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Abstract

Despite the rapid development of sequencing technology, single-nucleotide polymorphism

(SNP) array is still the most cost-effective genotyping solutions for large-scale genomic re-

search and applications. Recent years have witnessed the rapid development of numerous

genotyping platforms of different sizes and designs, but population-specific platforms are

still lacking, especially for those in developing countries. We aim to develop methods to

design SNP arrays for thse countries, so the arrays should be cost-effective (small size), yet

can still generate key information needed to associate genotypes with traits. A key design

principle for most current platforms is to improve genome-wide imputation so that more

SNPs (imputed tag SNPs) not included in the array can be predicted. However, current

tag SNP selection methods mostly focus on imputation accuracy and coverage, but not the

functional content of the measured and imputed SNPs. It is those functional SNPs that

are most likely associated to traits. Here, we propose LmTag, a novel method for tag SNP

selection that not only improves imputation performance but also prioritizes highly func-

tional SNP markers. We apply LmTag on a wide range of populations using both public and

in-house whole genome sequencing databases. Our results showed that LmTag improved

both functional marker prioritization and genome-wide imputation accuracy compared to

existing methods. This novel approach could contribute to the next generation genotyping

arrays that provide excellent imputation capability as well as facilitate array-based functional

genetic studies. Such arrays are particularly suitable for under-represented populations in

developing countries or non-model species, where little genomics data are available while

investment in genome sequencing or high-density SNP arrays is limited.
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Introduction

Single-nucleotide polymorphism (SNP) arrays and recent technology whole-genome sequenc-

ing (WGS) have been widely used in genomic research and applications. While WGS is

attractive due to its ability to capture all genetic variation in the genome, SNP arrays have

been the most widely used strategy due to several advantages such as cost-effectiveness,

reliability of the technology, and light computational requirement (Tam et al., 2019). SNP

arrays still play important role in Genome-wide association studies (GWAS), which have

facilitated the detection of DNA variants associated with human complex traits, including

disease traits, leading to numerous proven and potential translational applications toward

new diagnoses and therapeutics over the last decade (Visscher et al., 2017). However, due to

the small number of SNPs that can be included, array-based genomic studies often required

imputation to increase the number of variants for association tests by predicting the geno-

types at the SNPs that are not directly genotyped in the study samples. The performance

of imputation is affected by three main factors, including imputation algorithms (Das et al.,

2016), imputation reference panels (Huang et al., 2015; McCarthy et al., 2016), and the

design of SNP arrays (Nelson et al., 2013).

Available genomic studies have focused mainly on European descent, accounting for ap-

proximately 79% of all GWAS participants, while the overall European population comprises

about 16% of the total global population (Martin et al., 2019; Peterson et al., 2019). Given

that the majority of human functional genetic variants are population-specific and rare (Nel-

son et al., 2012; Consortium et al., 2015), the imbalance in current population genetic data

resources implies a critical problem. Important variants with low frequencies or completely

absent in European populations may be missed by GWAS discoveries so far (Wojcik et al.,

2019). Consequently, disease risk predictions, which benefit the clinical arena, are currently

restricted in the European ancestry population (Duncan et al., 2019). This is a critical issue,
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especially for the majority of the world population, who are under-represented in genomic

studies. These underrepresented populations include both minority ethnic groups within

high-income countries, and citizens of low and middle-income countries (Lewis and Vassos,

2020). This fact leads to an urgent and unmet demand to develop and use customized geno-

typing platforms for under represented populations (Tam et al., 2019). Indeed, population-

specific genotyping arrays such as the UK Biobank Axiom Array (Bycroft et al., 2018), the

Axiom-NL Array (Ehli et al., 2017), the TWB Array (Chen et al., 2016), the Axiom China

Kadoorie Biobank Array (Dai et al., 2019), the Japonica and Japonica NEO Arrays (Kawai

et al., 2015; Sakurai-Yageta et al., 2020), and the Axiom KoreanChip (Moon et al., 2019)

have been successfully implemented to facilitate genomic studies in these populations.

To develop such arrays, various strategies to select tag SNPs are employed. A tag SNP is a

SNP that can represent a group of SNPs called a haplotype due to strong associations between

these neighboring alleles (known as linkage disequilibrium, LD). Tag SNP selection methods

can be classified into two main categories including block-based (Johnson et al., 2001; Patil

et al., 2001; Sebastiani et al., 2003), and LD-based approaches (Carlson et al., 2004; Liu

et al., 2010; Hoffmann et al., 2011a; Wojcik et al., 2018). The former approach involves

partitioning the whole chromosome into blocks, often relying on a predefined haplotype

block structures or simply based on genomic distance. For example, in the early generation

of human genotyping SNP array, tag SNPs were selected at intervals of approximately each

5-kilobase with a minor allele frequency of at least 5% (Gibbs et al., 2003). This strategy

has also been widely adopted in animal genetics, commonly referred to as the equidistance

method (Shashkova et al., 2020; Herry et al., 2018). On the other hand, the latter approach

utilizes LDs among nearby SNPs to find tag SNPs with a greedy approach to maximize LD

coverage (Weale et al., 2003; Sakurai-Yageta et al., 2020; Wojcik et al., 2018). A typical

algorithm starts with a set of targeted SNPs, then weights each SNP candidate by the

number of neighbor SNPs (within a specific genomic distance) that have pairwise LD r2
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greater than or equal to a specific threshold, e.g., 0.8. The SNP with the highest score is

then selected, and the associated SNPs are removed from the targeted set. These steps are

iterated until reaching the desired number of tag SNPs or no more SNP satisfies the LD r2

threshold (Carlson et al., 2004; Weale et al., 2003). In addition, multi-marker LD approach

(Wang and Jiang, 2008; Hao, 2007; Liu et al., 2010), pairwise LD hybrid tag SNP selection

(Hoffmann et al., 2011a),cross-population prioritizing scheme (Wojcik et al., 2018) also aimed

to improve LD coverage and imputation accuracy. Despite the efforts, these strategies still

have certain limitations. Firstly, it is unclear that tag SNP selection approaches to maximize

LD coverage or genomic distance can provide the best imputation accuracy performance,

which is the golden standard of SNP array assessment nowadays (Nelson et al., 2013; Wojcik

et al., 2018). Secondly, SNPs on genotyping arrays are typically not causal variants because

they are chosen to be highly LD correlated with neighboring SNPs to cover large genomic

regions to allow for imputing unmeasured SNPs, a common design practice in the greedy

paradigm (Schaid et al., 2018).

To address these challenges, we introduce a novel method called LmTag, which facili-

ates design of functional-enrichment, imputation-aware, and population-specific SNP arrays.

Firstly, LmTag uses a robust statistical modeling to systematically integrate LD information,

minor allele frequency (MAF), and physical distance of SNPs into the imputation accuracy

score to improve tagging efficiency. Secondly, LmTag adapts the beam search framework

(Lowerre, 1976) to prioritize both variant imputation scores and functional scores to solve

the tag SNP selection problem. We apply LmTag and comprehensively compare it with

common approaches of tag SNP selection using a wide range of both public and in-house ge-

nomics datasets. Our benchmarking results suggest that LmTag improves both imputation

performance and prioritization of functional variants. Furthermore, we show that tagging ef-

ficiency of tag SNP sets selected by LmTag are sustainability higher than existing genotyping

arrays, indicating the potential improvements for future genotyping platforms.
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Results

Overview of LmTag pipeline

An overview of LmTag is presented in Figure 1. The method includes three key steps: (i)

Imputation accuracy modeling, (ii) Functional scoring, and (iii) Functional tag SNP selection.

In the first step, a theoretical array (set of tag SNPs) is simulated, and imputation accuracy

scores of the corresponding tagged SNPs are estimated by leave-one-out cross-validation

(details in the method section). A linear model is then employed to assess imputation

accuracy scores of tagged SNPs based on pairwise LD r2, MAF of tag SNPs (those included in

the array), MAF of tagged SNPs (not included in the array), and distances between tag SNPs

and tagged SNPs. In the second step, SNPs are functionally scored based on public databases

including the GWAS catalog (MacArthur et al., 2017), the ClinVar (Landrum et al., 2018),

and the Combined Annotation-Dependent Depletion (CADD) (Kircher et al., 2014) to enrich

functional variants in the array design. Finally, parameters from the model are used to

estimate imputation accuracy score for each SNP. These estimated scores, together with the

functional ranking of SNPs, are then used in functional-enrichment tag SNP selection by the

beam search algorithm with beam width parameter K (Lowerre, 1976). Further details are

described in the “Methods" section.

LmTag improves functional enrichment in tag SNP selection

LmTag performancce is compared against commonly used tag SNP selection methods in-

cluding TagIt (Weale et al., 2003), FastTagger (Liu et al., 2010), EQ_uniform (Shashkova

et al., 2020), and EQ_MAF (Herry et al., 2018) by two main metrics: functional enrichment

and imputation performance. The benchmarking is performed in both in-house and public

genomics datasets including pilot phase data from the 1000 Vietnamese Genomes Project

(1KVG), and data of three super populations comrising obtained from the 1000 Genomes
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Project samples re-sequenced by New York Genome Center (1KGP-NYGC) (Byrska-Bishop

et al., 2021). Overall, four populations including Vietnamese pilot phase (VNP), East Asian

(EAS), European (EUR), and South Asian (SAS) comprising WGS data of 504, 504, 503,

and 489 individuals respectively are included in the analysis. Further details of datasets and

metrics used in compassion experiments are described in the “Methods" section.

The summary results of functional enrichment in tag SNP selection of LmTag, EQ_uniform,

EQ_MAF, TagIt, FastTagger, and baseline (mean functional score and proportion of bio-

logical evidenced markers in all SNPs in the population) are reported in Tables 3, 4 and

visualized in Figures 2, 3. LmTag is evaluated with various beam width parameters K=1,

10, 20, 30, 50, 100, 200, denoted as LmTag_K1, LmTag_K10, LmTag_K30, LmTag_K50,

LmTag_K100, LmTag_K200, respectively. The results are collected from all four popula-

tions EAS, EUR, SAS, and VNP under the 32,000 tag SNPs setting.

In general, LmTag shows a significant improvement in functional prioritization with al-

most zero imputation performance trade-off. Particularly, in comparison to the baseline and

other methods, LmTag (at K = 200) obtains significant improvements with approximately

2-fold enrichment in terms of selection GWAS and ClinVar markers; and yet increases aver-

agely 15-17% CADD score percentile ranking in term of selection population-wide variants

as tag SNPs.

When K is set as 1, LmTag becomes a standard greedy algorithm with the “best-first"

search approach, i.e., no optimization is applied for selecting functional variants. In this

setting, mean CADD scores, mean CADD percentiles, proportions of GWAS, and ClinVar

markers selected by LmTag are comparable with the baseline and other methods, as ex-

pected. The mean CADD scores of tag SNPs selected by LmTag_K1 vary from 2.92 to 2.96

across examined populations, and are in the same range with the baseline, which varies from

2.91 to 2.96. Other methods also yield comparable performances with LmTag_K1, ranging

from 2.89 to 3.04. Conversion from ‘PHRED-scaled’ score into percentile scale shows mean
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CADD score percentile of LmTag_K1 and the others are equivalent with the rank from 37.97

to 39.34. In other words, under the setting of no optimization for functional SNPs, CADD

scores / percentiles of tag SNP distribute equivalently regardless of the method of choice.

Similarly, when considering prioritization of markers using biological evidence databases, the

proportions of GWAS and ClinVar marker selected by LmTag_K1, and other methods are

mostly comparable to the baseline except for GWAS marker proportions of EQ_MAF as

shown in Figure 3. Under the baseline scenario, the expected proportions of GWAS and Clin-

Var in 32,000 tag SNPs are 7.90%, 7.01%, 6.58%, and 8.36% in EAS, EUR, SAS, and VNP,

respectively. The corresponding ranges for LmTag_K1, EQ_uniform, TagIt and FastTagger

are 7.68 - 9.34%, 6.58 - 8.36%, 9.34 - 10.50%, respectively. Notably, the EQ_MAF method

appeared to select slightly higher proportions of ClinVar markers, from 8.74-11.45%, and

significantly more GWAS markers ranging from 15.26 to 16.17% that are possibly explained

by the detection power is bias toward high frequency variant in both clinical and association

studies.

When the value of K increase, as expected, a clear improvement of functional enrichment

is shown as detailed in Tables 3, 4, 5 and Figures 2, 3. Consistently, CADD scores and

proportions of GWAS and ClinVar show a strong positive correlation with the increase of

K, while the overall imputation accuracy is converged or experienced very small changes.

For example, in the VNP population, the overall imputation accuracies stay stable around

89.80% despite the dramatic changes of K values from 1 to 200. While the functional SNP

prioritization process do not reduce LmTag imputation performance, there are significant

improvements in tag SNP functional scores. The mean CADD score percentile increase from

37.97 to 44.83, 46.97, 48.25, 49.91, 52.67, and 50.20 in response to K value increasing from

1 to 10, 20, 30, 50, 100, and 200, respectively. It is noted that, mean CADD score percentile

values are computed by taking the average percentile ranks of all selected tag SNPs and not

by directly converting from the mean of CADD “PHRED-scaled" scores. Importantly, the
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GWAS and ClinVar proportions covered by 32000 tag SNP also increase more than 2-folds,

both from 8.36% to 18.13%, and 18.05%, respectively. Consistent improvements could be

observed clearly in other populations. At K=200, the average CADD score mean percentiles

of EAS, EUR, SAS increase to 55.65, 56.48, 56.44, respectively. The number of GWAS and

ClinVar markers selected are also significantly improved in these populations.

LmTag demonstrates superior tagging efficiency

Regarding imputation performance, LmTag outperforms other methods in both imputa-

tion accuracy and imputation coverage. The K parameter used in this comparison is 200,

while the number of tag SNPs is set at various cutoffs. Details are reported in Table 6,

and Figure 4. Regarding imputation accuracy, LmTag is the top performer, followed by

TagIt, and EQ_uniform while the worst performers are interchanged between EQ_MAF

and FastTagger depending on population. At the cutoff of 32,000, performance differences

are substantially large between LmTag against EQ_uniform, EQ_MAF, and FastTagger but

smaller against TagIt. For example, in the EAS population, LmTag obtains 87.19% overall

imputation accuracy compared with 86.29%, 82.51%, 82.33%, and, 78.10% achieve by TagIt,

EQ_uniform, FastTagger, and EQ_MAF respectively. The same trend is also observed in

EUR, SAS, and VNP with 88.50%, 86.50%, and 89.80% imputation accuracies achieved by

LmTag_200. In terms of imputation coverage, LmTag also produces the highest perfor-

mance. Taking imputation r2 threshold of 80% as an example, LmTag yields the imputation

coverage of 83.65%, 85.25%, 81.66%, and 87.81% in EAS, EUR, SAS and VNP while the

second-ranked performer obtains 82.11%, 84.08%, 80.13%, and 87.04% respectively.

To examine potential effects of the number of selected tag SNPs on imputation accuracy

and imputation coverage, we further evaluate overall imputation accuracy across different

scaffolds by selecting top-ranked SNPs from each population with various cutoffs: 32,000,

28,000, 24,000, 20,000, 16,000, 12,000, and 8,000. Details of overall imputation accuracies
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are reported in Table 6. We observe that the imputation accuracy and imputation coverage

increase in response to the increased number of tag SNPs selected. However, the relation-

ship is not linear as shown in Figure 4 and Figure 5. Nevertheless, LmTag consistently

outperforms other methods across all settings. In general, the increasing rates of imputation

accuracy and imputation coverage are lower when the numbers of tag SNP is high. In other

words, when the scaffolds of the SNP array contain a large enough number of SNPs, adding

more tag SNPs do not significantly improve imputation accuracy and imputation coverage

compared to those with small scaffolds. For example, adding 4,000 tag SNPs at 12,000 tag

SNPs scaffold yield approximately 8% improvement in imputation accuracy compared to

the scaffolds of 8,000 SNPs regardless of the method of choice. Meanwhile, increasing 4,000

SNPs to the scaffold of 28,000 results in less than 2% improvement in imputation accuracy.

Interestingly, we observe that imputation coverages of all methods dramatically change in

response to number of tag SNPs. For example, LmTagK_200 obtains more than 80% cov-

erage with imputation cutoff at 80% at 32,000 tag SNP. The coverage reduces significantly

to 50-60% when number of tag SNPs is 8000, and even lower for EQ_MAF to 18-25%.

LmTag helps improve current genotyping arrays

To further explore potential applications of LmTag in designing genotyping arrays. We also

compare imputation performances of tag SNPs selected by LmTag (28,000, and 32,000 tag

SNPs scaffolds, with K=200) against tag SNP sets from various genotyping arrays with

sizes ranging from 30,710 to 49,191 tag SNPs in all populations. In this setting, fewer

SNPs are used for LmTag compared to other arrays, as shown in Table 2. The compared

arrays include widely used arrays include Genome-Wide Human SNP Array 6.0, Axiom

Genome-Wide ASI, Axiom Genome-Wide EUR, Infinium Global Screening Array v3.0; and

recently developed arrays such as Axiom Precision Medicine Diversity Array, Axiom Precision

Medicine Research Array; and also customized-population-specific arrays including Axiom
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UK Biobank Array, Axiom Japonica Array NEO. Manifests of arrays are downloaded from

respective manufacturers’ websites. Details of tested arrays and their corresponding number

of tag SNP in chromosome 10 are reported in Table 2. Tag SNPs in chromosome 10 were then

extracted and harmonized to the UCSC hg38 reference genome coordinate with CrossMap

v0.2.6 if lifted over is required to obtain final tag SNP sets (Zhao et al., 2014). Imputation

performances are estimated through leave-one-out cross-validation as described previously.

The comparison yields results as shown in Table 7, and Figure 6. In general, LmTag’s

tag SNP sets outperform all compared array tag SNP sets. At 32,000 tag SNP scaffold,

LmTag achieves 87.19%, 88.50%, 86.50%, and 89.80% overall imputation accuracies in EUR,

EAS, SAS, and VNP, respectively, while the corresponding performances at 28,000 tag SNPs

scaffold are 86.03%, 87.60%, 85.30%, and 88.91%. We also observe that population-specific

optimization and size of the tag SNP sets in the arrays are two main factors affecting im-

putation performances. For instance, the recently developed Axiom Japonica Array NEO

(Sakurai-Yageta et al., 2020) and the Axiom UK Biobank Array (Bycroft et al., 2018) per-

formed best in the EAS and EUR populations with 84.70%, and 87.24% overall imputation

accuracies, respectively. Besides, small size global optimization arrays such as the Infinium

Global Screening Array v3.0 (30,710 tag SNPs in chromosome 10) shows the poorest per-

formances across populations with 78.35%, 83.15%, 77.77%, and 82.81% overall imputation

accuracies in EUR, EAS, SAS, and VNP, respectively. On the other hand, the Genome-Wide

Human SNP Array 6.0 (49191 tag SNPs in chromosome 10) obtain much higher performances

of 81.40%, 84.64%, 82.40%, and 85.69% for the same populations, respectively.

Overall, LmTag can offer higher performance genotyping arrays with less number of tag

SNPs compared to existing arrays. The imputation improvements vary from 9% compared to

the Infinium Global Screening Array v3.0 in the EAS population to 1.5% compared to Axiom

UK Biobank Array in the EUR population. Notably, for the VNP population, LmTag’s tag

SNP sets specific for VNP appears to improve the imputation coverage the most compared
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to all other arrays, as shown in Table 7.

Discussion and conclusions

Early genome-wide SNP arrays were usually designed by selecting tag SNPs from reference

panels of predominantly European population (Rosenberg et al., 2010). As a result, these ar-

rays often produce poorer performance in non-European populations (Altshuler et al., 2008;

Rosenberg et al., 2010). Using customized, small-size SNP arrays at population-specific

levels has recently emerged as an extremely cost-effective genotyping solution for underrep-

resented populations (Tam et al., 2019). For small arrays, imputation capability is essential

to increase the genotyping coverage across the genome to capture as many DNA variants

as possible. In addition to imputation performance, researchers also focus on the functional

aspect of tag SNPs that are used in SNP arrays, which can help with fine mapping and

increase the chance to detect true causal variants associated with traits. A recent com-

parative study of genotyping SNP arrays (Verlouw et al., 2021) discussed the importance

of selecting markers based on biological-evidence and CADD functional scores (Rentzsch

et al., 2019). In this study, we introduce a novel method, LmTag, that is optimized for both

imputation and inclusion of functional variants. We compare the performance of LmTag

to current widely used methods including EQ_uniform, EQ_MAF, TagIt, and FastTagger;

and tag SNP sets from various SNP arrays. These methods and array designs are evaluated

across four different populations. The results show that LmTag not only achieves higher

imputation performance than other approaches but also significantly enrichs the tag SNP

set with functional variants. Furthermore, results from our comparative analysis against

existing SNP arrays suggest that LmTag has a high potential for designing new genotyping

arrays, especially for underrepresented populations.

The improvement of tagging efficiency is mainly contributed by the LmTag statistical
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model. Instead of utilizing solely pairwise LD information as in conventional methods such as

TagIt, LmTag assesses the relationship between imputation accuracy, mirror allele frequency,

pairwise LD, and genomic distance and then uses this relationship to compute imputation

scores for ranking SNP candidates tagging procedure. The model explains from 26.31% up to

44.15% imputation accuracy, depending on the genetic structure of populations. In all cases,

the significant association of the model parameters with imputation accuracies are found,

although the effect sizes varied across populations as shown in Table 8. While pairwise LD,

MAF of both tag SNPs and tagged SNPs positively correlate with imputation accuracy,

genomic distance showed the reverse trend.

Another advantage of LmTag is the implementation of beam search that considers a

secondary factor in tag SNP selection. Besides genome-wide imputation capability, the

inclusion of likely functional variants can enhance the value of genotyping SNP arrays by

producing key information on potential causal SNPs underlying phenotypes. For example,

the UK Biobank Axiom Array (Bycroft et al., 2018), Japonica NEO Arrays (Sakurai-Yageta

et al., 2020), and the Axiom KoreanChip (Moon et al., 2019) applied various selection criteria

to include likely functional markers in their array designs. However, these functional SNPs

were selected independently from tag SNP selection procedure, i.e. no prioritization of tag

SNPs regarding their biological functions was implemented. We introduce here an approach

of searching for tag SNPs that are also highly functional. We believe that our proposed

method will facilitate the next generation genotyping arrays that have high imputation

performance as well as high biological functional potential that would facilitate post GWAS

analysis such as statistical fine-mapping (Schaid et al., 2018) and the elucidation of biological

mechanisms underlying the relationship between genotypes and phenotypes. Notably, in this

study, we demonstrate how LmTag work in human datasets and CADD scores are used as

a metric to approximate functional terms. Still, in practice, users could apply the method

in other species with any criteria as long as they can provide a ranking scale for each SNP.
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For example, in other non-model species where calling confidence of the markers is a crucial

factor, the method can be adapted for marker quality scores instead of functional scores, as

long as a ranking system is provided.

Methods

Imputation accuracy modeling

Our aim is to combine systematical information from both pairwise LD r2, MAF, and ge-

nomic distance to improve imputation accuracy of tag SNP selection strategy. To this end,

we model imputation accuracy as a linear model:

r = β0 + β1.l + β2.mtag + β3.mtagged + β4.d, (1)

where:

1. r is imputation r2 (described later).

2. l is LD r2 between tag SNP and tagged SNP, (l ∈ (0 : 1]).

3. mtag is MAF of tag SNP, (mtag ∈ (0 : 0.5]).

4. mtagged is MAF of tagged SNP (mtagged ∈ (0 : 0.5])..

5. d is genomic distance between tag SNP and tagged SNP, (d ∈ N).

In this model, untyped SNPs are assumed to be tagged by the highest LD SNP in the tag

SNP set. The relations among pairwise LD r2, MAF, and genomic distance are established

by simulation. In details, a theoretical naive SNP array is created following by imputation

accuracy scores computation for corresponding tagged SNPs. The corresponding information
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including LD, genomic distance are then extracted before using to estimate parameters for

the linear model.

To make the simulation model as realistic as possible, we run a standard greedy tag

SNP selection algorithm, TagIt (https://github.com/statgen/TagIt) (Weale et al., 2003),

with default parameters (LD r2 threshold is 0.8, and MAF threshold is 0.01) to estimate

scaffold sizes k for each chromosome. We denote the input containing n SNPs as A =

{SNP1, SNP2, SNP3, ..., SNPn}. We then sorted them by their genomic positions and uni-

formly sub-sampled k SNPs as a tag SNP set T = {SNP1, SNP2, ..., SNPk}. The remaining

n−k SNPs are labeled as a tagged SNP set G = {SNPk+1, SNPk+2, ..., SNPn}. Imputation

accuracy scores for tagged SNPs ∈ G are computed with a leave-one-out internal validation

approach (Nelson et al., 2013; Wojcik et al., 2018). Specifically, imputation is performed

individually for each sample with the exclusion of itself from the reference panel with Mini-

mac4 v1.0.2 (Das et al., 2016). Tag SNPs ∈ T are denoted as ‘genotyped’ and the sites ∈ G

are set as missing. The imputation accuracy ii for each tagged SNPi ∈ G is represented by

the concordance rate, e.g., squared Pearson’s correlation coefficient which we termed impu-

tation r2 to make a distinction from LD r2, between imputed genotype dosages in (0–2) and

masked ground truth genotypes in (0, 1, 2).

Pairwise LDs are calculated using Plink v1.9 within a maximum genomic distance of 1

megabase (MB), and minimum LD r2 cutoff of 0.2 (Chang et al., 2015). Allele frequencies

are computed and extracted with bcftools v1.10.2 (https://github.com/samtools/bcftools).

To simplify the linear model, we assume that each tagged SNP’s genotype is inferred based

on the sole tag SNP that has the highest LD r2. Thus, we find the best tag SNPi ∈ T

for each SNPj ∈ G that has the most LD with the targeted tag SNPj to extract relevant

information including LD pairwise lij, MAF mi, mj, and genomic distance dij. Together with

imputation scores ri estimated from the previous step, these data are then used to estimate

parameters for the linear model (1).
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SNP prioritization with high functional scores

In general, markers are functionally ranked based on biological evidence and genome-wide

predicted functional scores. In the current implementation, GWAS catalog and the Clin-

Var databases are used to select biological SNP markers (MacArthur et al., 2017; Landrum

et al., 2018). SNPs in these databases are functionally ranked to as in the highest score

category. For non-biological evidence SNPs, we use Combined Annotation-Dependent De-

pletion (CADD) scores to prioritize functional SNPs (Kircher et al., 2014). The CADD

scoring system is a widely used metric that effectively prioritizes causal variants in genetic

analyses, especially in highly penetrant contributors to severe Mendelian disorders. CADD

integrates more than 60 genomic features based on DNA sequence, for examples gene model

annotations, evolutionary constraint, epigenetic measurements, and functional predictors

into a single score by a machine learning model. In addition to the comprehensive use of

genomic features, two other key advantages of the CADD model include the genome-wide

estimation and the interpretability for each estimate. CADD scores are computed for all

approximately 9 billion possible single nucleotide variants (SNV) across the human genome.

For interpretability, the scores are transformed into ‘PHRED-scaled’ to provide a relative

ranking system between SNVs at genome-wide coverage. Regardless of the details of the

annotation set and model parameters, CADD scores can be interpreted simply as follows: a

scaled score of 10 or greater equivalent to a raw score in the top 10% of all possible reference

genome SNVs, and a score of 20 or greater indicates a raw score in the top 1%, and so on

(Rentzsch et al., 2019).

Functional tag SNP selection

Similar to most LD based tag SNP selection methods (Carlson et al., 2004; Weale et al., 2003;

Liu et al., 2010; Hoffmann et al., 2011a,b), we employ a greedy approach for computational

efficiency. However, there are two main differences in our algorithm. Firstly, we use estimated
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pairwise imputation r2 scores for ranking SNP candidates instead of using pairwise LD r2

like conventional methods. Specifically, for each pair of SNPs, imputation score r2 for each

SNP is estimated independently by using coefficients derived from the established linear

model and the corresponding LD r2, it’s MAF, mate’s MAF, and genomic distance between

the two SNPs. Given two SNPs, SNPi, and SNPj with LD r2 (SNPi, SNPj) = lij, MAF

SNPi = mi, MAF SNPj = mj, and genomic distance (SNPi, SNPj) = dij. Their estimated

imputation scores r̂i, and r̂j are calculated as:

• r̂i = β̂0 + β̂1.lij + β̂2.mi + β̂3.mj + β̂4.dij

• r̂j = β̂0 + β̂1.lij + β̂2.mj + β̂3.mi + β̂4.dij

where β̂0, β̂1, β̂2, β̂3, and β̂4 are estimated from the linear model (1). Secondly, LmTag

employs beam search (Lowerre, 1976) instead of the best-first search strategy like other

algorithms. The main advantages of beam search is allowing us to prioritize highly functional

SNPs. In details, we introduce a tuning parameter K in the algorithm to select tag SNPs

with high functional scores. LmTag algorithm starts with an empty tag SNP set T , a tagged

SNP set G, and n input SNP candidates A = {SNP1, SNP2, SNP3, ..., SNPn}. For each

iteration, the algorithm includes two main steps as follows:

1. Imputation scoring.

Each SNPi ∈ A is scored as si which is sum of estimated imputation r2 r̂j of all its

neighboring SNPj ∈ A given that pairwise LD r2 lij is equal to or greater than a

specific cut-off c:

si =
n∑

j=1

r̂j; If lij ≥ c, and j ̸= i. (2)

2. Tag SNP selection with beam search.

Our approach considers the functional term of each marker in tag SNP selection by

adapting the beam search algorithm (Lowerre, 1976). In brief, beam search is a heuris-
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tic searching algorithm used to solve combinatorial optimization problems. This ap-

proach employs a truncated branch-and-bound searching procedure where only the

most promising K nodes (instead of all nodes) at each level of the search tree are eval-

uated and retained for further branching; K is the so-called beam width (Valente and

Alves, 2005). We consider top K SNPs with highest imputation scores s as a candidate

list of tag SNPs. Then, the search branching is extended to functional scores, i.e. the

SNP with the highest functional score in this list is subsequently chosen as a tag SNPt.

This SNP is subsequently moved from the candidate set A into tag SNP set T , and

SNPt’s neighboring SNPs (satisfying pairwise LD r2 cut-off) are moved into tagged

SNP set G. Overall, both the selected tag SNP and its associated tagged SNPs are

removed from the candidate set A.

These steps are iterated until either A is empty or no pair (SNPi, SNPj) ∈ A satisfying

the condition lij ≥ c could be found. Finally, the tag SNP set A, and their associated tagged

SNP set G are exported.

Datasets

The genomic data of the 1KVG pilot phase were obtained from 504 unrelated Vietnamese

(Kinh ethnic group), including 208 males and 296 females. Their genomes were sequenced at

coverage 30x with 150bp paired-end reads using an Illumina NovaSeq 6000 system. Variant

calling was performed using the DRAGEN pipeline (Miller et al., 2015) with the GRCh38

patch release 13 reference genome (Van der Auwera et al., 2013). Quality check and filtering

were performed with bcftools v1.10.2, and phasing was performed with SHAPEIT v4.1.3 to

obtain the phased genotypes in Variant Call Format (VCF) (Delaneau et al., 2019).

Phased genotype data in VCF format of 1KGP NYGC high coverage are obtained from

The International Genome Sample Resource (IGSR) data portal. We include only unrelated

samples belonging to EAS, EUR, and SAS in the analysis. These samples are assigned to
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their super population according to IGSR’s annotation. All genomic data are reprocessed

with bcftools v1.10.2 to keep only biallelic SNP with minor allele frequency (MAF) > 1%.

CADD v1.6 database (Rentzsch et al., 2019), release version 2021-07-08 of the GWAS

catalog (MacArthur et al., 2017), and the ClinVar database (Landrum et al., 2018) are

downloaded and filtered to obtain functional scores for each population. Finally, processed

genomic data of four populations and their associated functional annotation are used in

our analysis, including VNP , EAS, EUR, and SAS, which comprise 504, 504, 503, and

489 individuals respectively. Details of used datasets can be found in 1. Due to limited

computational resources, our analysis was performed on chromosome 10, but the results

obtained should be generalizable to all chromosomes.

Performance evaluation

We compare LmTag against commonly used methods in SNP array design including TagIt

(Weale et al., 2003), FastTagger (Liu et al., 2010), EQ_uniform (Shashkova et al., 2020),

and EQ_MAF (Herry et al., 2018) using various metrics including imputation accuracy and

functional enrichment. We also compare imputation accuracies of tag SNPs selected by

LmTag against those of tag SNP sets from various commercial genotyping arrays. By this

way, we want to explore potential applications of LmTag in designing genotyping arrays.

In terms of current methods for genotyping array design, the first two methods optimize

imputation accuracy by maximizing linkage disequilibrium while the later methods select

makers based on the equidistant principle. The distance-based methods are widely used

in animal SNP array designs that involve dividing chromosomes into certain intervals with

equal genomic length (Hayes et al., 2012; Shashkova et al., 2020; Joshi et al., 2018) and

further optimized toward MAF (Dassonneville et al., 2012; Qiao et al., 2017; Herry et al.,

2018). For each interval, the SNP with the highest MAF is selected as representative of all

SNPs in the interval (Herry et al., 2018). TagIt is a typical greedy algorithm selecting tag
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SNPs based on pairwise LD information widely used in human SNP array designs (Weale

et al., 2003; Sakurai-Yageta et al., 2020; Wojcik et al., 2018). Meanwhile, FastTagger is

a fast implementation of the multi-marker LD approach, which reduces the number of tag

SNPs selected while still maintaining high genomic coverage. In brief, the multi-marker

LD approach methods find association rules of one SNP with multiple SNPs, termed multi-

marker r2 statistics, and use this information to find tag SNPs (Hao, 2007; Hao et al., 2007;

Liu et al., 2010). Details on comparing these methods can be found in previous reports

(Nguyen et al., 2021).

Evaluation metrics are based on imputation accuracy and functional prioritizing. Impu-

tation accuracy is measured as squared Pearson’s correlation of imputed dosages estimated

through a leave-one-out internal validation and the ‘true genotypes’. In details, selected

tag SNPs are denoted as ‘genotyped’, and other sites are set as missing. For each SNP,

squared Pearson’s correlation is calculated from imputation ‘estimated dosages’ (0-2) to the

‘true genotypes’ (0,1,2) in the original VCF file (Hoffmann et al., 2011a; Nelson et al., 2013;

Wojcik et al., 2018). An overall imputation value is defined as mean imputation r2 of all

markers in the population. Functional prioritizing is evaluated based on CADD scores and

their corresponding percentiles among all SNPs, and the relative proportion of GWAS and

ClinVar markers which is defined by the number of GWAS and ClinVar markers in the tag

SNP sets over their corresponding number in the examined populations. These parameters

are defined as follow:

P = (1− 10−( Q
10

))× 100, (3)

pg =
ng

Ng

× 100, (4)
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and

pc =
nc

Nc

× 100; (5)

where P is percentile ranking of CADD score; Q is its original scores in ‘PHRED-scaled’;

Ng and Nc are total GWAS and ClinVar markers in each populations; ng, nc are number

of GWAS and ClinVar markers in selected tag SNP sets; and pg, pc are their corresponding

proportions.

For comparison between methods, the LD cutoff is set at 0.8 in LD-based methods, includ-

ing LmTag, TagIt, and FastTagger. FastTagger requires further LD settings for min_r2_2,

and min_r2_3 that were set as 0.9, and 0.95 respectively, as recommended by the authors.

LmTag is further ran with several K values varying from 1 to 200 to examine the relationship

between imputation accuracy and functional SNP inclusion. Functional scores of selected

tag SNPs by the other tag SNP selection methods are also computed for comparison. To

enable a fair and comprehensive evaluation, tag SNPs are selected corresponding to multiple

cutoffs ranging from 8000 to 32000 in all populations.

Availability of data and materials

The 1KGP-NYGC datasets are freely available at IGSR data portal (https://www.internat

ionalgenome.org). The 1KVG pilot phase datasets are available under agreement at MASH

data portal (https://genome.vinbigdata.org/). LmTag is available for research only purpose

at: https://github.com/datngu/LmTag. Data and source codes to generate figures of this

study are available at: https://github.com/datngu/LmTag_data_analysis.
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Figure 1: Overview of LmTag. (i) Imputation accuracy modeling, this includes modeling
imputation accuracy metric as a function of LD, MAFs, and genomic distances. (ii) Func-
tional scoring, this includes steps of weighting functional scores of SNPs based on public
databases. (iii). Functional tag SNP selection, Imputation capability of each SNP is repre-
sents as triangles while functional scores are showed in the lower rectangles. When K = 1,
the beam search algorithm becomes the best-fist search that select SNP with highest esti-
mated imputation performance - colored bold red triangles. When K > 1, the algorithm
select top K SNPs with the highest estimated imputation performances - colored light pink
triangles, the functional scores in these SNPs - colored light green is weighted to find the
highest functional SNPs as tag SNPs - colored bold red triangles.
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Figure 2: Mean percentile of CADD scores of tag SNP selected by LmTag (with K=1, 10,
20, 30, 50, 100, 200), EQ_uniform, EQ_MAF, TagIt and FastTagger. Baseline shows mean
percentile of CADD scores of all input markers (32,000 SNPs) in each population.
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Figure 3: Percentages of GWAS and Clinvar makers covered by 32000 tag SNPs selected
by LmTag (with K = 1, 10, 20, 30, 50, 100, 200), EQ_uniform, EQ_MAF, TagIt and Fast-
Tagger over total number of GWAS and Clinvar makers in each population. Baseline shows
percentages of GWAS and ClinVar markers covered over total number of GWAS and Clinvar
makers in each population corresponding 32000 tag SNP scaffold.
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Figure 4: Overall imputation accuracies (mean imputation r2 of all markers) for each pop-
ulation corresponding to multiple cutoffs ranging from 8000 to 32000 tag SNPs selected by
LmTag (with K = 200 ), EQ_uniform, EQ_MAF, TagIt and FastTagger.
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Figure 5: Imputation coverages (proportions of markers with imputation r2 greater than
or equal to 0.8 over total markers in the population) for each population corresponding to
multiple cutoffs ranging from 8000 to 32000 tag SNP selected by LmTag (with K = 200),
EQ_uniform, EQ_MAF, TagIt and FastTagger.
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Figure 6: Imputation performances of various genotyping SNP arrays (Chromosome 10) in
comparison with 28000 and 32000 tag SNP selected by LmTag (with K = 200).
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Table 1: Datasets used in this study.
Populations Number of samples Total markers GWAS markers Clinvar markers
VNP 504 382700 5064 1590
EAS 504 405234 5160 1617
SAS 489 486024 5868 1876
EUR 503 456166 6168 1814

Table 2: Genotyping arrays used in this study.
Array Short name #tag SNP Chromosome 10
Infinium Global Screening Array v3.0 Infinium_GSA 30710
Axiom Genome-Wide ASI Axiom_GW_ASI 31489
Axiom Genome-Wide EUR Axiom_GW_EUR 32778
Axiom Japonica Array NEO Axiom_JAPONICA 33162
Axiom Precision Medicine Diversity Array Axiom_PMDA 34335
Axiom UK Biobank Array Axiom_UKB 38610
Axiom Precision Medicine Research Array Axiom_PMRA 41395
Genome-Wide Human SNP Array 6.0 Affymetrix_6.0 49191
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Table 3: Mean CADD scores in ‘PHRED-scaled’ and its equivalent percentile of tagSNP
selected by LmTag (with K = 1, 10, 20, 30, 50, 100, 200), EQ_uniform, EQ_MAF, TagIt
and FastTagger. Control shows mean CADD scores in ‘PHRED-scaled’ and its equivalent
percentiles of all input markers by each population.

Methods EAS EUR SAS VNP
Mean
CADD

Mean
percentile

Mean
CADD

Mean
percentile

Mean
CADD

Mean
percentile

Mean
CADD

Mean
percentile

Baseline 2.95 38.65 2.96 38.77 2.96 38.74 2.91 38.20
EQ_uniform 2.96 38.64 2.96 38.70 2.95 38.74 2.89 38.03
EQ_MAF 3.03 38.73 3.00 38.58 2.99 38.38 2.96 38.11
TagIt 2.96 38.23 2.92 38.02 2.99 38.52 2.93 37.99
FastTagger 3.04 38.81 2.94 38.63 2.96 38.83 3.04 39.34
LmTag_K1 2.96 38.33 2.93 38.19 2.92 38.29 2.92 37.97
LmTag_K10 3.63 45.51 3.58 45.22 3.46 44.24 3.57 44.83
LmTag_K20 3.84 47.55 3.76 47.02 3.69 46.49 3.79 46.97
LmTag_K30 3.98 48.77 3.93 48.68 3.86 48.08 3.93 48.25
LmTag_K50 4.20 50.76 4.16 50.66 4.11 50.33 4.12 49.91
LmTag_K100 4.54 53.39 4.51 53.59 4.48 53.45 4.45 52.67
LmTag_K200 4.82 55.65 4.87 56.48 4.86 56.44 4.77 55.20

Table 4: Percentages of GWAS and Clinvar makers covered by 32000 tag SNPs selected by
LmTag (with K = 1, 10, 20, 30, 50, 100, 200), EQ_uniform, EQ_MAF, TagIt and FastTagger
over total number of GWAS and Clinvar makers in each population. Baseline shows the
relative proportion of GWAS and ClinVar markers under the uniform distributed in tag SNP
selection, i.e,. baseline values are computed as 32000 devide for total number of marker in
the examined populations.

Methods EAS EUR SAS VNP
GWAS Clinvar GWAS Clinvar GWAS Clinvar GWAS Clinvar

Baseline 7.90 7.90 7.01 7.01 6.58 6.58 8.36 8.36
EQ_uniform 7.67 8.16 6.94 7.94 6.56 6.82 8.20 8.18
EQ_MAF 15.64 10.58 15.26 8.82 15.80 8.74 16.17 11.45
TagIt 10.00 9.96 9.48 9.54 9.34 9.28 9.91 10.50
FastTagger 7.83 7.24 6.84 8.88 6.56 7.36 8.06 10.06
LmTag_K1 9.34 8.60 8.20 8.88 8.11 7.68 9.06 8.81
LmTag_K10 11.61 10.51 10.42 10.36 9.90 8.96 11.02 11.07
LmTag_K20 12.83 11.94 10.85 10.97 10.77 9.59 12.03 11.70
LmTag_K30 13.76 12.68 11.54 11.36 11.32 10.23 12.58 12.77
LmTag_K50 14.79 13.30 12.42 12.02 12.05 11.25 13.88 14.15
LmTag_K100 17.27 15.71 13.85 14.28 13.97 13.01 15.86 16.16
LmTag_K200 19.96 16.51 16.05 16.32 15.61 14.71 18.13 18.05
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Table 5: Overall imputation accuracies (mean imputation r2 of all markers) of LmTag at
32000 tag SNP scaffold with various K values (K = 1, 10, 20, 30, 50, 100, 200).

Methods EAS EUR SAS VNP
LmTag_K1 87.22 88.59 86.55 89.83
LmTag_K10 87.22 88.57 86.55 89.80
LmTag_K20 87.22 88.58 86.49 89.80
LmTag_K30 87.22 88.56 86.48 89.79
LmTag_K50 87.23 88.53 86.50 89.83
LmTag_K100 87.19 88.51 86.49 89.78
LmTag_K200 87.19 88.50 86.50 89.80

Table 6: Overall imputation accuracies (mean imputation r2 of all markers), and imputation
coverages (proportions of markers with imputation r2 greater than or equal to 0.8 over total
marker in population) for each population corresponding to multiple cutoffs ranging from
8000 to 32000 tag SNP selected by LmTag (with K = 200), EQ_uniform, EQ_MAF, TagIt
and FastTagger.

# tag SNP Methods EAS EUR SAS VNP
Mean

imputation r2
Imputation
coverage

Mean
imputation r2

Imputation
coverage

Mean
imputation r2

Imputation
coverage

Mean
imputation r2

Imputation
coverage

32000

LmTag_K200 87.19 83.65 88.50 85.25 86.50 81.66 89.80 87.81
EQ_uniform 82.51 74.17 84.67 77.01 82.10 72.15 86.03 79.61
EQ_MAF 78.10 62.91 82.19 71.00 78.73 63.32 82.78 70.98
TagIt 86.29 82.11 87.71 84.08 85.71 80.13 89.23 87.04
FastTagger 82.33 71.07 81.86 72.06 79.67 68.40 80.90 69.96

28000

LmTag_K200 86.03 81.72 87.60 83.68 85.30 79.51 88.91 86.04
EQ_uniform 81.31 72.08 83.59 74.81 80.70 69.50 84.93 77.36
EQ_MAF 76.35 58.96 80.69 67.46 76.94 59.20 81.29 67.29
TagIt 84.99 80.00 86.86 82.53 84.64 78.13 88.13 85.10
FastTagger 81.41 69.31 80.68 69.83 78.15 65.28 79.19 66.86

24000

LmTag_K200 84.73 79.54 86.27 81.29 83.96 77.02 87.84 83.97
EQ_uniform 79.64 68.50 82.09 71.91 78.97 65.84 83.55 74.55
EQ_MAF 73.84 53.33 78.99 63.37 74.94 54.68 79.30 62.31
TagIt 83.68 77.59 85.51 80.14 83.24 75.56 86.95 82.68
FastTagger 80.38 67.51 78.00 65.15 75.60 61.23 77.62 64.04

20000

LmTag_K200 82.99 76.54 84.67 78.43 82.12 73.91 86.41 81.31
EQ_uniform 77.54 64.77 80.09 67.55 76.81 61.56 81.85 71.00
EQ_MAF 70.80 46.89 76.34 56.49 72.02 47.86 76.82 56.10
TagIt 82.02 74.65 83.95 77.01 81.34 72.04 85.60 80.06
FastTagger 78.77 64.17 76.13 62.07 73.57 58.14 76.11 61.31

16000

LmTag_K200 80.63 72.65 82.48 74.25 79.55 69.20 84.44 77.69
EQ_uniform 74.59 58.88 77.39 62.11 73.50 55.46 79.18 65.54
EQ_MAF 66.73 38.97 73.13 48.33 68.24 39.79 73.40 47.84
TagIt 79.62 70.26 81.73 72.75 78.78 67.25 83.55 76.29
FastTagger 75.18 55.70 72.28 56.27 69.62 52.34 71.87 54.47

12000

LmTag_K200 77.17 66.35 78.94 67.73 75.36 61.74 81.30 71.81
EQ_uniform 70.64 51.85 73.06 53.65 68.75 46.39 75.06 57.16
EQ_MAF 61.04 28.83 68.67 38.49 62.85 29.49 68.45 36.88
TagIt 76.14 64.21 78.26 66.19 74.53 59.84 80.50 70.42
FastTagger 72.28 50.25 67.46 49.93 64.44 45.62 67.98 48.72

8000

LmTag_K200 70.67 55.37 72.45 56.67 67.79 50.25 75.18 60.83
EQ_uniform 62.80 39.60 65.79 41.52 60.25 34.14 67.96 44.41
EQ_MAF 53.16 18.84 61.29 25.03 54.76 18.12 61.11 24.52
TagIt 69.48 52.56 71.88 55.23 66.96 48.07 74.40 59.01
FastTagger 65.57 37.27 60.24 41.38 56.54 37.21 59.55 39.37
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Table 7: Imputation performances of tag SNP sets selected by LmTag in examined popula-
tions (with K = 200 at 28000, and 32000 tag SNPs) against tag SNP sets extracted from
various genotyping arrays. The imputation accuarcies are reported by various MAF bins
from 0.01-0.5 and the "Overall" column reports mean imputation accuracy of all SNPs.

Population Array 0.01:0.025 0.025:0.05 0.05:0.075 0.075:0.125 0.125:0.2 0.2:0.3 0.3:0.4 0.45:0.5 Overall
EAS Affymetrix_6.0 56.21 74.06 83.51 87.77 89.23 89.46 89.15 88.56 81.40
EAS Axiom_GW_ASI 55.86 73.63 82.73 86.76 88.53 88.21 87.51 87.43 80.48
EAS Axiom_GW_EUR 52.98 70.49 80.73 84.65 87.12 86.68 86.28 86.11 78.53
EAS Axiom_JAPONICA 62.17 77.97 87.96 90.86 91.55 91.52 91.17 91.29 84.70
EAS Axiom_PMDA 53.55 72.19 80.85 85.19 86.75 86.95 86.06 86.12 78.85
EAS Axiom_PMRA 59.69 75.06 82.66 85.77 86.82 87.18 86.62 86.23 80.52
EAS Axiom_UKB 53.37 69.53 80.52 85.03 87.01 87.36 87.00 86.36 78.74
EAS Infinium_GSA 56.07 72.71 80.16 83.67 85.54 85.50 85.02 84.18 78.35
EAS LmTag_K200_28000 67.44 81.51 88.06 90.72 91.62 91.77 91.16 91.17 86.03
EAS LmTag_K200_32000 70.25 83.10 89.10 91.48 92.23 92.39 91.85 91.85 87.19
EUR Affymetrix_6.0 66.48 79.04 86.71 88.77 91.06 91.28 91.09 91.61 84.64
EUR Axiom_GW_ASI 63.99 76.23 84.20 86.94 88.88 89.56 89.16 89.51 82.43
EUR Axiom_GW_EUR 67.11 80.53 87.42 89.75 90.27 90.64 90.08 90.30 84.68
EUR Axiom_JAPONICA 65.46 77.35 84.56 85.99 89.89 90.57 90.90 91.10 83.41
EUR Axiom_PMDA 68.37 80.44 86.90 88.69 89.88 89.99 89.82 89.97 84.54
EUR Axiom_PMRA 67.11 78.84 85.56 87.66 88.99 89.08 88.62 89.34 83.38
EUR Axiom_UKB 73.59 84.44 89.26 91.14 91.60 91.67 91.27 91.67 87.24
EUR Infinium_GSA 69.47 80.90 83.29 85.79 87.47 88.11 88.22 87.74 83.15
EUR LmTag_K200_28000 72.73 83.55 89.64 91.66 92.76 92.66 92.48 92.13 87.60
EUR LmTag_K200_32000 74.37 84.63 90.42 92.23 93.43 93.38 93.17 92.80 88.50
SAS Affymetrix_6.0 63.94 77.37 84.40 88.59 89.38 90.26 90.17 90.68 82.40
SAS Axiom_GW_ASI 61.29 74.33 81.74 86.29 87.46 88.38 87.68 88.74 80.02
SAS Axiom_GW_EUR 62.74 74.83 82.22 86.53 87.44 88.36 87.66 88.89 80.44
SAS Axiom_JAPONICA 62.18 75.12 82.51 87.64 88.81 90.07 90.16 90.82 81.42
SAS Axiom_PMDA 63.18 76.23 83.79 86.68 87.38 87.80 87.66 87.80 80.69
SAS Axiom_PMRA 61.89 74.34 81.99 85.57 86.35 87.14 86.75 87.24 79.51
SAS Axiom_UKB 64.66 76.04 83.06 87.28 88.09 88.89 88.63 89.18 81.45
SAS Infinium_GSA 59.74 72.21 80.34 83.72 84.61 85.45 85.55 86.06 77.77
SAS LmTag_K200_28000 70.44 81.71 88.35 90.71 91.12 91.04 90.76 91.07 85.30
SAS LmTag_K200_32000 72.39 83.21 89.41 91.54 92.03 91.91 91.74 92.01 86.50
VNP Affymetrix_6.0 70.26 79.70 86.00 89.20 90.61 90.90 90.66 91.00 85.69
VNP Axiom_GW_ASI 69.33 78.69 84.88 88.18 89.94 89.78 89.19 89.79 84.65
VNP Axiom_GW_EUR 67.25 76.51 83.28 86.35 88.52 88.63 87.91 88.74 83.07
VNP Axiom_JAPONICA 73.85 81.59 88.93 91.48 92.52 92.60 92.21 92.90 87.89
VNP Axiom_PMDA 66.59 77.45 83.32 86.93 88.36 88.69 87.98 88.55 83.11
VNP Axiom_PMRA 70.35 79.30 84.79 87.29 88.53 88.83 88.33 88.57 84.18
VNP Axiom_UKB 67.58 75.55 83.71 86.79 88.74 89.14 88.85 89.28 83.38
VNP Infinium_GSA 68.12 78.15 83.44 85.98 87.45 87.62 87.28 87.64 82.81
VNP LmTag_K200_28000 77.61 84.91 89.18 91.35 92.44 92.83 92.39 92.66 88.91
VNP LmTag_K200_32000 79.68 86.13 90.08 91.93 92.99 93.31 93.01 93.21 89.80

Table 8: Estimated model parameters for relationship of imputation accuracy, minor allele
frequency, pairwise LD, and genomic distance.

Population Intercept LD r2 Tag SNP AF Tagged SNP AF Distance (MB) Adjusted R-squared
VNP 0.64040*** 0.30530*** 0.00825*** 0.01604*** -0.13170*** 42.76%
SAS 0.61950*** 0.32940*** 0.01198*** 0.01713*** -0.21910*** 40.79%
EUR 0.66140*** 0.28640*** 0.02002*** 0.01720*** -0.20860*** 38.26%
EAS 0.55490*** 0.38280*** 0.01014*** 0.02000*** -0.16820*** 44.15%

***: p− value > 2e− 16.
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