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Abstract 

Multimodal single cell sequencing is a powerful tool for interrogating cell-specific changes in 
transcription and chromatin accessibility. We performed single nucleus RNA (snRNA-seq) and assay for 
transposase accessible chromatin sequencing (snATAC-seq) on human kidney cortex from donors with 
and without diabetic kidney disease (DKD) to identify altered signaling pathways and transcription 
factors associated with DKD. Both snRNA-seq and snATAC-seq had an increased proportion of VCAM1+ 
injured proximal tubule cells (PT_VCAM1) in DKD samples. PT_VCAM1 has a pro-inflammatory 
expression signature and transcription factor motif enrichment implicated NFkB signaling. We used 
stratified linkage disequilibrium score regression to partition heritability of kidney-function-related traits 
using publicly-available GWAS summary statistics. Cell-specific PT_VCAM1 peaks were enriched for 
heritability of chronic kidney disease (CKD), suggesting that genetic background may regulate chromatin 
accessibility and DKD progression. snATAC-seq found cell-specific differentially accessible regions (DAR) 
throughout the nephron that change accessibility in DKD and these regions were enriched for 
glucocorticoid receptor (GR) motifs. Changes in chromatin accessibility were associated with decreased 
expression of insulin receptor, increased gluconeogenesis, and decreased expression of the GR cytosolic 
chaperone, FKBP5, in the diabetic proximal tubule. Cleavage under targets and release using nuclease 
(CUT&RUN) profiling of GR binding in bulk kidney cortex and an in vitro model of the proximal tubule 
(RPTEC) showed that DAR co-localize with GR binding sites. CRISPRi silencing of GR response elements 
(GRE) in the FKBP5 gene body reduced FKBP5 expression in RPTEC, suggesting that reduced FKBP5 
chromatin accessibility in DKD may alter cellular response to GR. We developed an open-source tool for 
single cell allele specific analysis (SALSA) to model the effect of genetic background on gene expression. 
Heterozygous germline single nucleotide variants (SNV) in proximal tubule ATAC peaks were associated 
with allele-specific chromatin accessibility and differential expression of target genes within cis-
coaccessibility networks. Partitioned heritability of proximal tubule ATAC peaks with a predicted allele-
specific effect was enriched for eGFR, suggesting that genetic background may modify DKD progression 
in a cell-specific manner.       
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Introduction 

Diabetes is the leading cause of end-stage renal disease (ESRD) and a significant contributor to 
morbidity and mortality (1). An estimated 40% of patients with diabetes develop chronic kidney disease 
(CKD), which manifests as worsening proteinuria and renal dysfunction (2). Single cell sequencing is a 
powerful technique that has advanced our understanding of kidney biology (3). Multimodal integration 
of single nucleus RNA (snRNA-seq) and assay for transpose-accessible chromatin sequencing (snATAC-
seq) provides insight into how transcription factors and chromatin-chromatin interactions regulate 
expression of nearby genes (4). We have performed snRNA-seq and snATAC-seq on kidney cortex from 
patients with and without type 2 diabetes to identify cell-specific differentially expressed genes and 
accessible chromatin regions associated with diabetic kidney disease (DKD). We validated key findings 
from our multimodal analysis with cleavage under targets and release using nuclease (CUT&RUN) and 
CRISPR interference (CRISPRi) to directly measure transcription factor binding and modify chromatin 
accessibility of cis-regulatory elements (CRE). Epigenetic regulation of chromatin accessibility may 
contribute to long-term expression of DKD-related genes in a process termed metabolic memory (5). 
Our analysis identified cell-specific changes in chromatin accessibility that co-localize with transcription 
factor binding sites associated with glucose metabolism and corticosteroid signaling in the diabetic 
nephron.  

Type 2 diabetes is characterized by impaired glucose tolerance and insulin resistance, factors 
which may contribute to the progression of DKD (2). The kidney is an important regulator of blood 
pressure and glucose levels, which are therapeutic targets that reduce risk of kidney disease 
progression. In the kidney, the proximal tubule is the primary site for glucose metabolism and plays a 
dual role in glucose reabsorption and gluconeogenesis (6). Sodium glucose cotransporter 2 inhibitors 
(SGLT2i) block glucose reabsorption in the proximal tubule and slow progression of DKD (7). SGLT2i may 
have benefits that extend beyond glycemic control, which has renewed interest in finding additional 
therapeutic targets in the kidney (7). 

Glucocorticoids and mineralocorticoids comprise a class of hormones called corticosteroids 
produced in the adrenal cortex. Cortisol is the primary endogenous glucocorticoid that binds 
glucocorticoid receptor (GR). GR is expressed in multiple kidney cell types, including proximal tubule, 
thick ascending limb, endothelium, and podocytes (3). The principal mineralocorticoid is aldosterone, 
which regulates sodium reabsorption by binding mineralocorticoid receptor (MR) in the distal nephron. 
Single cell sequencing of human DKD has shown that corticosteroid-sensitive genes in the thick 
ascending limb and distal nephron express a transcriptional signature consistent with increased 
potassium secretion and decreased paracellular calcium and magnesium reabsorption (8). Chronic 
exposure to endogenous cortisol and long-term treatment with synthetic glucocorticoids has been 
linked to type 2 diabetes and metabolic syndrome (9,10). GR signaling regulates a wide variety of cellular 
processes in the kidney, including glucose homeostasis, sodium transport, and inflammation (9). GR 
activation increases expression of gluconeogenic genes, which drive the synthesis of glucose from non-
carbohydrate substrates like lactate, glutamine, and glycerol (11,12). Gluconeogenesis occurs in the 
kidney and liver and helps to maintain circulating glucose levels. The kidney contributes approximately 
half of circulating glucose during prolonged fasting and studies have demonstrated that both glucose 
reabsorption and gluconeogenesis are increased in type 2 diabetes (11). 

Glucocorticoid sensitivity is regulated at the tissue level by expression of GR cytosolic 
chaperones. FKBP5 encodes a negative regulator of GR signaling called FK506 binding protein 51 (FKBP5) 
(13). FKBP5 is an Hsp90 co-chaperone that limits GR ligand binding and nuclear translocation to inhibit 
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GR-induced transcriptional responses (13). GR activation stimulates FKBP5 expression via a negative 
feedback loop by binding glucocorticoid receptor response elements (GRE) in the FKBP5 gene body (14). 
Epigenetic regulation of FKBP5 is best-characterized as an important modifier of the stress response, but 
has also been associated with increased cardiometabolic risk in patients with type 2 diabetes (15,16). 
Furthermore, FKBP5 polymorphisms increase susceptibility for obesity-related insulin resistance and 
hypertriglyceridemia (17,18). These studies suggest that epigenetic regulation and genetic background 
may modulate GR signaling and cellular stress response in type 2 diabetes (9). 

Genetic variation contributes to the risk of type 2 diabetes and DKD progression as shown by 
genome wide association studies (GWAS) (19–21). Many of the variants identified by GWAS are common 
(MAF > 0.01) and explain a small proportion of heritability of type 2 diabetes and kidney disease (21). 
GWAS have been used to investigate a wide variety of kidney-function-related traits, however, one of 
the difficulties with GWAS is assigning function to risk variants located in non-coding regions (22,23). 
Recent studies have shown that a significant proportion of GWAS variants for type 1 and type 2 diabetes 
are located in cell-specific open chromatin regions (24,25). Chromatin accessibility quantitative trait loci 
(caQTL) are single nucleotide variants (SNV) that correlate with chromatin accessibility in a genomic 
region (23). A subset of caQTL are also associated with changes in expression of nearby genes (eQTL) 
(26). The relationship between gene expression and chromatin accessibility can be modeled using allele-
specific chromatin accessibility (ASCA) (27–29). Every cell has a maternal and paternal allele that carries 
a unique genetic fingerprint that may result in altered activity of CRE leading to increased or decreased 
expression of target genes. For example, the presence of a SNV within a CRE may disrupt a transcription 
factor binding site on the paternal allele and reduce its enhancer activity. snATAC-seq can directly 
measure ASCA by quantifying the ratio of ATAC peak fragments that intersect heterozygous germline 
SNV. snATAC-seq can also predict CRE gene targets with cis-coaccessibility networks (CCAN), which 
makes it a compelling method for interrogating the effect of genetic variants in open chromatin regions 
(28). Multimodal single cell datasets can take this approach one step further by integrating snATAC-seq 
with snRNA-seq to estimate the expression of target genes in single cells as a result of ASCA (4,30). 
These new methods open the door to novel techniques for gene-enhancer predictions and quantitation 
of single cell allele-specific effects (30).   

In this study, we used snRNA-seq and snATAC-seq to analyze kidney cortex samples obtained 
from donors with and without DKD. We report cell-specific changes in chromatin accessibility associated 
with alterations in insulin signaling and glucose metabolism, predominantly in the proximal tubule. Cell-
specific changes in chromatin accessibility were corroborated by changes in transcription and 
enrichment of similar pathways by snRNA-seq. Differentially accessible chromatin regions were enriched 
for GR motifs and predicted GRE were validated by CUT&RUN in bulk kidney cortex and an in vitro model 
of the proximal tubule. CRISPRi silencing of GRE in the FKBP5 gene body decreased FKBP5 expression 
and implicates decreased chromatin accessibility as a potential mechanism for altering the GR negative 
feedback loop. Partitioned heritability of cell-specific ATAC peaks and differentially accessible regions in 
DKD are enriched for heritability of eGFR in the proximal tubule. Single cell allele-specific analysis of SNV 
in ATAC peaks with SALSA shows that genetic background is associated with changes in expression of 
target genes and that these ATAC peaks co-localize with the same regions that change accessibility in 
DKD.  
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Results 

Patient Demographics and Clinical Information 

A total of 13 kidney cortex samples were obtained from healthy control patients (n=6), and 
patients with diabetic kidney disease (DKD, n=7). Tissue samples were collected following nephrectomy 
for renal mass (n=10) or from deceased organ donors (n=3). Patients ranged in age from 50 to 78 years 
(median=57y) and included seven men and six women (Supplemental Table 1). Patients with type 2 
diabetes had elevated hemoglobin A1c (mean=8.2 +/- 1.5%). The majority of patients with DKD were on 
antihypertensive or ACE inhibitor therapy and two patients were on insulin. Two patients with DKD had 
mild to moderate proteinuria as measured by urine dipstick.   

 

Renal Histology of Donor Samples 

Tissue sections were stained with H&E and examined by a renal pathologist (P.W.) to evaluate 
histological features of DKD. Control samples did not have significant global glomerulosclerosis (<10%) 
or interstitial fibrosis and tubular atrophy (<10%). Patients with DKD had predominantly mild (N=3, < 
25%) or moderate (N=3, 26-50%) global glomerulosclerosis with a corresponding increase in interstitial 
fibrosis and tubular atrophy. Mean eGFR of DKD samples (66 +/- 25 ml/min/1.73m^2) and control 
samples (74 +/- 15ml/min/1.73m^2) was not statistically different (Students t-test, p=0.49). DKD 
samples showed nodular mesangial expansion, thickened glomerular basement membranes and 
afferent arteriolar hyalinosis. 

 

Single Nucleus ATAC Sequencing in Type 2 Diabetes 

The snATAC-seq dataset included six healthy control samples and seven with DKD. snATAC-seq 
libraries were counted with cellranger-atac (10X Genomics) and aggregated prior to cell-specific peak 
calling with MACS2 (18,30). We detected 437,311 accessible chromatin regions (‘ATAC peaks’) across all 
cell types. More abundant cell types had a larger number of ATAC peaks compared to less common cell 
types, which is likely a function of increased power and sequencing depth (Supplemental Figure 1). The 
aggregated dataset was analyzed in Signac following batch effect correction with Harmony (30,31).  A 
total of 68,458 cells passed quality control filters and all major cell types in the kidney cortex were 
represented (Figure 1A). Cell types were identified based on increased chromatin accessibility within 
gene body and promoter regions of lineage-specific markers (Supplemental Figure 1) and enrichment for 
cell-specific ATAC peaks (Supplemental Table 2). The most abundant cell type was the proximal 
convoluted tubule (PCT), which comprised approximately one third of snATAC-seq cells.  We previously 
described an injured population of VCAM1+ proximal tubule cells (PT_VCAM1) that increase in response 
to acute kidney injury, aging, and CKD (3). PT_VCAM1 can be distinguished from PCT by expression of 
VCAM1 and HAVCR1 (KIM-1), which is a marker of kidney injury (Supplemental Figure 2). There was a 
trend towards greater proportion of PT_VCAM1 in DKD samples compared to healthy controls (0.09 vs. 
0.25, p = 0.14). DKD samples also had a trend towards greater number of infiltrating leukocytes (mean of 
42 vs. 211, p = 0.10), including B cells, T cells, and mononuclear cells.   
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Cell-specific differentially accessible chromatin regions in the diabetic nephron 
 

We compared DKD and control samples to identify 7,347 cell-specific differentially accessible 
chromatin regions (DAR) that met the adjusted p-value threshold (Supplemental Table 3, Benjamini 
Hochberg padj < 0.05), including 1,303 that also met an absolute log-fold-change threshold of 0.1 (Figure 
1B). The majority of DAR showed decreased accessibility rather than increased accessibility (920 vs. 383) 
and many were located in a promoter region (Figure 1B). In contrast, a minority of DAR were in 
intergenic sites (152/1,303, 11%) with a median distance of 50kb from the nearest transcriptional start 
site (TSS). Nearly half of intergenic DAR (n=69/152, 45%) and one third of intronic DAR (n=64/236, 27%) 
mapped to a FANTOM enhancer (32).  The proximal convoluted tubule (PCT) had the greatest number of 
DAR (n=422) followed by the proximal straight tubule (PST), PT_VCAM1, and thick ascending limb 
(Figure 1C). Less abundant cell types like podocytes and endothelial cells had few if any DAR, which likely 
reflects our limited power to detect them. Among 1,303 total DAR, 968 were unique because a subset of 
DAR were shared between multiple cell types (Figure 1C).  DAR present in multiple cell types included 
regions within or near ATP1B1 and KCNE1B. ATP1B1 encodes a subunit of the sodium potassium ATPase 
and KCNE1B encodes a subunit of the voltage-gated potassium channel, suggesting that DAR in diabetes 
may elicit a conserved effect on ion transport across nephron segments.  

We grouped DAR from the proximal convoluted tubule (PCT) and proximal straight tubule (PST) 
and annotated them with the nearest protein coding gene to perform gene ontology enrichment. Genes 
near proximal tubule DAR were enriched for pathways involved in response to insulin, cellular response 
to peptides, response to hormone stimuli, and ion transport (Figure 1D). Insulin resistance is a key 
feature of DKD and we identified proximal tubule DAR with decreased chromatin accessibility near 
multiple genes that regulate insulin signaling (Supplemental Table 3) (33). There was a DAR in the 
second intron of the insulin receptor (INSR) that showed decreased accessibility in the proximal tubule 
(Figure 1E, Orange Arrow). This region was predicted to regulate INSR expression via a CCAN (Figure 1E, 
Green Arcs) and was associated with decreased INSR expression in the corresponding snRNA-seq 
dataset (Figure 1F). The loop of Henle is a key regulator of sodium reabsorption where we identified two 
DAR in the promoter region of ATP1B1 (Supplemental Table 3). These DAR were present in both the 
ascending thin limb (ATL) and thick ascending limb (TAL1, TAL2) where they showed decreased 
chromatin accessibility. Decreased chromatin accessibility was associated with decreased ATP1B1 
expression in the same cell types in the corresponding snRNA-seq dataset. Together, these findings 
suggest that DKD is associated with changes in chromatin accessibility that regulate expression of genes 
important for insulin signaling and sodium reabsorption.  
 We compared the proximal convoluted tubule (PCT) and PT_VCAM1 to identify changes in 
chromatin accessibility associated with emergence of the pro-inflammatory PT_VCAM1 cell state 
(Supplemental Table 4). There were 4,498 DAR and the majority showed decreased accessibility 
(N=3,055, 68%). Gene ontology analysis of nearby protein-coding genes showed enrichment for 
pathways involved in kidney development, metabolism, amino acid transport, epithelial cell 
proliferation, response to glucocorticoids, and regulation of transforming growth factor beta signaling. 
ATAC peaks with increased chromatin accessibility in PT_VCAM1 were located near pro-inflammatory 
genes like IL-6, CD40, and TGFB2 in addition to genes involved in proliferation like EGFR and MYC.  
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Figure 1 
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Single Nucleus RNA Sequencing to Detect Differentially Expressed Genes in Type 2 Diabetes 

A total of eleven snRNA-seq libraries were aggregated with cellranger (10X Genomics) and 
analyzed with Seurat following doublet removal and batch effect correction (4,31). The snRNA-seq 
dataset included six healthy control samples and five with DKD. A total of 39,176 cells passed quality 
control filters and all major cell types in the kidney cortex were represented (Figure 2A), including the 
PT_VCAM1 subpopulation (3). snRNA-seq cell types largely expressed the same lineage-specific markers 
that showed increased chromatin accessibility in the snATAC-seq dataset (Supplemental Figure 3) and 
were enriched for cell-specific genes (Supplemental Table 5). There was a trend toward greater 
proportion of PT_VCAM1 in DKD compared to healthy controls (mean proportion 0.06 vs. 0.02, 
Student’s t-Test p=0.051). We compared individual cell types between healthy control and DKD samples 
to identify cell-specific differentially expressed genes (Supplemental Table 6). The cell type with the 
greatest number of differentially expressed genes was the proximal tubule (Figure 2B, N=607, padj < 
0.05, |avg_log2FC| > 0.25). Similar to our findings from the snATAC-seq analysis, a subset of 
differentially expressed genes were shared between multiple cell types (Figure 2C). These shared genes 
were enriched for pathways involved in regulation of cell growth, cellular response to hypoxia, 

Figure 1. snATAC-seq of human DKD. A) UMAP embedding of snATAC-seq dataset. Six healthy control 
and seven DKD samples were aggregated, preprocessed, and filtered. A total of 68,458 cells are 
depicted. PCT-proximal convoluted tubule, PST-proximal straight tubule, PT_VCAM1-VCAM1(+) 
proximal tubule, PT_CD36-CD36(+) proximal tubule cells, PEC-parietal epithelial cells, ATL-ascending 
thin limb, TAL1-CLDN16(-) thick ascending limb, TAL2-CLDN16(+) thick ascending limb, DCT1-early 
distal convoluted tubule, DCT2-late distal convoluted tubule, PC-principal cells, ICA-type A intercalated 
cells, ICB-type B intercalated cells, PODO-podocytes, ENDO-endothelial cells, FIB_VSMC_MC-
fibroblasts, vascular smooth muscle cells and mesangial cells, TCELL-T cells, BCELL-B cells, MONO-
mononuclear cells. B) Effect size and location of DAR in DKD. Healthy control cell types were 
compared to DKD to identify cell-specific DAR in the snATAC-seq dataset using the Seurat FindMarkers 
function (Supplemental Table 3). DAR were evaluated with a Bonferroni-adjusted p-value for an FDR 
< 0.05 and significant DAR that met an absolute log2-fold-change threshold of 0.1 (horizontal bars) 
were annotated with ChIPSeeker relative to the nearest TSS. C) DAR in DKD that are cell-specific or 
shared between cell types. DAR that were either shared between multiple cell types or unique to a 
specific cell type are displayed. DAR shared between multiple cell types are limited to groups that 
share five or more DAR. D) Proximal tubule DAR pathway enrichment. Significant cell-specific DAR 
from PCT and PST were annotated with the nearest protein-coding gene to perform gene ontology 
enrichment with Panther. Fold-enrichment for all significant GO biological processes is shown and the 
top 25 are highlighted. E) Proximal tubule-specific DAR and ATAC peaks in the insulin receptor. 
snATAC-seq coverage plots for DKD and control PCT are displayed in relation to the INSR gene body. 
The orange arrow indicates a DAR in intron 2 that shows decreased accessibility in DKD 
(chr19:7196798-7198626, fold-change=0.92, padj=7.7x10^-13). Green arcs depict the nodes of a cis-
coaccessibility network (CCAN) surrounding the INSR gene body. F) Proximal tubule INSR expression 
by snRNA-seq. Healthy control proximal tubule was compared to DKD in the snRNA-seq dataset to 
identify differentially expressed genes with the FindMarkers function and visualized as a violin plot. 
DKD proximal tubule showed reduced INSR expression (fold-change=0.78, padj=1.2x10^-27).    
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angiogenesis, cellular response to insulin stimulus, glucocorticoid signaling, and ion transport. For 
example, INSR showed decreased expression in the proximal tubule (Figure 1F), thick ascending limb, 
and distal convoluted tubule (Supplemental Table 6).  

We examined proximal tubule-specific changes in gene expression to determine if the same 
pathways we identified by snATAC-seq were present in the snRNA-seq dataset. Gene ontology analysis 
of differentially expressed genes in the proximal tubule showed significant overlap with snATAC-seq 
pathways, including membrane depolarization, anion homeostasis, sodium ion transport, and 
glucocorticoid signaling (Figure 2D). The diabetic proximal tubule showed a modest increase in 
expression of GR (NR3C1, fold-change = 1.14, padj = 4.7 x 10^-10), although it did not meet the log-fold 
change threshold. The proximal tubule also showed increased expression of sodium glucose 
cotransporter 2 (SGLT2, fold-change = 1.24, padj = 1.9x10^-30) and increased expression of the rate-
limiting enzyme in gluconeogenesis (PCK1, fold-change = 1.63, padj = 1.8x10^-41). Comparison with the 
corresponding snATAC-seq dataset showed multiple proximal tubule DAR near PCK1 (Figure 2E, Orange 
Boxes), suggesting that changes in chromatin accessibility may lead to increased PCK1 expression (Figure 
2F). There were no DAR near SLC5A2 that met the adjusted p-value threshold. The PCK1 DAR were 
located both within and distal to its gene body where they interacted with the promoter via a CCAN 
(Figure 2E, Green Arcs). Additional enzymes in the gluconeogenic pathway were also upregulated in the 
diabetic proximal tubule (Figure 2F). Together, these findings suggest that the diabetic proximal tubule 
increases expression of genes that promote both glucose reabsorption (SLC5A2) and glucose production 
(PCK1, ALDOB, FBP1, G6PC).  

The diabetic thick ascending limb (TAL1) had 622 differentially expressed genes compared to 
healthy controls (padj < 0.05, |avg_log2FC| > 0.25). The differentially expressed genes in TAL1 were 
enriched for pathways involved in nitric oxide signaling, ATP biosynthesis, anion transport, and cellular 
response to cAMP, EGFR signaling, glucocorticoids, hypoxia, and insulin.  Similar to the diabetic proximal 
tubule, there was decreased expression of INSR (fold-change = 0.76, padj = 1.5x10^-17) and increased 
expression of GR (NR3C1, fold-change = 1.26, padj = 4.7x10^-10). There was also decreased expression 
of HSD11B2 (fold-change = 0.71, padj = 5.3x10^-33), which is the enzyme that catalyzes the conversion 
of cortisol to the inactive metabolite cortisone to protect nonselective activation of MR. In fact, 
decreased HSD11B2 expression was observed in every cell type in the distal nephron (Supplemental 
Table 6). These data support our hypothesis that the diabetic nephron has increased GR signaling due to 
increased GR expression and decreased activity of the enzyme responsible for metabolizing cortisol.  

We compared the proximal tubule and PT_VCAM1 to identify differentially expressed genes 
associated with the PT_VCAM1 cell state. There were 3,842 differentially expressed genes 
(Supplemental Table 7) enriched for pathways involved in cell migration, EGFR signaling, insulin receptor 
signaling, histone deacetylation, regulation of glycolysis, and TGF-beta signaling. For example, INSR 
expression was decreased in PT_VCAM1 relative to PT (fold-change = 0.67, padj = 4.1x10^-53) and 
TGFBR2 was increased (fold-change = 1.34, padj = 5.4x10^-34). These changes were accompanied by a 
modest increase in GR expression (NR3C1, fold-change = 1.07, padj = 2.0x10^-10) and a marked 
reduction in FKBP5 (fold-change = 0.45, padj = 4.9x10^-117).  
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Figure 2 
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Cell-specific Transcribed Cis-Regulatory Elements  

Transcribed cis-regulatory elements (tCRE) confer cell type specificity and the majority are 
located in enhancer and promoter regions where they overlap with ATAC peaks (34,35). Transcriptional 
start sites (TSS) can be identified by 5’ RNA sequencing if read 1 is long enough (> 81bp) to include the 
junction between the template switch oligo (TSO) and TSS. This type of analysis is compatible with single 
cell 5’ paired-end chemistry (SC5P-PE, 10X Genomics), but will not work with libraries that only use read 
2 for alignment (SC5P-R2, 10X Genomics). We analyzed two healthy control and two DKD snRNA-seq 
libraries with SC5P-PE sequencing to identify de novo transcriptional start sites in CRE using Single Cell 
Analysis of Five-prime Ends (SCAFE) (36,37). SCAFE analyzes the 5’ end of RNA transcripts to identify 
reads mapping to the junction between the TSO and cDNA sequence to localize TSS within tCRE after 
filtering false positives with a logistic regression classifier. We identified 37,698 tCRE across all cell types 
(Figure 3A, Supplemental Table 8). The majority of tCRE were near a protein-coding TSS (mean distance 
= 3823 +/- 43,885), but there was a significant proportion of tCRE in intronic (Figure 3B, 11847/37,698, 
31%) and intergenic regions (Figure 3B, 1367/37,698, 3%). Some of these tCRE may represent enhancer 
RNA (eRNA), which are a family of non-coding RNA that regulate gene expression and enhancer activity 
in a cell-specific manner (38). The majority of tCRE were overlapping with a snATAC-seq peak (Figure 3C, 

Figure 2. snRNA-seq of human DKD. A) UMAP embedding of snRNA-seq dataset. Six healthy control 
and five DKD samples were aggregated, preprocessed, and filtered. A total of 39,176 cells are depicted. 
PT-proximal tubule, PT_VCAM1-VCAM1(+) proximal tubule, PEC-parietal epithelial cells, ATL-
ascending thin limb, TAL1-CLDN16(-) thick ascending limb, TAL2-CLDN16(+) thick ascending limb, 
DCT1-early distal convoluted tubule, DCT2-late distal convoluted tubule, PC-principal cells, ICA-type A 
intercalated cells, ICB-type B intercalated cells, PODO-podocytes, ENDO-endothelial cells, MES-
mesangial cells and vascular smooth muscle cells, FIB-fibroblasts, LEUK-leukocytes. B) Differentially 
expressed genes in the diabetic proximal tubule. Healthy control proximal tubule was compared to 
DKD to identify cell-specific DEG in the snRNA-seq dataset using the Seurat FindMarkers function. DEG 
were evaluated with a Bonferroni-adjusted p-value for an FDR < 0.05 and significant DEG are 
displayed. DEG that met an absolute log2-fold-change threshold of 0.25 (vertical bars) are colored light 
blue. C) DEG in DKD that are cell-specific or shared between cell types. DEG that were either shared 
between multiple cell types or unique to a specific cell type are displayed. DEG shared between 
multiple cell types are limited to groups that share ten or more DEG. D) Proximal tubule DEG pathway 
enrichment. Significant cell-specific DEG from proximal tubule were used to perform gene ontology 
enrichment with Panther. Fold-enrichment for all significant GO biological processes is shown and the 
top 25 are highlighted. E) Proximal tubule-specific DAR and ATAC peaks in PCK1. snATAC-seq 
coverage plots for DKD and control PCT are displayed in relation to the PCK1 gene body. The orange 
arrows indicate multiple DAR that show decreased accessibility in DKD (Supplemental Table 3). Green 
arcs depict the nodes of a cis-coaccessibility network (CCAN) surrounding the PCK1 gene body. F) 
Proximal tubule shows increased expression of gluconeogenic genes by snRNA-seq. Healthy control 
proximal tubule was compared to DKD proximal tubule in the snRNA-seq dataset to identify 
differentially expressed genes with the FindMarkers function and visualized as violin plots. DKD 
proximal tubule showed increased expression of PCK1, ALDOB, FBP1, and G6PC (see Supplemental 
Table 6 for adjusted p-values). 
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23,048/37,698, 61%) and approximately half of snATAC-seq DAR were overlapping with a tCRE (494/968, 
51%, hypergeometric test p=3.6x10^-5). A small minority of tCRE were cell-type-specific (N=361/37,698, 
1%, Supplemental Table 7), but corresponded to well-known cell-type-specific genes. For example, there 
was a cell-specific tCRE in podocytes in the promoter region of NPHS1 and a cell-specific tCRE in the 
proximal tubule in the promoter region of CUBN (Supplemental Table 7). These data suggest that 5’ 
snRNA-seq datasets contain complementary information that can be used to evaluate the activity of CRE 
identified by snATAC-seq.     

We compared healthy control to DKD samples to identify cell-specific differential tCRE in 
diabetes. Across all cell types, we detected a total of 293 differential tCRE (Supplemental Table 9). These 
tCRE included 139 unique regions, which were enriched for pathways involved in mitochondrial electron 
transport and angiogenesis. Multiple cell types showed increased transcription of CRE in promoters 
associated with oxidative phosphorylation like MT-CO1, MT-CO2 and MT-CO3.  We also compared the 
proximal tubule to PT_VCAM1 to identify tCRE that are enriched in the PT_VCAM1 cell state 
(Supplemental Table 10). Among 204 differential tCRE in PT_VCAM1, one of the most enriched tCRE was 
the VCAM1 promoter (fold change = 1.46, padj = 1.1x10^-82). The VCAM1 promoter tCRE showed 
increased chromatin accessibility in the corresponding snATAC dataset (Figure 3D) and was associated 
with two additional tCRE located approximately 60kb upstream. Each of the upstream tCRE were near a 
snATAC-seq peak and linked to the VCAM1 promoter via a CCAN (Figure 3D). We previously reported 
that this upstream CRE binds NFkB by chromatin immunoprecipitation PCR (3). NFkB signaling induces 
VCAM1 expression in the proximal tubule, which raises the possibility that NFkB binding to the upstream 
CRE is also associated with transcription of enhancer RNA (38,39). Together, these data suggest that 
single cell analysis of 5’ ends may help to identify enhancers by prioritizing CRE that are actively 
transcribed.  
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Glucocorticoid Receptor CUT&RUN in Bulk Kidney Cortex 

Cellular response to glucocorticoids is influenced by pre-existing chromatin accessibility state 
where the majority of GR binding sites localize to open chromatin regions (40,41). We used cleavage 
under targets and release using nuclease (CUT&RUN) to directly measure GR binding in bulk kidney 
cortex obtained from a healthy donor (42). We identified 4,362 GR binding sites (Supplemental Table 11) 
located in promoter regions (N=2889, 66%), introns (N=744, 17%) and distal intergenic regions (N=567, 
13%). The density of cell-specific ATAC peaks closely-resembled the density of GR CUT&RUN sites across 
the genome, which suggests that GR predominantly binds to areas of open chromatin in the kidney 
(Figure 4A). GR binding sites overlapped with cell-specific ATAC peaks (N=3066, 70%); many of which 
were shared between multiple cell types. We visualized the intersection between cell-specific ATAC 
peaks and CUT&RUN sites to identify individual cell types or groups of cells that share ten or more GR 
binding sites (Figure 4B). The presence of GR binding sites within cell-specific ATAC peaks suggests GR 
signaling is controlled by chromatin accessibility and regulated by distinct GR modules shared across cell 
types. For example, there were GR binding sites in ATAC peaks unique to the proximal tubule (N=64, 
Figure 4B), unique to the distal nephron (N=15, Figure 4B), and shared between the proximal tubule and 
distal nephron (N=60, Figure 4B). Similarly, there were GR binding sites unique to lymphocytes and 
shared between the proximal tubule and lymphocytes.  

 
  

Figure 3. Transcribed cis-regulatory elements (tCRE) detected by 5-prime snRNA-seq. A) Distance 
from tCRE to TSS. Two healthy control and two DKD samples were sequenced with 5’ paired-end 
sequencing and analyzed with SCAFE. A total of 37,698 tCRE were annotated with ChIPSeeker and 
displayed relative to the nearest TSS. B) Annotation of tCRE. The relative proportion of tCRE in 
promoters, introns, exons, distal intergenic, 3-prime, and 5-prime regions is shown. C) Overlap 
between tCRE and ATAC peaks. tCRE were intersected with cell-specific ATAC peaks and DAR in DKD 
using GenomicRanges. D) Proximal convoluted tubule and PT_VCAM1 DAR and ATAC peaks in 
VCAM1. snATAC-seq coverage plots for PT_VCAM1 (green) and PCT (orange) are displayed in relation 
to the VCAM1 gene body. The orange arrows indicate DAR that show either increased or decreased 
accessibility in PT_VCAM1 relative to PCT (Supplemental Table 4). snATAC-seq peaks accessible in the 
proximal tubule are displayed (snATAC peaks, gray boxes) in the same track as PCT DAR (snATAC 
peaks, orange boxes). snRNA-seq tCRE regions are displayed below snATAC-seq peaks and DAR (snRNA 
tCRE, gray boxes). Green arcs depict the nodes of a cis-coaccessibility network (CCAN) surrounding 
the VCAM1 gene body. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478204doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478204
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 4. Glucocorticoid receptor (GR) CUT&RUN in bulk kidney cortex. A) Density of GR CUT&RUN sites 
relative to cell-specific ATAC peaks. Cell-specific ATAC peaks were identified with the Seurat FindMarkers 
function (Supplemental Table 2) and converted into a rainfall plot (green track) using the circlize package 
in R. Each dot in the rainfall plot corresponds to a cell-specific ATAC peak and the y-axis corresponds to 
the minimal distance between the peak and its two neighboring regions. Clusters of regions appear as a 
“rainfall” in the plot. The density of cell-specific ATAC peaks (black track) and GR CUT&RUN peaks (purple 
track) are shown adjacent to the rainfall plot using a 10Mb default window size. B) Upset plot showing 
intersection between GR CUT&RUN sites and cell-specific ATAC peaks. Cell-specific ATAC peaks that 
contain a bulk kidney GR CUT&RUN site that are also shared between multiple cell types are displayed. 
Only intersections with ten or more GR CUT&RUN sites are included in the plot. GR CUT&RUN sites that 
do not intersect a cell-specific ATAC peak are displayed as the black bar to the far right (N=1,296).  

 

Transcription factor motif enrichment and activity in the diabetic nephron 

We used the JASPAR database to identify over-represented transcription factor motifs in cell-
specific ATAC peaks and DAR in DKD (43). Cell-specific ATAC peaks were enriched for established 
transcription factors that drive cell type differentiation like HNF4A in the proximal tubule and TFAP2B in 
the distal nephron (Supplemental Table 12). Transcription factors that were enriched in DAR provide 
insight into cell-specific signaling pathways that are altered in DKD. PCT DAR were significantly enriched 
for NR3C1 and NR3C2 motifs (Supplemental Table 13, NR3C1 fold enrichment = 2.1, p = 3.8x10^-259; 
NR3C2 fold enrichment=2.1, p = 2.4x10^-288). NR3C1 is the canonical binding motif for GR and NR3C2 is 
the binding motif for MR. The presence of NR3C1 and NR3C2 motifs within PCT DAR suggests that 
chromatin accessibility may regulate corticosteroid signaling in the diabetic proximal tubule (44,45). We 
also saw enrichment of KLF9 and FOXO3 motifs within PCT DAR, which are downstream of GR activation 
(Supplemental Table 13). One of the most enriched motifs in PCT DAR was HINFP (fold enrichment = 6.9, 

Figure 4 
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p = 6.3x10^-308). Histone H4 transcription factor (HINFP) interacts with a component of the MeCP1 
histone deacetylase complex (HDAC) involved in transcriptional repression, which may explain why the 
majority of DAR showed decreased chromatin accessibility (46).  To help prioritize active signaling 
pathways in DKD, we identified transcription factor motifs that were both differentially expressed and 
enriched in DAR (Figure 5A). HIF1A showed increased expression and was enriched in DAR in multiple 
distal nephron cell types (PC, ICA, DCT2) and PT_VCAM1. HIF1A is hypoxia inducible factor 1 subunit 
alpha, a master regulator of cellular response to hypoxia in the kidney (47). GR showed increased 
expression in the proximal tubule (PT) and thick ascending limb (TAL1) where NR3C1 motifs were also 
enriched in DAR. In contrast, MR showed decreased expression in the distal nephron (PC, DCT2), but 
increased expression in the thick ascending limb (TAL1). Together, these data suggest that corticosteroid 
signaling is altered in the diabetic proximal tubule and thick ascending limb where multiple cell types 
may be exposed to a hypoxic environment.   

We used chromVAR to compare transcription factor activity between healthy control and 
diabetic cell types (Supplemental Table 14). chromVAR is a tool for inferring transcription-factor-
associated chromatin accessibility in single cells that helps to address sparsity inherent in snATAC-seq 
datasets (48). This is a qualitatively different and unbiased approach when compared to transcription 
factor motif enrichment analysis because it is not limited to a pre-specified list of cell-specific DAR. 
Diabetic PCT showed decreased transcription factor activity for NR3C1 (Figure 5B, fold-change = 0.56, 
padj = 1.1x10^-70) and increased activity for REL motifs (Figure 5B, fold-change = 2.08, padj = 6.9x10^-
212), which was a pattern observed throughout the nephron. These data support our transcription 
factor motif enrichment analysis by further demonstrating that NR3C1 motifs localize to areas of 
decreased chromatin accessibility in diabetes and REL motifs localize to areas of increased accessibility.  

 
Glucocorticoid Receptor Footprinting with snATAC-seq and CUT&RUN in RPTEC  

We used the snATAC-seq dataset to perform transcription factor footprinting for GR to visualize 
the relationship between NR3C1 motifs and chromatin accessibility. Across all cell types, there was a 
well-defined footprint immediately surrounding NR3C1 motifs (Figure 5C). DKD samples showed 
reduced chromatin accessibility surrounding NR3C1 motifs, however, this effect was attenuated when 
we limited our analysis to the proximal tubule (Figure 5C).  We cultured immortalized renal proximal 
tubule epithelial cells (hTERT-RPTEC, ATCC) and performed CUT&RUN to find 22,539 consensus GR 
binding sites that were not present in IgG-stimulated negative control samples (Supplemental Table 15). 
hTERT-RPTEC media is supplemented with 25ng/ml hydrocortisone (ie. cortisol) and is a model of long-
term glucocorticoid exposure. Nearly half of PCT DAR (168/422, 39%) were overlapping with a GR 
CUT&RUN site. These findings are comparable to the chromVAR analysis, which showed that 
approximately 47% of healthy control PCT and 35% of diabetic PCT ATAC peaks contain an NR3C1 motif. 
GR binding sites that do not directly overlap a PCT DAR may interact with DAR via CCAN (Figure 5D). For 
example, we identified multiple GR binding sites throughout the FKBP5 gene body located in promoter 
and intronic regions (Figure 5E, Purple Boxes). Some of the GR binding sites in FKBP5 co-localized with 
PCT DAR (Figure 5E, Orange Boxes), but others did not. FKBP5 expression was decreased throughout the 
entire nephron (Figure 5F), which highlights its potential importance in DKD and raises the possibility 
that changes in chromatin accessibility regulate its expression. The high proportion of overlap between 
GR binding sites and snATAC-seq PCT DAR was especially striking given that hTERT-RPTEC are a cell 
culture model that does not fully recapitulate the normal proximal tubule. We profiled open chromatin 
regions in hTERT-RPTEC and primary RPTEC using Omni-ATAC and compared them to the PCT snATAC-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478204doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478204
http://creativecommons.org/licenses/by-nc-nd/4.0/


seq dataset. Approximately 59% of hTERT-RPTEC ATAC peaks (N=57,675/96,162, Supplemental Table 16) 
and 56% of primary RPTEC ATAC peaks (N=80,322/141,198, Supplemental Table 17) were overlapping 
with cell-specific PCT snATAC-seq peaks. These data suggest that hTERT-RPTEC and primary RPTEC 
capture roughly half of the chromatin accessibility profile of a normal proximal tubule cell.  
 
Validation of Differentially Expressed Genes in a Bulk RNA-seq Dataset of Human DKD 
 
 We analyzed a previously-published bulk RNA-seq dataset of human DKD to determine if our 
snRNA-seq findings are broadly generalizable. The dataset published by Fan et. al consisted of 9 
controls, 6 with early DKD, and 22 with advanced DKD (49). Early DKD was defined as eGFR > 
90mL/min/1.73m^2 and UACR < 300mg/g. Advanced DKD was defined as eGFR < 90mL/min/1.73m^2 or 
UACR > 300mg/g. According to this definition, samples from our study would be categorized as 
advanced DKD because all of them had either eGFR < 90mL/min/1.73m^2 or proteinuria. Another 
important difference between our study and the study by Fan et al. is that mean eGFR of control 
samples from our study (66 +/- 25 ml/min/1.73m^2) was significantly less than eGFR of control samples 
from their study (87 +/- 9.8 ml/min/1.73m^2, p=0.03).  

We compared the transcriptional profile of advanced DKD to control samples from Fan et al. to 
identify 9,632 differentially expressed genes (Supplemental Table 18A, BH padj < 0.05). Roughly half of 
these differentially expressed genes were upregulated (N=5,181) and the remaining were 
downregulated (N=4,451). These differentially expressed genes were enriched for familiar pathways 
including amino acid metabolism, B cell receptor signaling, T cell differentiation, response to tumor 
necrosis factor, response to peptide hormone, cellular response to hormone stimulus, and ion 
transmembrane transport. The enrichment of pathways involved in lymphocyte signaling and 
differentiation likely reflects the greater proportion of leukocytes present in DKD samples compared to 
control samples. We previously demonstrated that advanced DKD samples from Fan et al. contain an 
increased proportion of leukocytes and PT_VCAM1 (3). Advanced DKD samples showed increased 
expression of GR (NR3C1, fold-change = 1.16, padj = 0.02) and VCAM1 (fold-change = 1.36, padj = 0.006) 
and decreased expression of INSR (fold-change = 0.49, padj = 1.6x10^-12), HSD11B2 (fold-change = 0.38, 
padj = 3.6x10^-8) and FKBP5 (fold-change = 0.46, padj = 0.0009). Next, we compared early DKD samples 
to controls to identify 1,041 differentially expressed genes, among which 385 were upregulated and 656 
were downregulated (Supplemental Table 18B). The differentially expressed genes in early DKD were 
enriched for pathways involved in response to epidermal growth factor, cellular response to 
glucocorticoids, cellular response to insulin stimulus, and cellular response to tumor necrosis factor. In 
contrast to the advanced DKD samples, we did not detect differential expression of NR3C1, INSR, 
HSD11B2, or FKBP5 in early DKD samples. This difference may reflect reduced specificity of bulk RNA-seq 
and a limited number of early DKD samples (n=6) vs. advanced DKD samples (n=22), or alternatively, 
that these genes are associated with DKD progression.    
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CRISPRi knockdown of FKBP5 Cis-regulatory Elements 

We selected two GR binding sites in the FKBP5 gene body (Figure 5E, Blue Stars) that were 
located at nodes within a CCAN (Figure 5E, Green Arcs) to target with CRISPRi. Catalytically inactive 
dCas9 fused to the Krüppel-associated box (KRAB) repression domain (dCas9-KRAB) reduces chromatin 
accessibility to induce targeted gene silencing. We transduced primary RPTEC with sgRNA targeting the 
TSS or intronic CRE in FKBP5 to repress chromatin accessibility with dCas9-KRAB (Figure 6A) (50). 
Transduction of sgRNAs targeting the TSS or intronic region induced a 30-50% reduction in FKBP5 
expression compared to non-targeting control sgRNA (Figure 6B). Furthermore, gene silencing was 
specific to FKBP5 because CRISPRi did not affect expression of neighboring genes expressed in primary 
RPTEC (Figure 6C). 

 
  

Figure 5. Glucocorticoid receptor (GR) binding and FKBP5 in DKD. A) Cell-specific transcription factor 
expression and motif enrichment in DKD. Transcription factors that were both differentially 
expressed (Supplemental Table 6) and showed motif enrichment in cell-specific DAR (Supplemental 
Table 13) were visualized in a scatter plot. Cell types that showed differential expression and motif 
enrichment for GR (NR3C1, red), MR (NR3C2, blue), and HIF1A (HIF1A, black) motifs are highlighted 
with different colors. PT-proximal tubule, PT_VCAM1-VCAM1(+) proximal tubule cells, PEC-parietal 
epithelial cells, TAL1-CLDN16(-) thick ascending limb, TAL2-CLDN16(+) thick ascending limb, DCT2-late 
distal convoluted tubule, PC-principal cells, ICA-type A intercalated cells. B) Cell-specific chromVAR 
motif activity for GR and REL. chromVAR was used to compute cell-specific activities for NR3C1 (GR) 
and REL motifs for control and DKD cell types. Red arrows indicate significantly decreased motif 
activity and green arrows indicate significantly increased motif activity (see Supplemental Table 14 for 
average log-fold-change and adjusted p-values). C) Transcription factor footprinting for GR. 
Transcription factor footprinting analysis was performed for NR3C1 (GR) for all cell types and for PCT 
only to quantitate Tn5 insertion enrichment in healthy control and DKD using Signac. D) Interaction 
between PCT DAR and hTERT-RPTEC GR CUT&RUN sites. PCT DAR in DKD (Supplemental Table 3) 
were intersected with cis-coaccessibility networks (CCAN) to identify all CCAN links that contain at 
least one PCT DAR. These regions were intersected with hTERT-RPTEC GR CUT&RUN sites and 
visualized with the circlize package in R to identify links between GR CUT&RUN sites and PCT DAR. 
Sites were annotated with ChIPSeeker. E) PCT-specific DAR and ATAC peaks in FKBP5. snATAC-seq 
coverage plots for DKD and control PCT are displayed in relation to the FKBP5 gene body. The orange 
arrows indicate multiple DAR that show decreased accessibility in DKD (Supplemental Table 3). PCT-
specific ATAC peaks (Peaks, dark gray boxes) and DAR (Peaks, orange boxes) are shown in relation to 
hTERT-RPTEC CUT&RUN sites (GR, purple boxes) and a cis-coaccessibility network (CCAN, green arcs) 
surrounding the FKBP5 gene body. Blue stars indicate sites targeted by CRISPRi. F) Cell-specific 
expression of FKBP5 by snRNA-seq. Individual cell types were compared between control and DKD 
with the Seurat FindMarkers function and visualized to display relative change in FKBP5 expression. 
Red arrows indicate significantly decreased FKBP5 expression (see Supplemental Table 6 for adjusted 
p-values).  
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Figure 6. Knockdown of FKBP5 cis-regulatory elements with CRISPR interference A) CRISPR interference 
diagram. dCas9-KRAB domain fusion protein and small guide RNAs (sgRNA) were used to target the TSS 
and a potential intronic CRE in the FKBP5 gene. Targeted regions are depicted as blue stars in the FKBP5 
gene model diagram in Figure 5. sgRNA primers and region coordinates are provided in Supplemental 
Table 20. B) Quantitative PCR of FKBP5 CRISPRi. RT and real-time PCR analysis of mRNAs for FKBP5 and 
surrounding genes (MAPK14, PPARD, SPRK1 and TEAD3) in primary renal proximal tubular epithelial cells 
(primary RPTEC) with CRISPR interference targeting the TSS and predicted cis-regulatory element (CRE) 
for FKBP5. NT, non-targeting control. Each group consists of n = 6 data (2 sgRNAs with 3 biological 
replicates). Bar graphs represent the mean and error bars are the s.d. p-values are calculated with one-
way ANOVA and a post-hoc Dunnett’s test for multiple comparisons. 

 

Partitioned Heritability of Cell-specific ATAC Peaks and Differentially Accessible Regions for Kidney-
Function-Related GWAS Traits 

GWAS have shown that a growing list of kidney-related traits have a genetic component (51–
54). We downloaded GWAS summary statistics for eGFR, CKD, microalbuminuria, and urinary sodium 
excretion to determine whether cell-specific chromatin accessibility patterns explain heritability of these 
traits. First, we partitioned heritability of cell-specific ATAC peaks with stratified linkage disequilibrium 
score regression to prioritize which cell types explain heritability of kidney-function-related traits after 
controlling for baseline enrichment (55). The cell types that showed greatest enrichment for heritability 
of eGFR after correction for multiple comparisons were segments of the proximal tubule (PCT, PST) and 
the PT_VCAM1 subpopulation (Figure 7A). This relationship between proximal tubule and heritability of 

Figure 6 
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eGFR has been previously-described (56). Interestingly, PT_VCAM1 cell-specific peaks also showed 
increased heritability for CKD, which raises the possibility that genetic background may influence the 
transition from healthy proximal tubule to PT_VCAM1 (Figure 7A). Multiple segments of the thick 
ascending limb (TAL1, TAL2) and principal cells (PC) showed enrichment for urinary sodium excretion, 
which is consistent with their known roles in sodium reabsorption. In contrast, we did not identify any 
cell types that showed increased heritability for microalbuminuria. This may reflect our reduced 
sensitivity to detect podocyte-specific ATAC peaks that may regulate this phenotype. Next, we 
partitioned heritability of cell-specific DAR that change in DKD. Similar to the findings from our cell-
specific ATAC peak analysis, the DAR in the proximal tubule showed increased heritability of eGFR 
(Figure 7B). Furthermore, DAR in the thick ascending limb (TAL1) showed increased heritability of urine 
sodium excretion (Figure 7B). These data suggest that DKD induces changes in chromatin accessibility in 
some of the same regions that predict heritability of cell-specific kidney functions. It also raises the 
possibility that genetic background may modulate chromatin accessibility patterns to influence changes 
in eGFR or sodium excretion in DKD.  

 

Allele-specific chromatin accessibility as a modifier of gene expression 

 We created an open-source and containerized workflow for single cell allele-specific analysis 
called SALSA (https://github.com/p4rkerw/SALSA). SALSA is a tool for genotyping, phasing, mapping bias 
correction, and modeling of single cell allele-specific counts obtained from snRNA-seq or snATAC-seq 
datasets. The SALSA workflow includes user-friendly tutorials and is executed in a publicly-available 
Docker container built on top of the Genome Analysis Toolkit (GATK) developed by the Broad Institute 
(57).  SALSA uses GATK best practices for germline short-variant discovery to identify SNV and indels, 
which are phased using shapeit4 and a population-based reference from 1000 Genomes (58,59). Phased 
variants present in the population-based reference are used to perform mapping bias correction and 
eliminate technical artifacts with WASP (60). Heterozygous germline SNV that overlap ATAC peaks 
identify single cell allele-specific peak fragments that map to either the reference or alternate allele. In 
this manner, heterozygous SNV in ATAC peaks are used as markers to assign a peak fragment to one 
haplotype or the other. This is an attractive approach because the reference haplotype can serve as a 
perfectly-matched internal control for each individual. We quantitated single cell allele-specific peak 
fragments in the proximal tubule and plotted the aggregate ratio of fragments mapping to reference or 
alternate alleles among 43,479 peaks containing a heterozygous SNV (Figure 7C). The majority of peaks 
had an equal proportion of fragments mapping to each allele (N=35,019, 80%), but a minority of peaks 
had allelic bias as evaluated by a binomial test (N=8,460, 20%). A significantly smaller proportion of 
peaks met the adjusted p-value threshold (N=542, 1.2%), suggesting that most proximal tubule peaks do 
not show allelic bias when aggregated across a population. Next, we integrated snRNA-seq and snATAC-
seq datasets to apply an algorithm developed by Ma et al. to identify ATAC peaks that are correlated 
with expression of nearby genes after correction for distance, GC content, peak accessibility, and peak 
width (61). This approach helped to identify one or more gene targets for each peak containing a 
heterozygous SNV. We developed a simple mixed effect logistic regression model where the binary 
dependent variable was coded as the presence of an alternate allele in an ATAC peak fragment and the 
continuous predictor variable was single cell target gene expression in the integrated multimodal 
dataset. A mixed effect per sample was included to control for pseudo-replication bias (62). Our 
approach is a modification of a previously-published model in SnapATAC used to identify gene-enhancer 
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pairs that coded the dependent variable as ‘open’ or ‘closed’ and omitted the mixed effect (63). Our 
base model evaluates whether increased or decreased expression of a target gene is predictive of the 
presence of an alternate allele within an ATAC peak. In the simplest terms, we can ask if the presence of 
a SNV in an ATAC peak is associated with changes in gene expression. 
 In the base model, we evaluated 66,828 peak-gene combinations to estimate the effect of gene 
expression on the presence of a heterozygous SNV in an ATAC peak (Figure 7D, Supplemental Table 
19A). The peak-gene combinations included 42,990 unique ATAC peaks where the majority had either 
one (N=28,989, 67%) or two gene targets (N=8,767, 20%). Approximately 11% of peak-gene 
combinations showed evidence of an allele-specific effect (Figure 7D, 7512/66,828, Wald test p < 0.05), 
which decreased to 1% after adjustment for multiple comparisons (N=714, 1%). There were 5,908 
unique ATAC peaks with at least one significant peak-gene allelic effect, predominantly in promoter 
(N=2,312, 39%) and intronic regions (N=2,082, 35%). The number of peak-gene combinations that 
showed increased expression in association with an alternate allele (N=3,664, 48%) was similar to the 
number of combinations that showed increased expression in association with the reference allele 
(N=3,848, 52%). Among peaks that met the significance threshold, the median absolute coefficient value 
was 0.01 (log odds) for a 1% increase in target gene expression. For a 10% increase in gene expression, 
this translates to the typical ATAC peak being 1.10 times more likely to contain an alternate allele in the 
base model. In subsequent models, we added a fixed effect for diabetes (Model 2) and a fixed effect for 
diabetes with an interaction term between target gene expression and diabetes (Model 3). Model 2 had 
7,557 peak-gene combinations where expression was a significant predictor of the presence of an 
alternate allele (Supplemental Table 19B, Wald test p < 0.05), which included 6,980 that were also 
identified in the base model. Since we know that diabetes can alter gene expression, Model 3 included 
an interaction term between expression and diabetes. Model 3 had 7,353 peak-gene combinations 
where expression was a significant predictor of the presence of an alternate allele (Supplemental Table 
19C, Wald test p < 0.05), which included 4,577 that were also identified in the base model. 
Approximately 28% of these peak-gene combinations (N=2,097/7,353) had a significant interaction 
between expression and diabetes. Additionally, diabetes was a significant predictor of the presence of 
an alternate allele in 20% of peak-gene combinations (N=1,471/7,353) after adjusting for gene 
expression.  
 We hypothesized that peaks with a predicted allele-specific effect would be enriched for 
heritability of kidney-function-related traits in the proximal tubule. We partitioned heritability for eGFR 
using peaks that met the p-value threshold (Wald test p < 0.05) for the expression fixed effect in each of 
three models. All three models showed increased heritability for eGFR (Figure 7E). In contrast, proximal 
tubule ATAC peaks that showed increased proportion of fragments mapping to the alternate or 
reference allele (Figure 7C) in the aggregated dataset did not have enrichment for heritability of eGFR 
(ASCA, Figure 7D). These peaks do not necessarily have a predicted allele-specific effect and may 
represent a random subset of proximal tubule peaks that exhibit biased chromatin accessibility due to 
chance alone. These data suggest that peaks with a predicted allele-specific effect are more likely to 
contribute to heritability of eGFR than a random sampling of proximal tubule peaks. Approximately 20% 
of proximal tubule DAR were overlapping with a peak with a predicted allelic effect (N=104/597, Figure 
7E, Hypergeometric p=1.7x10^-10), suggesting that genetic background may also modify chromatin 
accessibility patterns in DKD.  We used the 4,476 significant peak-gene combinations present in all three 
models to perform gene ontology enrichment. The most enriched pathways involved peptide antigen 
assembly with MHC class II, antigen processing, and immunoglobulin production. Each of these 
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pathways involve multiple HLA genes, which are known to exhibit allele-specific expression due to 
genetic variation in CRE (64). Proximal tubule expression of MHC class II regulates the response to 
kidney injury and renal fibrosis (65). Additional enriched pathways with important function in the 
proximal tubule included triglyceride metabolism, amino acid transport, and carbohydrate metabolism.  
 
 
 
 

 
 
 

 

 

Figure 7 
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Figure 7. Cell-specific partitioned heritability of GWAS traits and prediction of allelic effects with SALSA. 
A) Partitioned heritability of cell-specific ATAC peaks for eGFR, CKD, microalbuminuria, and urinary 
sodium excretion. Cell-specific ATAC peaks were identified with the Seurat FindMarkers function 
(Supplemental Table 2) and prepared as bed files to create custom annotations and generate linkage 
disequilibrium scores with ldsc. Partitioned heritability was performed using publicly-available GWAS 
summary statistics and the cell-type-specific workflow. Significance was assessed with an adjusted p-value 
threshold < 0.05 (vertical bars). B) Partitioned heritability of cell-specific DAR for eGFR, CKD, 
microalbuminuria, and urinary sodium excretion in DKD. Cell-specific DAR were identified by comparing 
healthy control and DKD cell types with the Seurat FindMarkers function (Supplemental Table 3). 
Significant regions were prepared as bed files to create custom annotations and generate linkage 
disequilibrium scores with ldsc. Partitioned heritability was performed using publicly-available GWAS 
summary statistics and the cell-type-specific workflow. Significance was assessed with an adjusted p-value 
threshold < 0.05 (vertical bars). C) Ratio of snATAC-seq fragments mapping to reference and alternate 
alleles in the proximal tubule. SALSA was used to identify phased heterozygous SNV and quantitate single 
cell snATAC-seq fragments in the proximal tubule (PCT, PST) mapping to the reference or alternate allele. 
Counts were aggregated across all libraries (N=6 control, N=5 DKD) and evaluated for allele specific 
chromatin accessibility using a binomial test. D) Predicting an allele-specific effect with SALSA in the 
proximal tubule. Proximal tubule snATAC-seq peaks containing a heterozygous SNV were analyzed with 
the LinkPeaks function in Signac to identify one or more gene targets. Gene target expression was 
estimated using label transfer from the snRNA-seq to the snATAC-seq object. The presence of a fragment 
mapping to an alternate allele in a proximal tubule ATAC peak (binary dependent variable) was modeled 
as a function of target gene expression (continuous predictor variable) after controlling for sample-to-
sample variability by including a mixed effect per library with the glmer package. The effect size for each 
peak is displayed in log-odds where a 1 unit increase corresponds to a 1% increase in target gene 
expression. Peaks are displayed relative to the nearest TSS and peaks that met the significance threshold 
(Wald p < 0.05) were annotated with ChIPSeeker to indicate a predicted region (Promoter=red, 
Intron=blue, Exon=green, Distal intergenic=purple, 3-prime=orange, 5-prime=yellow). Peaks that did not 
meet the significance threshold are plotted in the bottom layer and colored gray (Wald p > 0.05). E) 
Partitioned heritability of proximal tubule peaks with a predicted allelic effect. Peaks that were 
associated with changes in target gene expression were partitioned for heritability of eGFR for each of 
three GLMM evaluated in addition to peaks that met the binomial threshold for allele-specific chromatin 
accessibility (ASCA, panel C). Significance was assessed with an adjusted p-value threshold < 0.05 (vertical 
bar). F) Overlap between proximal tubule DAR and peaks with a predicted allelic effect. DAR from PCT 
and PST were intersected with proximal tubule peaks with a predicted effect in Model 3. 
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Discussion 

Single cell sequencing has advanced our understanding of kidney biology and multimodal 
analysis provides even greater insight into disease pathogenesis. DKD progression is multifactorial and 
contributing factors include hyperglycemia, hypertension, hypoxia, and inflammation (66). These factors 
exert their effect on different cell types throughout the nephron, which organizes a coordinated 
response to tissue injury. DKD was associated with an increased proportion of VCAM1+ proximal tubule 
cells (PT_VCAM1) and infiltrating leukocytes in both snRNA-seq and snATAC-seq datasets. The 
PT_VCAM1 cell state emerges after proximal tubule injury and is associated with acute kidney injury, 
aging, and DKD (3,67). It adopts a pro-inflammatory phenotype characterized by enhanced NFkB 
signaling and failed repair that may underlie transition from acute kidney injury to CKD (68).  

GR signaling is a key regulator of the immune response and exerts its effects on multiple cell 
types in the kidney. GR has potent anti-inflammatory properties that help mitigate tissue injury, but 
long-term exposure to glucocorticoids can lead to insulin resistance and metabolic syndrome (69). 
Chromatin accessibility pre-determines cellular response to glucocorticoids and GR preferentially binds 
areas of open chromatin (41). Our snATAC-seq analysis showed that the majority of DAR in DKD had 
reduced chromatin accessibility and were enriched for GR motifs across multiple cell types. These data 
suggest that the diabetic nephron is pre-programmed to respond differently to corticosteroids. 
Metabolic memory is an epigenetic state characterized by persistent expression of DKD-related genes 
despite glycemic control (5). Decreased chromatin accessibility of GR binding sites within GR-responsive 
genes can lead to reduced transactivation and expression of target genes, however, DNA-binding-
independent mechanisms may remain intact. GR directly binds pro-inflammatory transcription factors 
like NFkB to inhibit their activity in a process called tethering (70). In a simple model, the metabolic 
effects of GR signaling can be attributed to transactivation and the anti-inflammatory effects can be 
attributed to tethering (71,72). We hypothesize that the diabetic kidney adapts to a pro-inflammatory 
environment by remodeling chromatin accessibility to promote anti-inflammatory effects of GR at the 
expense of its adverse effects on metabolism.  

We used CUT&RUN to identify GR binding sites in the proximal tubule and validate predictions 
from our snATAC-seq analysis. GR binding sites showed significant overlap with proximal-tubule-specific 
ATAC peaks and participated in CCAN with cell-specific DAR in diabetes. A subset of GR CUT&RUN sites 
showed reduced chromatin accessibility in the proximal tubule, suggesting that it may respond 
differently to glucocorticoids. Changes in GR signaling were compounded by increased expression of GR, 
and reduced expression of FKBP5 and HSD11B2 in diabetes. FKBP5 is a cytosolic chaperone that 
negatively regulates GR signaling as part of a negative feedback loop and HSD11B2 converts cortisol into 
inactive cortisone to protect non-selective activation of MR (16). We found multiple DAR within FKBP5 
that coincide with GR binding sites within a CCAN. CRISPRi targeting of GR binding sites decreased FKBP5 
expression, suggesting that DKD is associated with reduced activity of GR negative feedback in the 
proximal tubule. FKBP5 methylation has been associated with type 2 diabetes and cardiovascular risk 
and FKBP5 polymorphisms are associated with insulin resistance (15,17). We hypothesize that FKBP5 
hypermethylation may lead to reduced chromatin accessibility in GRE and reduced activity of the GR 
negative feedback loop (Figure 8).  

The diabetic proximal tubule had increased gluconeogenesis, which is downstream of GR 
signaling. The proximal tubule is the primary site in the kidney for glucose production and its rate-
limiting enzyme is PCK1 (6). We saw increased expression of PCK1 and other gluconeogenic enzymes in 
the diabetic proximal tubule that was associated with reduced expression of INSR. Glucose reabsorption 
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and glucose production are closely-intertwined and tightly regulated by insulin signaling (73). Proximal-
tubule-specific INSR knockout and proximal-tubule-specific IRS1/2 knockout have both been shown to 
increase gluconeogenesis, which is normally suppressed by insulin signaling or glucose reabsorption via 
SGLT2 (73,74). Glutamine is the preferred substrate for gluconeogenesis in the proximal tubule, which 
leads to ammonia production and acid excretion to maintain acid-base balance during prolonged fasting. 
It is possible that gluconeogenesis is upregulated in DKD to promote acid excretion and mitigate 
metabolic acidosis (75). SGLT2i stimulate gluconeogenesis in the liver and kidney, however, it remains 
unclear whether gluconeogenesis affects DKD progression (73,76,77).            
  Genetic background is increasingly recognized as an important determinant of kidney function 
and DKD (19,51,54). GWAS are generating a growing list of variants associated with kidney function, but 
it remains difficult to associate these variants with regulation of a specific gene or pathway. 
Bioinformatics approaches have led to the identification of quantitative trait loci associated with 
expression (eQTL), chromatin accessibility (caQTL), methylation (meQTL), and other traits that may 
regulate kidney function in a cell-specific manner (23). Some of these phenotypes are driven by allele-
specific effects that can be measured as changes in expression (ASE) and chromatin accessibility (ASCA) 
(3,29,78). Allele-specific analysis can substantially boost the power of QTL studies because each 
individual serves as its own perfectly-matched control. Multimodal single cell datasets can take 
advantage of this approach to model allele-specific effects as a function of gene expression (or any other 
measurable quantity). We developed a tool for single cell allele-specific analysis called SALSA and used it 
to detect proximal-tubule-specific ATAC peaks in CRE that modify gene expression via ASCA. These peaks 
were enriched for heritability of eGFR and some of them coincide with DAR in DKD. These findings raise 
the possibility that genetic background affects kidney function via ASCA, which could alter progression 
of DKD.  
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Methods 

Human Kidney Tissue 

Non-tumor kidney cortex samples (n=10) were obtained from patients undergoing partial or radical 
nephrectomy for renal mass at Brigham and Women’s Hospital (Boston, MA) under an established 
Institutional Review Board protocol approved by the Mass General Brigham Human Research 
Committee. An additional three kidney cortex samples (1 control and 2 DKD) were obtained from 
deceased organ donors in the Novo Nordisk biorepository. All participants provided written informed 
consent in accordance with the Declaration of Helsinki. Histologic sections were reviewed by a renal 
pathologist and laboratory data was abstracted from the medical record. 

Figure 8 

 Figure 8. Model of altered glucocorticoid receptor signaling in the diabetic proximal tubule. GR 
expression is increased in the diabetic proximal tubule. Cortisol binds GR and translocates to the 
nucleus where it localizes to glucocorticoid response elements (GRE) in genes like FKBP5. Decreased 
chromatin accessibility of GRE in the FKBP5 gene body is observed as reduced accessibility of 
proximal-tubule-specific ATAC peaks in DKD (red trianges). Reduced accessibility of FKBP5 GRE leads 
to reduced transactivation by GR and reduced FKBP5 expression. Reduced FKBP5 expression 
decreases activity of the GR negative feedback loop. In the absence of FKBP5 negative feedback, GR 
can exert both DNA-binding-dependent and DNA-binding-independent actions that lead to adverse 
metabolic effects, anti-inflammatory effects, and increased gluconeogenesis.   
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Nuclear Dissociation and Library Preparation 

Samples were chopped into < 2 mm pieces, homogenized with a Dounce homogenizer (885302–0002; 
Kimble Chase) in 2 ml of ice-cold Nuclei EZ Lysis buffer (NUC-101; Sigma-Aldrich) supplemented with 
protease inhibitor (5892791001; Roche) with or without RNase inhibitors (Promega, N2615 and Life 
Technologies, AM2696, only for snRNA-seq library preparation), and incubated on ice for 5 min. The 
homogenate was filtered through a 40-μm cell strainer (43–50040–51; pluriSelect) and centrifuged at 
500g for 5 min at 4°C. The pellet was resuspended, washed with 4 ml of buffer, and incubated on ice for 
5 min. Following centrifugation, the pellet was resuspended in Nuclei Buffer (10× Genomics, PN-
2000153) for snATAC-seq, nuclei suspension buffer (1x PBS, 1% bovine serum albumin [BSA], 0.1% 
RNase inhibitor) for snRNA-seq, or 1xPBS containing 1% BSA for CUT&RUN. The suspension was then 
filtered through a 5-μm cell strainer (43-50005-03, pluriSelect) and counted. 

 

Single Nucleus ATAC Sequencing and Bioinformatics Workflow 

Thirteen snATAC-seq libraries were created with 10X Genomics Chromium Single Cell ATAC v1 chemistry 
following nuclear dissociation. These libraries included six healthy control and seven DKD samples. Five 
of the healthy control snATAC-seq libraries were prepared for a prior study (GSE151302). A target of 
10,000 nuclei were loaded onto each lane. Sample index PCR was performed at 12 cycles. Libraries were 
sequenced on an Illumina Novaseq instrument and counted with cellranger-atac v2.0 (10X Genomics) 
using GRCh38. Libraries were aggregated with cellranger-atac without depth normalization. A mean of 
327,328,680 reads were sequenced for each snATAC library (s.d. = 47,171,305) corresponding to a 
median of 15,150 fragments per cell (s.d. = 3,875). The mean fraction of reads with a valid barcode was 
96.3 ± 2.2%. Aggregated datasets were processed with Seurat v4.0.3 and its companion package Signac 
v1.3.0. Low-quality cells were removed from the aggregated snATAC-seq dataset (peak region fragments 
> 2500, peak region fragments < 20000, nucleosome signal < 4, TSS enrichment > 2) before 
normalization with term-frequency inverse-document-frequency (TFIDF). Doublets were removed with 
AMULET (79).  Dimensional reduction was performed via singular value decomposition (SVD) of the 
TFIDF matrix followed by UMAP. A KNN graph was constructed to cluster cells with the Louvain 
algorithm. Batch effect was corrected with Harmony using the RunHarmony function in Seurat. A gene 
activity matrix was constructed by counting ATAC peaks within the gene body and 2 kb upstream of the 
transcriptional start site using protein-coding genes annotated in the Ensembl database. The gene 
activity matrix was log-normalized prior to label transfer with the aggregated snRNA-seq Seurat object 
using canonical correlation analysis. The aggregated snATAC-seq object was filtered using label transfer 
to remove additional heterotypic doublets not captured by AMULET. Cell-specific ATAC peaks were 
called with MACS2 using the Signac wrapper and a new Seurat object was created using MACS2 peaks 
and the FeatureMatrix function. The new snATAC-seq object was reprocessed with TFIDF, SVD, and 
batch effect correction followed by clustering and annotation based on lineage-specific gene activity. 
After filtering, there was a mean of 6000 ± 1134 nuclei per snATAC-seq library with a mean of 
8098 ± 3231 peaks detected per nucleus. The final snATAC-seq library contained a total of 437,311 
unique peak regions among 68,458 nuclei and represented all major cell types within the kidney cortex. 
Differential chromatin accessibility between cell types was assessed with the Signac FindMarkers 
function for peaks detected in at least 20% of cells using a likelihood ratio test. Bonferroni-adjusted p-
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values were used to determine significance at an FDR < 0.05. Genomic regions containing snATAC-seq 
peaks were annotated with ChIPSeeker (v1.5.1) and clusterProfiler (v4.0.5) using Ensembl and FANTOM 
databases on hg38. Motif enrichment within DAR was calculated with the Signac FindMotifs function 
using cell-specific accessible peaks matched for GC content. chromVAR motif activities were computed 
using the Signac wrapper and JASPAR2020 database adjusted for the number of fragments in peaks for 
each nucleus. CCAN were computed with cicero (v1.3.4.11) using the run_cicero function and default 
parameters. Gene-enhancer links were computed with the Signac LinkPeaks function and imputed RNA 
following label transfer and integration of snRNA-seq and snATAC-seq datasets.   

 

Single Nucleus RNA Sequencing and Bioinformatics Workflow 

Eleven snRNA-seq libraries were obtained using 10X Genomics Chromium single cell chemistry following 
nuclear dissociation. Eight snRNA-seq libraries (5 control, 3 DKD) were prepared for prior studies 
(GSE13188213, GSE151302). A target of 10,000 nuclei were loaded onto each lane. The cDNA for snRNA 
libraries was amplified for 17 cycles. Libraries were sequenced on an Illumina Novaseq instrument and 
counted with cellranger v4.0 using a custom pre-mRNA GTF built on GRCh38 to include intronic reads. 
Datasets were aggregated with cellranger v4.0 without depth normalization. A mean of 382,207,065 
reads (s.d. = 78,522,614) were sequenced for each snRNA library corresponding to a mean of 68,429 
reads per cell (s.d. = 21,706). The mean sequencing saturation was 77.6 ± 11.9%. The mean fraction of 
reads with a valid barcode (fraction of reads in cells) was 75.9 ± 6.6%. Aggregated datasets were 
preprocessed with Seurat v4.0.3 to remove low-quality nuclei (Features > 500, Features < 5000, RNA 
count < 16000, %Mitochondrial genes < 0.5, %Ribosomal protein large or small subunits < 0.3) and 
DoubletFinder v2.0.3 to remove heterotypic doublets (assuming 6% of barcodes represent doublets). 
The filtered library was normalized with SCTransform, and corrected for batch effects with Harmony 
v0.1.0 using the RunHarmony function in Seurat. After filtering, there was a mean of 3561 ± 2028 cells 
per snRNA-seq library and a mean of 2137 ± 1031 genes detected per nucleus. Clustering was performed 
by constructing a KNN graph and applying the Louvain algorithm. Dimensional reduction was performed 
with UMAP and individual clusters were annotated based on expression of lineage-specific markers. The 
final snRNA-seq library contained 39,176 cells and represented all major cell types within the kidney 
cortex. Differential expression between cell types was assessed with the Seurat FindMarkers function for 
transcripts detected in at least 20% of cells. Bonferroni-adjusted p-values were used to determine 
significance at an FDR < 0.05. 

 

Single Cell Analysis of Five-prime Ends with SCAFE 

We used SCAFE to analyze single nucleus 5’ paired-end chemistry libraries obtained from two DKD 
samples and two previously-published healthy control samples (GSE151302) (36). Transcribed cis-
regulatory elements (tCRE) were called in individual libraries using the scafe.worfklow.sc.solo function 
with default parameters. There was a mean of 16,912 tCRE per library (s.d. = 1855). Libraries were 
pooled with the scafe.workflow.sc.pool function to identify a total of 37,698 tCRE.  Pooled libraries were 
merged into a Seurat object followed by normalization with SCTransform, batch effect correction with 
Harmony, dimensional reduction, and clustering. The final object contained 10,984 nuclei and cell types 
were annotated using snRNA-seq barcode annotations from the same samples (see snRNA-seq 
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bioinformatics workflow above). Cell-specific tCRE and differential tCRE in diabetes were identified with 
the FindMarkers function with a log-fold-change threshold of 0.25. Bonferroni adjusted p-values were 
used to determine significance at an FDR < 0.05 and significant tCRE were annotated with ChIPseeker.  

 

Cell Culture 

Human primary proximal tubular cells (human RPTEC, Lonza; CC-2553) were cultured with renal 
epithelial cell growth medium kit (Lonza; CC-3190). Human telomerase reverse transcriptase (hTERT)-
immortalized human RPTEC (ATCC; CRL-4031) were cultured with ATCC hTERT Immortalized RPTEC 
Growth Kit (ATCC, ACS-4007). HEK293T cells (ATCC; CRL-3216) were cultured in Dulbecco's modified 
Eagle's medium (DMEM, Gibco; 11965092) supplemented with 10% fetal bovine serum (Gibco; 
10437028) and antibiotics. All cultured cells were maintained in a humidified 5% CO2 atmosphere at 
37°C. 

 

GR CUT&RUN Library Preparation and Peak Calling 

CUT&RUN assay libraries for cultured cells or human kidneys were generated with the CUTANA kit 
(EpiCypher, 14-1048). For cultured cells, adherent cells were scraped from culture dishes and 
centrifuged at 500 × g for 5 min. Pellets were resuspended in PBS with 1% BSA and counted. Cultured 
cells or nuclei obtained from a human kidney (500,000 cells or nuclei) were then mixed and incubated 
with Concanavalin A (ConA) conjugated paramagnetic beads. Antibodies were added to each sample 
(0.5μg of rabbit glucocorticoid receptor antibody [abcam, ab225886 ,1:20] or rabbit IgG negative control 
antibody [Epicypher, 13-0041k, 1:50]). The remaining steps were performed according to 
manufacturer’s instructions. Library preparation was performed using the NEBNext Ultra II DNA Library 
Prep Kit for Illumina (New England BioLabs, E7645S) with manufacturer’s instructions, including minor 
modifications indicated by CUTANA described above. CUT&RUN libraries were sequenced on a NovaSeq 
instrument (Illumina, 150 bp paired-end reads). Fastq files were trimmed with Trim Galore (Cutadapt 
[v2.8]) and aligned with Bowtie2 [v2.3.5.1] (parameters: --local --very-sensitive-local --no-unal --no-
mixed --no-discordant --phred33 -I 10 -X 700) using hg38. Peak calling was performed using MACS2 
[v2.2.7.1] with default parameters. 

 

Bulk ATAC-seq Library Preparation and Peak Calling 

We suspended 50,000 cells in 50 μL of ice-cold lysis buffer with 10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 
mM MgCl2, 1% BSA, 0.1% Tween-20 (Sigma, P7949-100ML), 0.1% NP-40 (Thermo Scientific, 28324) and 
0.01% Digitonin (Thermo Scientific, BN2006) (80). The suspension was incubated for 4 min on ice. 
Subsequently, 450 μL of ice-cold wash buffer (10 mM Tris-HCl [pH 7.4], 10 mM NaCl, 3 mM MgCl2, 1% 
BSA, 0.1% Tween-20) was added and centrifuged at 600 × g for 6 min. The pellet was resuspended in 25 
μL of ATAC-seq transposition mix (12.5 μL 2× Illumina Tagment DNA (TD) buffer; 10.5 μL nuclease-free 
water; 2.0 μL Tn5 transposase [Illumina, FC-121-1030]) and incubated at 37°C for 1 h on a thermomixer. 
The transposed DNA was purified with MinElute PCR purification kit (QUIAGEN, 28004). DNA samples 
were then amplified with PCR ([72°C; 5 min] and [98°C; 30 s] followed by 9 cycles of [98°C; 10 s, 63°C; 30 
s, 72°C; 1 min] using unique 10-bp dual indexes and NEBNext High-Fidelity 2× PCR Master Kit (M0541L). 
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Following the first amplification, DNA size selection was performed using solid-phase reversible 
immobilization (SPRI) beads (AMPure XP [Beckman Coulter, A63881]) at an SPRI to DNA ratio of 0.5. The 
supernatant was further mixed with SPRI beads at a SPRI to DNA ratio of 1.2. The resulting supernatant 
was discarded, and the magnet-immobilized SPRI beads were washed twice with 80% ethanol. DNA was 
subsequently eluted in 20 μL of EB elution buffer (QUIAGEN, included in 28004). The size-selected DNA 
was amplified with an additional 9-cycle PCR. Subsequently, the amplified DNA was purified with 
Ampure XP (SPRI to DNA ratio of 1.7) and eluted with 25 μL of buffer EB elution buffer. The resultant 
ATAC-seq libraries were sequenced on a NovaSeq instrument (Illumina, 150 bp paired-end reads). Fastq 
files were trimmed with Trim Galore (Cutadapt [v2.8]) and aligned with Bowtie2 [v2.3.5.1] with --very-
sensitive -X 2000 using hg38. PCR duplicates were removed with Picard's MarkDuplicates function. Peak 
calling was performed on each sample separately using MACS2 [v2.2.7.1] (--nomodel --shift -100 --
extsize 200). The consensus list of accessible peaks was generated using the intersectBed function in 
bedtools.  

 

CRISPR Interference 

Small guide RNA (sgRNA) targeting around the FKBP5 TSS and intronic CRE were designed with 
CHOPCHOP (https://chopchop.cbu.uib.no/). These sgRNAs and two non-targeting control sgRNAs were 
placed following the U6 promoter in a dCas9-KRAB repression plasmid (pLV hU6-sgRNA hUbC-dCas9-
KRAB-T2a-Puro, Addgene; 71236, a gift from Charles Gersbach) with golden gate assembly. The sgRNA 
sequences used in this study are in Supplemental Table 20. First, single-strand oligonucleotides 
(Integrated and Technology [IDT]) for sense and anti-sense sequences were annealed. Subsequently, 
cloning with Golden gate assembly was performed with Esp3I restriction enzyme (NEB, R0734L) and T4 
DNA ligase (NEB, M0202L) on a thermal cycler repeating 37°C for 5 min and 16°C for 5 min for 60 cycles, 
followed by transformation to NEB 5-alpha Competent E. coli (NEB, C2987H) per manufacturer’s 
instructions. The cloned lentiviral vectors were purified with a mini high-speed plasmid kit (IBI Scientific; 
IB47102). Insertion of sgRNA was checked with Sanger sequencing. For lentivirus preparation, we 
seeded 6.0×105 HEK293T cells per well on 6-well tissue culture plates 16 h prior to transfection. Cells 
were transfected with 1.5 µg of psPAX2 (Addgene; 12260, a gift from Didier Trono), 0.15 µg of pMD2.G 
(Addgene; 12259, a gift from Didier Trono) and 1.5 µg of dCas9-KRAB repression plasmid per well by 
Lipofectamine 3000 transfection reagent (Invitrogen; L3000015) per manufacturer’s instructions. 
Culture media were changed to DMEM supplemented with 30% FBS 24 h after transfection. Lentivirus-
containing supernatants were harvested 24 h later and filtered with 0.45 µm PVDF filters (CELLTREAT; 
229745). The lentivirus-containing supernatants were immediately used for lentiviral transduction. 
Human RPTEC were seeded at 5.0×104 cells per well on 6-well tissue culture plates 16 h prior to 
transfection. The media on human RPTEC was then changed to the fresh lentiviral supernatants 
supplemented with polybrene (0.5 µg/ml, Santa Cruz Biotechnology; sc-134220) and cultured for 24 h. 
Subsequently, RPTEC cells were cultured in DMEM with 10% FBS and puromycin (3 µg/ml, invivogen; 
ant-pr-1) for 72 h. 

 

Quantitative PCR 

RNA from human RPTECs was extracted with the TRIZOL and Direct-zol MicroPrep Plus Kit (Zymo) 
following manufacturer’s instructions. Extracted RNA (1-2 µg) was used for reverse transcription to 
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generate cDNA libraries with the High-Capacity cDNA Reverse Transcription Kit (Life Technologies). 
Quantitative PCR was performed in the BioRad CFX96 Real-Time System using iTaq Universal SYBR Green 
Supermix (Bio-Rad). Expression levels were normalized to GAPDH, and data were analyzed using the 2-
ΔΔCt method. Quantitative PCR data are presented as mean±s.d. and compared between groups with 
one-way ANOVA and a post-hoc Dunnett’s adjustment for multiple comparisons. A p-value < 0.05 was 
considered statistically significant. Primer sequences are provided in supplementary materials 
(Supplemental Table 20).  

 

Bulk RNA-seq Analysis of Previously-published Human DKD 

Raw fastq files were downloaded from GSE142025 to include 9 healthy control, 6 early DKD, and 22 
advanced DKD donors (49). Transcript abundance was quantified with Salmon using Ensembl (release-
99) and count matrices were imported to DESeq2 with tximport (v1.16.1). Differentially expressed genes 
were identified using the DESeq function with default parameters for early DKD vs. Control and 
advanced DKD vs. Control (Supplemental Table 18). Significance was determined using a Benjamini-
Hochberg adjusted p-value.   

 

Partitioned Heritability of ATAC Peaks 

Cell-specific ATAC peaks and cell-specific DAR in diabetes were identified with the Seurat FindMarkers 
function, sorted by p-value, and filtered for peaks with an average log-fold-change greater than zero. All 
peaks that met the adjusted p-value threshold were used to generate a cell-specific bed file. In the event 
a cell type did not have at least 2000 peaks that met the adjusted p-value threshold, the top 2000 peaks 
with the lowest p-value were used to create the bed file. If a cell type did not have 2000 cell-specific 
peaks, all available peaks were used to create the bed file. For the allele-specific analysis, bed files were 
generated using peaks that met the adjusted binomial threshold for allelic bias of reference vs. alternate 
allele (N=5593, padj < 0.05) or the unadjusted p-value threshold for the base model (N=7512, pval < 
0.05), model 2 (N=7557, pval < 0.05), and model 3 (N=7353, pval < 0.05). These thresholds were used to 
keep the number of peaks in each annotation roughly equivalent. Bed files were lifted over to hg19 to 
create annotations for autosomal chromosomes with a 1000 genomes phase 3 reference and the 
make_annot.py function in ldsc using a 100kb window (55). Linkage disequilibrium scores were 
computed from custom annotations with the ldsc.py function using default parameters.  GWAS 
summary statistics for eGFR, CKD, microalbuminuria, and urinary sodium excretion were downloaded 
from publicly-available databases and formatted for ldsc using munge_sumstats.py (52–54). Partitioned 
heritability for each GWAS trait was estimated using the 1000G phase 3 reference and ldsc cell-type-
specific workflow with default parameters, including baseline v1.2 annotations after controlling for all 
kidney ATAC peaks in the dataset. P-values were adjusted for multiple comparisons using Benjamini-
Hochberg and significance was determined at padj < 0.05.   

 

Allele-specific Modeling with SALSA 
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Coordinate-sorted bam files generated by cellranger (snRNA-seq) or cellranger-atac (snATAC-seq) were 
genotyped with SALSA using GATK best practices for germline short variant discovery (58). For snRNA-
seq, reads containing Ns in their cigar string (eg. spanning splice junctions in snRNA-seq data) were split 
using SplitNCigarReads. For snRNA-seq and snATAC-seq, base recalibration was performed with 
BaseRecalibrator using hg38 GATK bundle resources, including dbsnp (v138), 1000G phase I indels, 
1000G phase I high-confidence SNV, and Mills and 1000G gold standard indels. Recalibration was 
applied with ApplyBQSR to create analysis-ready bam files. Variants were identified from analysis-ready 
bam files with HaplotypeCaller and genotypes were called from GVCFs using GenotypeGVCFs with 
default parameters. snRNA-seq variants were hard-filtered by Fisher strand bias (FS > 30), quality by 
depth score (QD < 2), cluster size (3), and cluster-window size (35bp). snATAC-seq were filtered using 
CNNScoreVariants followed by FilterVariantTranches (--snp-tranche 99.95 indel-tranche 99.4). snRNA-
seq libraries had a mean total of 98,255 (s.d. = 64,847) SNVs and indels and snATAC-seq libraries had a 
mean total of 2,283,904 (s.d. = 534,165) SNVs and indels. Genotypes from snRNA-seq and snATAC-seq 
were combined and phased with shapeit4.2 using the 1000 Genomes phased reference for biallelic SNV 
and indels on GRCh38 (58). There was a mean of 1,917,939 (s.d. = 363,223) phased SNV and indels for 
each library, which were used to perform variant-aware realignment with WASP (60). WASP-aligned 
bam files were divided into single cell bam files by extracting proximal-tubule-specific barcodes using 
the CB tag. GATK ASEReadCounter was used to generate single cell allele-specific counts from single cell 
bam files using phased heterozygous SNV (mean = 722,091, s.d. = 199,756).  

Pseudo-multiomic cells were created by performing label transfer from the aggregated snRNA-
seq to snATAC-seq dataset to generate an imputed RNA estimate for each snATAC-seq cell. One or more 
gene targets for each ATAC peak were identified using the LinkPeaks function. ATAC peaks with 
heterozygous SNV were filtered for an aggregate total fragment count greater than 20, total reference 
allele count greater than 5, and total alternate allele count greater than 5. The ratio of aggregated 
reference counts to alternate counts within ATAC peaks containing heterozygous SNV was compared 
with a binomial test. A generalized linear mixed effect model with a logit link function was implemented 
with the lme4 package (81). In the base model, the dependent variable was coded as the presence of an 
alternate allele within an ATAC peak and the continuous predictor variable was the imputed RNA 
estimate normalized to an interval from 0 to 100. A mixed effect per sample was added to control for 
pseudo-replication bias. In model 2, an additional fixed effect for diabetes was added. In model 3, 
additional fixed effects for diabetes and an interaction term between diabetes and imputed RNA 
expression were added. Significance of each peak-gene combination was evaluated using a Wald test 
obtained from the glmer function. In the supplementary materials, all fixed-effect coefficient estimates 
for each peak-gene combination are included with 95% confidence intervals, Wald p-values, and 
standard deviation estimates of random effects (Supplemental Table 19). Peak-gene combinations 
meeting the p-value threshold for expression (p < 0.05) were annotated with ChIPseeker and the 
corresponding effect size in log-odds is visualized in relation to the nearest TSS. These same peaks were 
also used to create annotations and calculate linkage disequilibrium scores with ldsc for partitioned 
heritability of eGFR as previously described.  
 

Data Availability 

All relevant data are available from the corresponding authors on reasonable request. Raw sequencing 
data for snATAC-seq (N=1 control, N=7 DKD) and snRNA-seq (N=1 control, N=2 DKD) is deposited in GEO 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478204doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478204
http://creativecommons.org/licenses/by-nc-nd/4.0/


under accession number GSEXXXXXXX (Reviewer token: XXXXXXXXXXXX). Previously published raw 
sequencing data for snRNA-seq (N=5 control, N=3 DKD) and snATAC-seq (N=5 control) are available in 
GEO (GSE151302, GSE131882). Processed count matrices for all snRNA-seq (N=11) and snATAC-seq 
(N=13) libraries used in this study are provided in GSEXXXXXXX. Sequencing data for CUT&RUN from 
bulk kidney cortex and primary RPTEC are deposited under accession number GSEXXXXX (Reviewer 
token: XXXXXXXXX). Sequencing data for Omni-ATAC from hTERT-RPTEC and primary RPTEC are also 
deposited under accession number GSEXXXXXXXX. Gene expression and chromatin accessibility for each 
cell type can be viewed on our interactive website; Kidney Interactive Transcriptomics 
(http://humphreyslab.com/SingleCell) (Reviewer password: XXXXXXXXX).  

 

Code Availability 

SALSA is available on GitHub (https://github.com/p4rkerw/SALSA). All code used to generate the data in 
this manuscript will also be made available on GitHub (https://github.com/p4rkerw) when this 
manuscript completes peer review.  
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