
TissUUmaps 3: Interactive visualization and quality assessment of

large-scale spatial omics data

Nicolas Pielawski ∗, Axel Andersson∗, Christophe Avenel,
Andrea Behanova, Eduard Chelebian, Anna Klemm,
Fredrik Nysjö, Leslie Solorzano and Carolina Wählby ∗

Department of Information Technology and SciLifeLab BioImage Informatics Facility,
Uppsala University, Uppsala, 752 37 Sweden.

January 28, 2022

Abstract: TissUUmaps is a browser-based
tool for GPU-accelerated visualization and in-
teractive exploration of 107+ datapoints over-
laying tissue samples. Users can visualize
markers and regions, explore spatial statis-
tics and quantitative analyses of tissue mor-
phology, and assess the quality of decoding in
situ transcriptomics data. TissUUmaps pro-
vides instant multi-resolution image viewing,
can be customized, shared, and also integrated
in Jupyter Notebooks. We envision TissU-
Umaps to contribute to broader dissemination
and flexible sharing of large-scale spatial omics
data.

Multimodal omics data is typically subject to two
different types of investigation: unspecific high level
investigation, where we visually interpret the infor-
mation, see patterns, construct hypotheses and draw
conclusions; and low level hypothesis testing, where
we build a representation of the unknown by asking,
and seeking answers to, questions that can provide
statistical certainty measures to test our hypothe-
ses. In both cases, visual exploration and inspec-
tion of data quality are crucial for constructing and
validating our hypothesis. However, the complexity
and scale of data often makes visual exploration fun-
damentally challenging. For example, a typical in
situ transcriptomics (IST, [1–6]) experiment results

in millions of spatial markers for hundreds of different
RNA species, where the micrometer-scale defines cell
types while the centimeter-scale is needed for identi-
fying tissue-level structures.

Furthermore, sharing of data with the scientific
community is difficult due to slow and costly data
transfer. Here, web-based applications that are
hosted on a web-server make interactive visualization
a matter of sharing a simple web-link that displays
the contents instantly.

There are several powerful viewers available for in-
teractive visualization of spatial omics data. One of
the most popular viewers is Napari [7], which is an
excellent tool for general visualization and annota-
tion tasks, including the displaying of 3D content.
It is however limited by the processing power and
memory of the user’s computer, and does not pro-
vide functionalities for interactive web-based visual-
ization. The Giotto [8] viewer provides a flexible in-
terface that allows the user to simultaneously explore
gene expression markers in physical space and a low-
dimensional expression space. It is web-based, allow-
ing interactive visualizations to be shared over the
Internet, but it is strictly limited by the size of the
image data, and cannot visualize millions of mark-
ers, due to the lack of GPU-based rendering. Other
viewers are available, such as STViewer [9] and Cy-
tomine [10], but they are typically tailored for specific

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

tasks and not suitable for combining very large im-
ages and high-content marker data.
We present TissUUmaps 3, developed with the aim

of making visual exploration and sharing of image
data and markers easy and accessible to anyone. It
overcomes hardware memory limitations by using a
pyramidal image scheme only displaying the parts
of a large multi-layered image that are needed at
the instance of interaction (i.e. for a specific can-
vas location, size and zoom level). Furthermore,
tens of millions of markers and regions can overlay
the image data in real-time thanks to TissUUmaps’
GPU-accelerated visualization, see Fig. 1a. Tedious
data transfer is avoided by hosting TissUUmaps on
a server and providing interactive visualizations by
simply sharing a web-link. This makes TissUUmaps
suitable as a tool for disseminating research data,
as exemplified in the TissUUmaps gallery: https:

//tissuumaps.github.io/gallery. However, not
every user possesses resources and expertise for set-
ting up a server, and in order to make TissUUmaps
easily accessible, it can also be installed and run as a
regular desktop application (Fig. 1b).
Large-scale spatial omics experiments typically aim

to identify cell types and explore the interaction of
cells in a tissue sample. Popular tools for such
analysis and spatial statistics are SquidPy [11] and
Giotto [8], and thanks to a simple and flexible data
structure, both markers and regions can be exported
from these tools to TissUUmaps. We demonstrate
this through a short video tutorial (Giotto/Squidpy
video) with additional details in SI 1.
Furthermore, outputs from probabilistic cell typ-

ing methods such as pciSeq [12] can be presented as
pie-charts within TissUUmaps, concisely displaying
local cell-type probabilities (Fig. 1c). TissUUmaps is
not limited to spatial omics data: any spatially re-
solved data that can be presented as regions or data
points with coordinates in space may be displayed.
For example, diverse data such as per-cell features ex-
tracted by CellProfiler [13], and projected UMAP [14]
output can be interactively viewed, and points in a
region can be manually selected, or ’gated’, via Tis-
sUUmaps. The selected points can thereafter be over-
laid on top of the corresponding tissue sample, pro-
viding a link between feature space and tissue space.

Apart from marker data, the image data in itself
contains a wealth of information that may be re-
lated to spatial omics data. Here, we have optimized
TissUUmaps for exploring such relations by focus-
ing on Python compatibility via Jupyter Notebooks.
Jupyter Notebooks structure code in cells, and Tis-
sUUmaps can be run within such a cell, as depicted
in Fig. 1b, making it easy to integrate TissUUmaps
into image and omics analysis pipelines. We provide
video examples showing, e.g., how a pre-trained deep
learning framework can be used to extract descriptors
of tissue morphology and display them using TissU-
Umaps (conv. neural network video), and how graph
neural networks [15] can be used to embed spatial
gene expression patterns (Spage2Vec video). Addi-
tional details for implementing the examples shown
in the videos are found in SI 2 and SI 3.

Moreover, manually drawn or automatically gener-
ated region- and cell outlines created in QuPath [16]
and StarDist [17] can be directly loaded into TissU-
Umaps thanks to compatibility via the GeoJSON file
format (see SI 4 for details).

Spatial omics techniques such as [1–6] use multi-
plex labeling strategies and rely on computationally
expensive image analysis pipelines for extracting in-
formation such as the location of millions of differ-
ent RNA species. Quality control in the form of vi-
sual inspection is crucial for validating such pipelines,
but also difficult, as one must search centimeter sized
spaces for micrometer sized fluorescent spots that are
either present or absent in different imaging rounds
and channels. Here, TissUUmaps’ multi-resolution
and multi-layer rendering capabilities become invalu-
able, as they allow the user to interactively explore
images across all resolutions, while simultaneously
displaying content from multiple rounds and chan-
nels using different colormaps. By extending TissU-
Umaps with the Spot Inspector plugin, the user
can also click anywhere in TissUUmaps to open a
gridded figure displaying content from all rounds and
channels as well as traces indicating detected multi-
plexed labels (exemplified for in situ sequencing data
in Fig. 1c). We demonstrate this through a short
video (spot inspector video) with details in SI 5.

Cooperating and sharing data with others at each
stage of research — from prototyping to dissemi-

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://tissuumaps.github.io/gallery
https://tissuumaps.github.io/gallery
https://tissuumaps.github.io/tutorials/#giotto_squidpy
https://tissuumaps.github.io/tutorials/#giotto_squidpy
https://tissuumaps.github.io/tutorials/#cnn
https://tissuumaps.github.io/tutorials/#spage2vec
https://tissuumaps.github.io/tutorials/#spot_inspector
https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

nation — is important. TissUUmaps can export
projects as a folder that can be easily shared with oth-
ers. It is also possible to export a static web page that
the user can upload to any web server and share the
URL linking to the page. Anyone with the link can
visualize the image data and overlay existing markers
and regions as well as their own post-processed data,
as shown in Fig. 1d. To conclude, TissUUmaps 3 is
a visualization tool compatible with a wide range of
large-scale raw and processed multi-omics data. Its
unique ability to broadly and interactively display
data via a web-browser without requirements on in-
stalling software opens up for unique quality control
capabilities and FAIR [18] data sharing in a com-
pletely new way.

Online content

TissUUmaps is available at https://tissuumaps.

github.io together with video tutorials, download-
ing instructions and project demos. The source code
for TissUUmaps can be found at https://github.

com/TissUUmaps/TissUUmaps, shared under a per-
missive free software license: BSD 3.

References

1. Ji, N. & Van Oudenaarden, A. Single molecule
fluorescent in situ hybridization (smFISH) of C.
elegans worms and embryos (2012).

2. Ke, R. et al. In situ sequencing for RNA analy-
sis in preserved tissue and cells. Nature methods
10, 857–860 (2013).

3. Lee, J. H. et al. Fluorescent in situ sequencing
(FISSEQ) of RNA for gene expression profiling
in intact cells and tissues. Nature protocols 10,
442–458 (2015).

4. Wang, G., Moffitt, J. R. & Zhuang, X. Mul-
tiplexed imaging of high-density libraries of
RNAs with MERFISH and expansion mi-
croscopy. Scientific reports 8, 1–13 (2018).

5. Wang, X. et al. Three-dimensional intact-tissue
sequencing of single-cell transcriptional states.
Science 361 (2018).

6. Eng, C.-H. L. et al. Transcriptome-scale super-
resolved imaging in tissues by RNA seqFISH+.
Nature 568, 235–239 (2019).

7. Sofroniew, N. et al. napari/napari: 0.4.12rc2
version v0.4.12rc2. Oct. 2021. https://doi.
org/10.5281/zenodo.5587893.

8. Dries, R. et al. Giotto: a toolbox for integrative
analysis and visualization of spatial expression
data. Genome biology 22, 1–31 (2021).

9. Navarro, J. F., Lundeberg, J. & St̊ahl, P. L. ST
viewer: a tool for analysis and visualization of
spatial transcriptomics datasets. Bioinformatics
35 (ed Berger, B.) 1058–1060. https://doi.
org/10.1093/bioinformatics/bty714 (Aug.
2018).

10. Marée, R. et al. Collaborative analysis of multi-
gigapixel imaging data using Cytomine. Bioin-
formatics 32, 1395–1401 (2016).

11. Palla, G. et al. Squidpy: a scalable framework
for spatial single cell analysis. bioRxiv (2021).

12. Qian, X. et al. Probabilistic cell typing enables
fine mapping of closely related cell types in situ.
Nature methods 17, 101–106 (2020).

13. Carpenter, A. E. et al. CellProfiler: image anal-
ysis software for identifying and quantifying cell
phenotypes. Genome biology 7, 1–11 (2006).

14. Becht, E. et al. Dimensionality reduction for vi-
sualizing single-cell data using UMAP. Nature
biotechnology 37, 38–44 (2019).

15. Partel, G. & Wählby, C. Spage2vec: Unsuper-
vised representation of localized spatial gene ex-
pression signatures. The FEBS Journal 288,
1859–1870. https://doi.org/10.1111/febs.
15572 (Oct. 2020).

16. Bankhead, P. et al. QuPath: Open source soft-
ware for digital pathology image analysis. Sci-
entific reports 7, 1–7 (2017).

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://tissuumaps.github.io
https://tissuumaps.github.io
https://github.com/TissUUmaps/TissUUmaps
https://github.com/TissUUmaps/TissUUmaps
https://doi.org/10.5281/zenodo.5587893
https://doi.org/10.5281/zenodo.5587893
https://doi.org/10.1093/bioinformatics/bty714
https://doi.org/10.1093/bioinformatics/bty714
https://doi.org/10.1111/febs.15572
https://doi.org/10.1111/febs.15572
https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

Preprocessed spatial omics data

Visual exploration, assessment & analysis

Exporting and sharing
• Exporting project files
• Exporting static webpages
• Host local webserver

Image stack Regions Markers

Web & Desktop viewer
Interactive viewer

Jupyter Notebook integration

Visual assessment

a.

b.

c.
Exploring >107 markers

Ex
pl

or
in

g
fe

at
ur

es

An
no

ta
tio

ns

d.

locally

Internet

• Customization of user
interface

• Support for multiple datasets
• Export markers and regions

x y

R1
R2
R3
R4
R5

T C G A

R1
R2
R3
R4
R5

T C G A

Figure 1: TissUUmaps is a viewer for large scale spatial omics data. a Data, in the form of regions and
markers, extracted by image analysis and/or created by a range of different spatial statistics tools can be
visualized on top of gigapixel sized image stacks. b Accelerated GPU-based rendering makes image and data
interaction fast, via a web or desktop viewer, or as part of a Jupyter Notebook. c Data can be presented and
explored as markers in space or summarized in localized pie-charts. Plugins for quality control enable visual
assessment of raw data associated with decoded IST signals. Non-spatial data, such as UMAP projections,
can also be interactively explored and selected or ’gated’ signals can be overlaid on top of the original tissue
sample. d The data owner can export custom project files or static web pages to be run locally or over the
Internet, and external users can interactively explore, manually select, and download data from regions of
interest.

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

17. Schmidt, U., Weigert, M., Broaddus, C. & My-
ers, G. Cell detection with star-convex polygons
in International Conference on Medical Image
Computing and Computer-Assisted Intervention
(2018), 265–273.

18. Wilkinson, M. D. et al. The FAIR Guiding Prin-
ciples for scientific data management and stew-
ardship. Scientific data 3, 1–9 (2016).

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

Methods

Software implementation. Loading large images
can be prohibitively expensive due to hardware lim-
itations such as the RAM. Most existing software
load the entire data in memory unlike TissUUmaps
which only displays the sub-parts of the images that
are needed. Using a pyramidal scheme, looking at
the full image displays a low-resolution version of the
data and when zooming will display higher resolution
patches of the data in the area of interest. Load-
ing dynamically parts of the image and releasing the
parts that are not displayed anymore removes entirely
the limitation of the hardware. However, the images
need to be converted to a pyramidal format before
displaying them, which requires additional hard drive
space. Images not in a pyramidal format are auto-
matically converted using VIPS [1] when loaded into
TissUUmaps.

In its core, TissUUmaps is implemented us-
ing regular web-development tools such as HTML,
JavaScript and SCSS. It is completely open-source
(available at https://github.com/TissUUmaps). As
explained in the previous version of TissUUmaps [2],
the software only depends on a small number of ex-
ternal libraries, making it easy to set-up and main-
tain. Since its previous version [2], TissUUmaps has
been subjected to a range of upgrades, such as: Auto-
matic conversion to pyramidal format; On-the-fly of
millions of markers using WebGL; Interactive visu-
alization and adjustments of multiple image layers;
Desktop installation and usage; Jupyter Notebook
compatibility; plugins for inspection In Situ Tran-
scriptomics (IST) data and import/export to Napari.

Jupyter Notebook Integration. TissUUmaps
can conveniently be imported into a Jupyter Note-
book using the tissuumaps.jupyter module to in-
teractively open a viewer. This allows the user
to integrate TissUUmaps in their analysis pipelines.
When a user has performed their analysis, they can
call the loaddata(images=, csvFiles=) function to
create a TissUUmaps project with the desired con-
figuration. Additionally, TissUUmaps supports vi-
sualization on coordinate systems other than the

image, allowing to visualize dimensionally reduced
spaces such as UMAP [3]. These low dimensional
features can then be mapped back to the spatial co-
ordinates of the tissue to perform gating as a way
of identifying clusters for quality assessment. We
showcase TissUUmaps Jupyter Notebook integration
through two short video examples. In the first exam-
ple (Spage2Vec video) we make use of a graph neural
network [4] to explore the spatial heterogeneity of
gene expression data and visualize in TissUUmaps.
In the second video (conv. neural network video), we
make use of a deep learning frameworks to extract
morphological features, and visualize the results us-
ing TissUUmaps. Implementation details for respec-
tive video are found in SI 3 and SI 2.

Visualizing spatial omics analysis outputs.
Modern spatial omics analysis software such as
Squidpy [5] and Giotto [6] allow in-depth analyses
of omics data. Output from such software can easily
be visualized in TissUUmaps by first converting the
software’s native data structures into regular CSV-
formats. The CSV file can then be loaded into TissU-
Umaps along with image data. This allows the user
to overlay and explore spatial analyses results on-top
of full resolution gigapixel image data. We provide a
video tutorial on how to visualize data analyzed using
SquidPy [5] and Giotto [6] (Giotto/Squidpy video).
Additional implementation details for the video are
found in SI 1.

Spot Inspector Plugin. The Spot Inspector plu-
gin is implemented using Python with a Javascript
interface for interacting with the main module. The
plugin allows the user to interactively visualize con-
tent from multiple staining rounds and channels by
clicking on the currently displayed image in TissU-
Umaps. The plugin works for TissUUmaps Windows
version and is demonstrated through a short video
(spot inspector video). We refer to SI 5 for details on
installation and usage.

Interfacing with Common Image Processing
Tools. There are many powerfull tools for scientific
image analysis of medical image data. Among these

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://github.com/TissUUmaps
https://tissuumaps.github.io/tutorials/#spage2vec
https://tissuumaps.github.io/tutorials/#cnn
https://tissuumaps.github.io/tutorials/#giotto_squidpy
https://tissuumaps.github.io/tutorials/#spot_inspector
https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

are QuPath [7], Napari [8], CellProfiler [9, 10] and
Fiji [11]. Results produced by such softwares can
be uploaded to a server and shared as interactive
visualizations using TissUUmaps. However, results
produced by different tools and plugins are often of
different file formats. We therefore provide few ex-
amples on how to interface such softwares.

Visualizing Napari Projects. A Napari-TissUUmaps
plugin is available and allows the user to export a
Napari project to be loaded in TissUUmaps. Images,
annotations or labeling as masks and vector graphics,
as well as point clouds are supported. The plugin is
available on the Napari Hub and can thus be installed
very quickly in the Napari plugin manager, alterna-
tively using the Python package manager pip. Har-
nessing the power of available plugins and Python al-
lows users to work on Napari and export their project
to TissUUmaps and conveniently share their result
and analysis online. A short video tutorial (Napari
video), with additional details in SI 6, is provided as
an example on how to export Napari projects and
visualize in TissUUmaps.

Visualizing CellProfiler Outputs. CellProfiler [9, 10]
is a popular tool for performing high-throughput
analyses of medical image data. CellProfiler usually
outputs results in the form of CSV-file(s). These re-
sults can be visualized directly in TissUUmaps by
loading the CSV file into the software. However, tis-
sue samples are often divided into a set of smaller
tiles before being processed sequentially in a CellPro-
filer pipeline. In such situations, artefact may appear
near the borders of individual tiles, resulting in un-
desired patterns called ”tile-effects”. Tile-effects be-
come especially apparent when results from individ-
ual tiles are put together in a global context. Tile-
effects should ideally be mitigated before visualizing
in TissUUmaps. This can be done by using slightly
overlapping tiles together with merging heuristics as
explained in SI 7.

Visualizing QuPath outputs. QuPath [7] is an open-
source tool for digital pathology. It offers a wide
range of utilities for quantification of tissue morphol-

ogy SI 4. For instance, QuPath supports classifica-
tion, annotation, and segmentation of different cells
and tissue regions. Such results can be visualized as
regions in TissUUmaps by exporting the QuPath re-
sults to a GeoJSON file which in turn can be read
into TissUUmaps.

Visualizing Fiji outputs. Another popular tool for
image analysis is Fiji. Fiji bundles a lot of plugins
that facilitate scientific image processing. We provide
an example script that showcase registration of fluo-
rescent image data using Fiji plugins, and exports the
data into formats that can be read by TissUUmaps,
see SI 8.

References

1. Martinez, K. & Cupitt, J. VIPS-a highly tuned
image processing software architecture in IEEE
International Conference on Image Processing
2005 2 (2005), II–574.

2. Solorzano, L., Partel, G. & Wählby, C. TissU-
Umaps: interactive visualization of large-scale
spatial gene expression and tissue morphology
data. Bioinformatics 36, 4363–4365. issn: 1367-
4803. eprint: https : / / academic . oup. com /
bioinformatics/article-pdf/36/15/4363/

33796634/btaa541.pdf. https://doi.org/
10 . 1093 / bioinformatics / btaa541 (May
2020).

3. Becht, E. et al. Dimensionality reduction for vi-
sualizing single-cell data using UMAP. Nature
biotechnology 37, 38–44 (2019).

4. Partel, G. & Wählby, C. Spage2vec: Unsuper-
vised representation of localized spatial gene ex-
pression signatures. The FEBS Journal 288,
1859–1870. https://doi.org/10.1111/febs.
15572 (Oct. 2020).

5. Palla, G. et al. Squidpy: a scalable framework
for spatial single cell analysis. bioRxiv (2021).

6. Dries, R. et al. Giotto: a toolbox for integrative
analysis and visualization of spatial expression
data. Genome biology 22, 1–31 (2021).

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://tissuumaps.github.io/tutorials/#napari
https://tissuumaps.github.io/tutorials/#napari
https://academic.oup.com/bioinformatics/article-pdf/36/15/4363/33796634/btaa541.pdf
https://academic.oup.com/bioinformatics/article-pdf/36/15/4363/33796634/btaa541.pdf
https://academic.oup.com/bioinformatics/article-pdf/36/15/4363/33796634/btaa541.pdf
https://doi.org/10.1093/bioinformatics/btaa541
https://doi.org/10.1093/bioinformatics/btaa541
https://doi.org/10.1111/febs.15572
https://doi.org/10.1111/febs.15572
https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

7. Bankhead, P. et al. QuPath: Open source soft-
ware for digital pathology image analysis. Sci-
entific reports 7, 1–7 (2017).

8. Sofroniew, N. et al. napari/napari: 0.4.12rc2
version v0.4.12rc2. Oct. 2021. https://doi.
org/10.5281/zenodo.5587893.

9. Carpenter, A. E. et al. CellProfiler: image anal-
ysis software for identifying and quantifying cell
phenotypes. Genome biology 7, 1–11 (2006).

10. McQuin, C. et al. CellProfiler 3.0: Next-
generation image processing for biology. PLoS
biology 16, e2005970 (2018).

11. Schindelin, J. et al. Fiji: an open-source plat-
form for biological-image analysis. Nature meth-
ods 9, 676–682 (2012).

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://doi.org/10.5281/zenodo.5587893
https://doi.org/10.5281/zenodo.5587893
https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

Supplementary Information

SI 1 Visualizing Results from Giotto and Squidpy

Popular software for IST analysis, including Squidpy [1] and Giotto [2], for clustering or cell type identi-
fication often rely on complex data structures to perform their integrated analyses. This can render the
interactive visualization of the outputs of such software difficult or limit it to the chosen development envi-
ronment.
TissUUmaps can be used for visualization of data structures in Squidpy (built in Python) and Giotto

objects in Giotto (built in R) by extracting the necessary information and converting it to CSV files. By
using Python wrapper scripts, the user can easily do so and proceed with the usual TissUUmaps visualization
workflow.
The user can then use different TissUUmaps tabs to visualize (1) the analysis outputs together overlaying

on the multiresolution images and (2) the corresponding dimensionally reduced space. As both visualizations
share the same markers, specific subgroups -such as clusters- can be selected in the feature space and
visualized on the original image.
This is showcased for both software in the following tutorial: https://tissuumaps.github.

io/tutorials/#giotto_squidpy. The example wrapper scripts for Squidpy and Giotto can be
found in https://github.com/TissUUmaps/TissUUmaps/blob/master/examples/squidpy2tmap.ipynb

and https://github.com/TissUUmaps/TissUUmaps/blob/master/examples/giotto2tmap.py, respec-
tively.

SI 2 Visualization of Deep Learning Features

Thanks to the Jupyter Notebook compatibility, TissUUmaps can be used to interactively visualize morpho-
logical features extracted from convolutional neural networks implemented in TensorFlow [3] as in [4]. For
the complete implementation, please visit https://github.com/TissUUmaps/TissUUmaps/blob/master/

examples/tissuumaps_cnn_example.ipynb.
In this example, we extracted morphological features from a Visium 10X spatial transcriptomics dataset

of a mouse brain using an InceptionV3 model pretrained on ImageNet. The implementation is provided such
that it can be applied to any other dataset using any other model.

1. First, the necessary libraries are imported. Apart from the common Python data handling libraries,
scanpy [5], openslide [6], tensorflow [3], umap [7] and tissuumaps must be installed.

2. In order to make the example as reproducible as possible, the Visium 10X dataset is loaded using scanpy.
This will automatically download a folder containing the .tiff image and the .csv barcodes files for the
sample.

3. For reproducibility purposes, tensorflow is used to load the pretrained network that will be used for
feature extraction. Note that the model is not used for classification and thus the final layer is discarded.
Instead, a pooling layer is added in the end to aggregate the last convolutional output into a (2048-sized,
in this case) vector.

4. The gigapixel whole slide image needs to be divided into smaller patches to extract local morphological
features. It is convenient to use the spatial transcriptomics spots as the centre of such patches in order

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://tissuumaps.github.io/tutorials/#giotto_squidpy
https://tissuumaps.github.io/tutorials/#giotto_squidpy
https://github.com/TissUUmaps/TissUUmaps/blob/master/examples/squidpy2tmap.ipynb
https://github.com/TissUUmaps/TissUUmaps/blob/master/examples/giotto2tmap.py
https://github.com/TissUUmaps/TissUUmaps/blob/master/examples/tissuumaps_cnn_example.ipynb
https://github.com/TissUUmaps/TissUUmaps/blob/master/examples/tissuumaps_cnn_example.ipynb
https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

to potentially map the morphological features around that spot to the existing gene expression. It is
of great importance, then, to choose a patch size large enough to capture spatial variations but not so
much that the blurring effect is excessive.

The patches are automatically extracted and inputted to the feature extraction network which yields
2048 features per spot, in this case. The features can be separately visualized but it is common practice
to reduce the dimensionality using methods such as umap.

5. Once the dimensionality is reduced from 2048 per spot to three UMAP components, these can be
interpreted as RGB color dimensions and shown in TissUUmaps as a morphological gradient overlaid
on top of the whole slide image.

Furthermore, using the same approach, we used the TissUUmaps viewer to visualize the UMAP space.
As shown in the example, the user can interactively change the marker types, sizes and colors grouping
by different criteria.

As we are using the same data, the embedded spots can be mapped back to the original image coordinates
to perform gating as a way of identifying clusters for quality assessment.

The reader should note that, the chosen model was pretrained on ImageNet, a natural image dataset. We
recommend using models (pre-)trained on biological data when possible. Additionally, default parameters
were used for all the demonstration. The results may improve when using different parameters (e.g. patch
sizes or dimensionality reduction techniques).
A tutorial on how to use the TissUUmaps viewer in a Jupyter Notebook to visualize morphological features

extracted by a convolutional neural network can be found in https://tissuumaps.github.io/tutorials/

#cnn.

SI 3 Visualizing Spage2vec Clusters

TissUUmaps viewer can be integrated in Jupyter Notebooks. We provide a Python library such that the
viewer can be loaded in a Jupyter Notebook cell and interactively display images along with markers. For
this example, we use in situ sequencing data of mouse hippocampus. These data spots were generated by
method ISTDECO [8], which is a decoding approach combining spectral and spatial deconvolution into a
single algorithm. On this dataset, we applied the method spage2vec [9] — an unsupervised segmentation-free
approach for decrypting the spatial transcriptomic heterogeneity of complex tissues at subcellular resolution.
The steps to achieve the integration of TissUUmaps viewer and spage2vec in this notebook are the fol-

lowing:

1. First, the necessary libraries are imported. Apart from the common Python data handling libraries,
scipy, tensorflow, stellargraph, sklearn and TissUUmaps are required.

2. Next, the input data for spage2vec is loaded. The dataset needs to be a file containing three columns:
X coordinate, Y coordinate, and the gene identity. Each row in the file represents an individual spot.

3. Then the spage2vec algorithm is run. The first step builds the graph by connecting the neighboring spots
based on their spatial distances. The graph is used as input to the neural network. The network uses a
graph representation learning technique based on a graph neural network. During training, the graph
neural network learns the topological structure of each gene’s local neighborhood. It does not require
labeled training data but learns to find re-occurring patterns by comparing to a randomization of the

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://tissuumaps.github.io/tutorials/#cnn
https://tissuumaps.github.io/tutorials/#cnn
https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

data. The network predicts a node embedding vector for each spot of the graph representing high-order
spatial relationships with its local neighborhood. The network’s architecture consists of two identical
GraphSAGE [10] encoder networks sharing weights, taking as input a pair of nodes together with the
graph structure and producing as output a pair of node embeddings. Thereafter, a binary classification
layer with a sigmoid activation function learns to predict how likely it is that a pair will occur at a
random position in the graph. Model parameters are optimized by minimizing a binary cross-entropy
loss function between the predicted node pair labels and the true labels without supervision.

4. The next step is to apply clustering to the node embedding. Leiden clustering algorithm [11] is performed
with an additional post-merging step, where we merge clusters with a gene expression correlation greater
than 95%. The clusters represent combinations of different genes that can be identified as specific cellular
substructures, cell types, or tissue domains.

5. Finally, the clustering results can be readily displayed in TissUUmaps.

This workflow can be applied to any code in Jupyter Notebooks. With TissUUmaps, one can visualize the
input data, clustering results or the output from analyses. A video tutorial for how to integrate a code from
Jupyter Notebook with TissUUmaps can be found here: https://tissuumaps.github.io/tutorials/

#spage2vec.

SI 4 Exporting QuPath Regions to TissUUmaps

QuPath is a widely-used open-source software tool for digital pathology [12]. It supports the detection of
cells and annotation of tissue regions in large image data files. Cells are segmented via nuclei detection and
subsequent expansion of the nuclei area (”Cell detection”), or alternatively using the pre-trained models of
StarDist [13], via the StarDist extension. Detected cells can be classified by presence/absence of a single
marker (“Create single measurement classifier”). These classifiers are defined by manually setting a threshold
on a marker measurement, e.g. mean marker intensity per cell, and can also be combined to classify the
cells (“Create composite classifier”). QuPath also offers Machine Learning approaches – Random trees,
Artificial Neural Network, K Nearest Neighbor – for cell classification (“Train object classifier”). The user
can annotate tissue areas, e.g. tumor areas, by manually drawing annotations, by using a threshold on a
single channel (“Create thresholder”), or by using pixel classification (“Train pixel classifier”). The outlines
of cells and tissue regions can be exported into a GeoJSON file (“Export as GeoJSON”). TissUUmaps
supports the loading of GeoJSON files and with that the loading of the outlines generated in QuPath. The
user can then display these regions and extract information, e.g. counts per cell of a certain class.

SI 5 Spot Inspector Plugin

The In Situ Transcriptomic (IST) quality control plugin Spot Inspection allows the user to interactively
click anywhere on an image displayed in TissUUmaps. This interaction opens a gridded figure displaying
image content from multiple image rounds and channels as well as traces indicating the barcoded labels.
The plugin enables an effective and interactive way for visualizing and interpreting errors introduced in IST
pipelines. The Spot Inspector plugin is available for the TissUUmaps desktop client. It is implemented using
Python with a JavaScript interface for communicating with the main TissUUmaps module.

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://tissuumaps.github.io/tutorials/#spage2vec
https://tissuumaps.github.io/tutorials/#spage2vec
https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

Installation and Usage The plugin consists of the files spot inspection.py and spot inspection.js
and is installed by placing the respective files in the ”Plugin” folder (default path is Program Files

(x86)\TissUUmaps\Plugins). The plugin is started in TissUUmaps by selecting the Spot Inspection option
under the Plugin drop-down menu. Once the plugin is started, a new tab in TissUUmaps will appear that
enables simultaneous loading of multi-round and multi-channel image data. The image data that is to be
loaded must be named using the convention: {Text1}{Round} {Text2}{Channel}.tif where {Round} and
{Channel} are numeric values indicating which round and channel the corresponding tif file belong to, and
{Text1} and {Text2} can be any string of characters. An image belonging to the first round and first
channel could for instance be named R1 CH1.tif. Once the images are loaded into TissUUmaps, the user
can click anywhere on the currently displayed image data to inspect the content from all image rounds and
channels using a small gridded image. The barcoded labels of detected RNA species can also be visualized in
the gridded image as small traces connecting different rounds and channels. This feature is only possible if
the CSV file containing the marker data contains the additional columns rounds and channels that specifies
which rounds and channels the barcoded labels are expected to be present in. Each entry in the round
and channel column must be specified as comma-separated strings. For instance a barcode label present in
rounds {0, 1, 2, 3} and the channels {0, 0, 2, 2} will have its corresponding round and channel attributes in
the CSV file set to ”0;1;2;3” and ”0;0;2;2”.

The source code of the plugin is available under https://github.com/TissUUmaps/TissUUmaps/tree/
master/tissuumaps/plugins_available.

SI 6 Exporting Napari Projects to TissUUmaps

Napari [14] features an important hub containing 118 plugins at the time of writing, many of them expanding
further the capabilities of Napari when dealing with biomedical imaging. We thus created our own plugin
to allow users to work in Napari, benefit from the tools, scripting and existing plugins, and easily visualize
and share the output of their research through TissUUmaps.

The plugin is available on Napari Hub which makes the installation trivial: from the Napari in-
stall/uninstall plugins menu, the ”napari-tissuumaps” appears in the list and can be installed with a single
click. Alternatively, the plugin can be installed with the Python package manager: ”pip install napari-
tissuumaps”.

The plugin can export all standard Napari layers, such as images, labels, points, and shapes and preserves
the metadata (opacity, visibility), but also the objects parameters (e.g.: label colors, marker colors and
symbols, etc...). To export a TissUUmaps project, care must be taken to save all layers of interest and type
in a name with the extension ”.tmap”, e.g.: ”myProject.tmap”. This is important for Napari to delegate
the saving of the files to the plugin. A folder is created and contains all the necessary files and can be loaded
in the TissUUmaps server, software, Jupyter Notebook, or shared with the community.

The project folders generated by the plugin contain the metadata in a ”main.tmap” file, along with
folders for each Napari layer types: images, labels, points and regions. Images and labels are saved as
plain tif images, points are saved as CSV files, and shapes are saved as GeoJSON. We hope that the
use of a simple structure and widespread file formats can simplify the modifying and updating of the
TissUUmaps project when prototyping with e.g. Jupyter Notebooks. The source code is available at https:
//github.com/TissUUmaps/napari-tissuumaps under the permissive MIT license. A demonstration of
the Cellpose plugin of Napari being exported to the TissUUmaps web viewer is available at: https://

tissuumaps.github.io/tutorials/#napari.

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://github.com/TissUUmaps/TissUUmaps/tree/master/tissuumaps/plugins_available
https://github.com/TissUUmaps/TissUUmaps/tree/master/tissuumaps/plugins_available
https://github.com/TissUUmaps/napari-tissuumaps
https://github.com/TissUUmaps/napari-tissuumaps
https://tissuumaps.github.io/tutorials/#napari
https://tissuumaps.github.io/tutorials/#napari
https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

SI 7 Exporting CellProfiler Data and Mitigating Tile Effects

Broad Institute’s CellProfiler has long been used to perform high-throughput analyses [15, 16]. It allows an
analysis pipeline to be run sequentially over a series of tiles for which large tissue samples are usually divided
into during the imaging process in the microscope. Such division introduces a distinct pattern that receives
the name ”tile effect”. It consists of clear line artifacts that become apparent once the analysis results are
visualized on top of the original stitched image. This effect introduces errors in subsequent analysis.
To mitigate the tile effect, all the tiles can be analyzed on overlapping borders and duplicated cells (with

their associated features) can be merged. Once all duplicated cells are merged, a unique CSV file can be
produced and used to display features on top of the whole sample image.
For the analysis on the tile borders, the coordinates of each tile and its spatial location relative to the

original image must be known, the coordinates have to be Euclidean and in a rectangular grid. The cell
segmentation has to be deterministic and the same for all the tiles. The size of the border has to be known
as well. If all of this is true then the tiles can be processed to give cells a global identifier within the tissue
sample and remove tile effects.
CellProfiler output usually consists of a group of CSVs or a database per tile. These databases contain

primary objects (in this case cells), secondary objects (like nuclei), local X and Y position and information
on the tile and experiment they belong to. When all of this information is given, cells in the borders of tiles
can be analyzed, matched and duplicates will be marked for deletion. They are only initially marked so that
they can be verified visually first before actually removing them.
On a second step all the cells marked for removing duplicates will be merged. The result is a set of cells

(represented as primary objects) where any object that was cut (due to being in an image border) or any
duplicate object will be merged and solved.

SI 8 Interfacing Fiji plugins

We developed an example Python script for Fiji which shows how to interface Fiji plugins with TissUUmaps.
The script showcases the registration of data that was captured through multiple rounds with DAPI and
fluorescent staining. We consider that the fluorescent channels contain spots that need to be extracted from
an e.g. in situ sequencing experiment. The DAPI channel is used to align the images together.
The example performs the following operations:

• Registration of rounds by using a single, common channel, usually a DAPI stain.

• Rigid transformation of all the fluorescent images such they are all aligned.

• Displaying the aligned images in Fiji

• Finding the spots in the fluorescent images and potentially export them as markers.

• Creating a TissUUmaps project file containing the aligned images along with the overlapping markers.

When running the script from Fiji, a user interface appears, allowing users to change directories, use
different filenames and change the parameters of the alignment and dot detection.
The script is available at: https://github.com/TissUUmaps/TissUUmaps/tree/master/examples.

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://github.com/TissUUmaps/TissUUmaps/tree/master/examples
https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

References

1. Palla, G. et al. Squidpy: a scalable framework for spatial single cell analysis. bioRxiv (2021).

2. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data.
Genome biology 22, 1–31 (2021).

3. Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems Software avail-
able from tensorflow.org. 2015. https://www.tensorflow.org/.

4. Chelebian, E. et al. Morphological Features Extracted by AI Associated with Spatial Transcriptomics
in Prostate Cancer. Cancers 13, 4837 (2021).

5. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis.
Genome biology 19, 1–5 (2018).

6. Goode, A., Gilbert, B., Harkes, J., Jukic, D. & Satyanarayanan, M. OpenSlide: A vendor-neutral
software foundation for digital pathology. Journal of pathology informatics 4 (2013).

7. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nature biotech-
nology 37, 38–44 (2019).

8. Andersson, A., Diego, F., Hamprecht, F. A. & Wählby, C. ISTDECO: In Situ Transcriptomics Decoding
by Deconvolution. bioRxiv (2021).

9. Partel, G. & Wählby, C. Spage2vec: Unsupervised representation of localized spatial gene expression
signatures. The FEBS Journal 288, 1859–1870. https://doi.org/10.1111/febs.15572 (Oct. 2020).

10. Hamilton, W. L., Ying, R. & Leskovec, J. Inductive Representation Learning on Large Graphs 2018.
arXiv: 1706.02216 [cs.SI].

11. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected
communities. Scientific Reports 9. https://doi.org/10.1038/s41598-019-41695-z (Mar. 2019).

12. Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Scientific reports
7, 1–7 (2017).

13. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons in Inter-
national Conference on Medical Image Computing and Computer-Assisted Intervention (2018), 265–
273.

14. Sofroniew, N. et al. napari/napari: 0.4.12rc2 version v0.4.12rc2. Oct. 2021. https://doi.org/10.
5281/zenodo.5587893.

15. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell pheno-
types. Genome biology 7, 1–11 (2006).

16. McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS biology 16,
e2005970 (2018).

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478131doi: bioRxiv preprint

https://www.tensorflow.org/
https://doi.org/10.1111/febs.15572
https://arxiv.org/abs/1706.02216
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.5281/zenodo.5587893
https://doi.org/10.5281/zenodo.5587893
https://doi.org/10.1101/2022.01.28.478131
http://creativecommons.org/licenses/by-nc/4.0/

	Visualizing Results from Giotto and Squidpy
	Visualization of Deep Learning Features
	Visualizing Spage2vec Clusters
	Exporting QuPath Regions to TissUUmaps
	Spot Inspector Plugin
	Exporting Napari Projects to TissUUmaps
	Exporting CellProfiler Data and Mitigating Tile Effects
	Interfacing Fiji plugins

