05).
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Supplementary Figure S5. Demixed PCA of ccRNN cerebellar network at the beginning and end of learning (cf. Fig. 2g,h). Early and
late learning corresponds to training session 1 (top a-d) and 200 (bottom e-h), respectively. (a, e) Cumulative variance explained by
PCA (black) and dPCA (red) components. (b, f) Demixed principal components for cue, time and cue/time interaction task variables.
In each subplot there are 7 lines corresponding to the 7 cues (cf. Fig. 2a). (c, g) Explained variance for individual demixed principal
components. Pie chart shows how the total variance is split between different task variables. (d, h) Dot product between all pairs of
the first 15 demixed principal components (upper-right triangle) and correlations between all pairs of the first 10 demixed principal
components (bottom-left triangle). Stars denote statistical significance (p < 0.05).
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on top row along with RNN trained with full horizon (i.e. cerebral feedback horizon = 100%).
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Supplementary Figure S8. Pair-wise correlations over learning with a fixed cerebellar module. (a) Box plot showing the mean and
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(solid black line) and fully fixed ccRNN (i.e. without any form of plasticity in both cerebral and cerebellar networks; dashed black
line) are given for reference. (b) Top 5 principal components. (c) Variance explained by each component (accumulation in orange).
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Supplementary Figure S9. Generalisation of ccRNN (orange scatter) for feedback horizons K from 3 to 7. The change in loss is
computed with reference to the cRNN (i.e. ccRNN - cRNN). Training loss is calculated after training for a fair comparison with final
validation performance.
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Supplementary Figure S10. Example images and captions from the validation set with correspondingmodel captions (cRNN in grey
and ccRNN in orange) and gold standard captions (black). Here we show a combination of examples of how the models describe
the presented image. In some case all or some models fail to give an accurate description of the image. In other cases all models
are able to provide an accurate caption for the image, with each model displaying subtle differences in the generated captions.
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