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ABSTRACT 

Delineating gene regulatory networks that orchestrate cell-type specification is an ongoing 

challenge for developmental biology studies. Single-cell analyses offer opportunities to address 

these challenges and accelerate discovery of rare cell lineage relationships and mechanisms 

underlying hierarchical lineage decisions. Here, we describe the molecular analysis of 

pancreatic endocrine cell differentiation using single-cell gene expression, chromatin 

accessibility assays coupled to genetic labeling and cell sorting. We uncover transcription factor 

networks that delineate b-, a- and d-cell lineages. Through genomic footprint analysis we 

identify transcription factor-regulatory DNA interactions governing pancreatic cell development 

at unprecedented resolution. Our analysis suggests that the transcription factor Neurog3 may 

act as a pioneer transcription factor to specify the pancreatic endocrine lineage. These findings 

could improve protocols to generate replacement endocrine cells from renewable sources, like 

stem cells, for diabetes therapy.  

 

INTRODUCTION 

More than 400 million people are living with diabetes worldwide. Diabetes results from loss 

or dysfunction of hormone-producing endocrine islet cells in the pancreas, whose principal role 

is to regulate circulating glucose levels. Recent advances in tissue engineering to replace non-

functioning endocrine cells have renewed interest in understanding the molecular mechanisms 

of pancreatic endocrine cell differentiation (Siehler et al., 2021).  

A key event during endocrine pancreas development is expression of the transcription factor 

Neurog3 in select pancreatic duct cells (Gradwohl et al., 2000). Neurog3 specifies endocrine 

progenitor cells, which differentiate into hormone producing cells that delaminate from the duct 
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and aggregate to form pancreatic islets (reviewed in Arda et al., 2013; Bastidas-Ponce et al., 

2017; Benitez et al., 2012). Several distinct endocrine cell types aggregate within pancreatic 

islets, including insulinpos b-cells, glucagonpos a-cells, somatostatinpos d-cells, ghrelinpos e-cells, 

and PPYpos g-cells. Mice lacking pancreatic Neurog3 fail to develop endocrine islet cells 

(Gradwohl et al., 2000; Gu et al., 2002; Schwitzgebel et al., 2000; Smith et al., 2004). In one 

model based on lineage tracing (Kopinke et al., 2011; Solar et al., 2009), Neurog3pos cells 

originate from a “bi-potent progenitor” with potential to generate either ducts or islets (reviewed 

in Bankaitis et al., 2015).  

Emerging single-cell technologies are revolutionizing developmental biology by enabling 

quantitative molecular analysis of transient, rare cell types in developing organs, especially 

lineage progenitor cells. Recently, several groups used single-cell RNA sequencing (scRNA-

Seq) to catalog dynamic transcriptome changes during mouse pancreas development and 

endocrine cell differentiation (Bastidas-Ponce et al., 2019; Byrnes et al., 2018; Krentz et al., 

2018; Qiu et al., 2017a; Sharon et al., 2019; Yu et al., 2019). Some studies suggested that 

endocrine progenitor subtypes exist or are biased towards specific hormone lineages (Liu et al., 

2019; Scavuzzo et al., 2018; Yu et al., 2019). While these reports contributed substantially to 

our understanding of endocrine pancreas development, no study has yet reported specification 

of the crucial islet d-cell lineage (Arrojo e Drigo et al., 2019), or investigated chromatin 

conformation changes by overcoming cell labeling ambiguities related to Neurog3-GFP cells 

(Lee et al., 2002). 

To address these unmet needs, we used an integrative approach that combined cell surface 

marker-based sorting, genetic labeling, chromatin analysis, and single-cell assays to elucidate 

molecular mechanisms underlying gene expression changes during endocrine pancreas 

differentiation. By establishing pseudotime trajectories for hormone lineages, including islet d-
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cells, we identified unique combinations of transcription factors guiding differentiation of the b-, 

a-, and d-lineages. Chromatin accessibility analysis using ATAC-seq unexpectedly revealed 

extensive similarities between duct cells and those that activate Neurog3. We discovered 

genomic regions that undergo substantial transformation during development and identified 

enriched motifs in open chromatin specific to differentiation stages. We also applied powerful 

genomic footprint analysis to identify transcription factor activity in open chromatin regions and 

found evidence of specific transcription factor footprints linked to their associated motifs. Our 

analysis suggests a revised model for endocrine pancreas development by providing evidence 

for direct development of this lineage from duct cells, and the absence of a bipotent progenitor.  

Our results demonstrate the feasibility of using a combined scRNA-seq and ATAC-seq 

analysis to map gene regulatory networks that define pancreatic cell lineages. We anticipate our 

findings and those from similar work should foster efforts aiming to direct development of 

renewable cell sources, like stem cells, for tissue replacement and regeneration. 

 

RESULTS 

Single-cell transcriptomic analysis of endocrine pancreas development 

To understand gene expression dynamics during pancreatic endocrine cell differentiation, 

we performed scRNA-Seq on cells isolated from mouse embryonic day 15.5 (E15.5) and E17.5 

pancreas. We used the Neurog3-eGFP knock-in and Neurog3-Cre,Rosa-mTmG mice combined 

with cell surface markers to isolate specific populations from the embryonic pancreas (see 

Methods) (Lee et al., 2002; Muzumdar et al., 2007; Sugiyama et al., 2007). We followed the 

Smart-Seq2 protocol to sequence mRNAs from single-cells sorted into 96-well plates by 
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fluorescence-activated cell sorting (FACS, Supplementary Figure 1A). Using this strategy, we 

collected and sequenced a total of 604 cells: 461 from E15.5 cells and 143 from E17.5 cells.  

After initial read processing to count transcripts for each gene in each cell (Supplementary 

Table 1), we used Monocle2— a single-cell analysis tool, for downstream cell clustering and 

trajectory analysis (Supplementary Figure 2). Unsupervised clustering organized cells based 

on transcriptome similarity, revealing a recognizable sequence of pancreatic endocrine cell 

differentiation (Figure 1A, Supplementary Figure 1B). This developmental process included a 

progenitor cluster expressing high levels of Neurog3, a transitioning, early endocrine cell cluster, 

a definitive endocrine cluster marked by high levels of Chga expression, and a cluster of 

exocrine cells marked by Cpa1 expression (Figure 1B). We also found a small cluster of 

mesenchymal cells (14 cells, < 3% of total cells), which were excluded from further analysis.  

To delineate gene expression programs involved in endocrine cell development, we aligned 

cells in a pseudotime trajectory based on quantitative gene expression profiles that change 

continuously in differentiating cells. This analysis placed all cells in a single trajectory that 

corroborated the known progression of duct cells into Neurog3pos progenitors, followed by 

hormone expressing endocrine cells (Figure 1C). We found more than 2,500 genes whose 

expression changed significantly along this pseudotime trajectory (q-value < 0.05). k-means 

analysis partitioned these differentially expressed genes into distinct gene clusters (Figure 1D, 

Supplementary Table 2). To better visualize the gene expression trends in each cluster, we 

used LOESS smoothing along pseudotime (Figure 1E; Methods). GO term analysis identified 

enriched biological process terms in these clusters relevant to pancreatic differentiation (FDR < 

0.2, Figure 1E, Supplementary Table 3; (Arda et al., 2013; Bastidas-Ponce et al., 2017). 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478217doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478217


 6 

Cluster 1 included genes that are expressed at high levels at the start of the pseudotime 

trajectory, then decline significantly or are extinguished as cells differentiate into the endocrine 

lineages. These genes included known regulators of multipotent pancreatic progenitor or 

exocrine cells (Ptf1a, Hes1, Notch1, Rbpj), the cell cycle (Mki67, Ccna2, Cdk1), and factors 

involved in maintenance of chromosome organization or covalent chromatin modifications 

(Smc4, Ezh2 and Ctcf). Cluster 2 genes had a similar trend, although their expression 

remained detectable in endocrine cells. These include genes regulating RNA binding and 

splicing, translation initiation, and ribonucleoprotein complexes. Cluster 3 genes are mainly 

expressed in endocrine progenitor cells and trending similarly with Neurog3 expression, 

including Pax4, Tox3, and Cbfa2t3. Most Cluster 3 transcripts were only detectable transiently in 

progenitor cells, then extinguished in endocrine cells. Cluster 3 was associated with GO terms 

related to cell differentiation and endocrine pancreas development (Supplementary Table 3). 

Clusters 4-6 contained genes whose expression increased following the Neurog3 induction. 

Cluster 4 genes included Chga, Pcsk2, Pax6, Iapp, Neurod1 and Isl1, and were turned on 

shortly after Neurog3 expression peaked, in early endocrine cells that still lack mRNAs encoding 

the principal islet hormones. Clusters 5 and 6 genes include the hormones, Ins1, Ins2, Ppy, Sst 

and Gcg, whose expression peak in endocrine cells. These clusters also included genes 

involved in vesicle mediated transport, ion transport, response to ER stress, regulation of insulin 

secretion, and exocytosis. Cluster 7 contains genes enriched with functions in the mitochondrial 

respiratory chain complex, proton transport, and ATP synthesis. Taken together, pancreatic 

endocrine cell specification involves highly dynamic gene regulatory programs, multiple groups 

of gene families with distinct functions. 
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Analysis of pancreatic endocrine progenitors 

Prior studies reported the existence of distinct Neurog3pos endocrine progenitor subtypes 

(Liu et al., 2019; Scavuzzo et al., 2018; Yu et al., 2019). To investigate the heterogeneity in 

Neurog3pos progenitor cells, we focused on the cells expressing Neurog3 transcript in our 

dataset and visualized them using the t-SNE method. This analysis identified three clusters 

based on Neurog3 transcript abundance— designated as high, medium and low, though none 

of the clusters split into visually distinct groups on the t-SNE projection (Figure 2A). The 

Neurog3hi cells had the highest Neurog3 levels compared to other clusters (Figure 2B), likely 

the result of increased Neurog3 transcription that occurs during the secondary transition of 

endocrine differentiation (Schwitzgebel et al., 2000). Less than 10% of the Neurog3hi cells had 

detectable Chga expression (Figure 2C). In Neurog3med and Neurog3lo cells Neurog3 transcript 

levels decreased, while Chga levels increased (Figure 2C). Thus, the observed ‘transcriptional 

heterogeneity’ in Neurog3pos cells is a direct reflection of advancing development. Moreover, this 

data argues against a model where endocrine progenitor cells randomly develop from cells with 

heterogeneous Neurog3 levels. When we analyzed the expression of individual hormone genes, 

we found that the number of cells expressing Ins1, Ins2, Gcg, or Sst increased as cells 

transitioned from Neurog3hi to Neurog3lo progenitors, with Sst appearing only in the Neurog3lo 

cluster (Figure 2D). Additionally, we investigated the number of cells simultaneously expressing 

one, two, or three of these hormone genes and found that the number of cells co-expressing 

multiple hormone genes increased as Neurog3 expression decreases. For instance, none of the 

Neurog3hi cells were polyhormonal, whereas 18% of Neurog3lo cells expressed two, and 2% 

expressed all three hormone genes (Figure 2E).  

To investigate whether there is transcriptional heterogeneity in Neurog3pos endocrine 

progenitors isolated from different developmental stages, we examined all Neurog3pos cells by 
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incorporating the embryonic stage information onto the clusters (Figure 2F). We did not observe 

distinct clustering of E15.5 and E17.5 Neurog3pos endocrine progenitors; rather, the cells were 

arranged coincident with their developmental stage (Figure 2F). When temporally ordering 

Neurog3pos cells via pseudotime analysis, the continuous developmental progression was 

apparent in a single trajectory, without any branching (Figure 2G). Taken together, in our 

dataset we did not find evidence for lineage biases or subtypes in endocrine progenitors 

isolated from different embryonic time points. We found that nascent endocrine cells may 

transiently co-express mRNAs encoding multiple hormones in an intermediate ‘polyhormonal’ 

state preceding branch specification.  

 

Single-cell trajectories defining endocrine cell type specification   

While Neurog3 is necessary and sufficient to establish the pancreatic endocrine lineage, the 

mechanisms underlying subsequent endocrine lineage diversification are not well established. 

Other studies using single-cell approaches successfully delineated b- and a-cell branches of 

islet endocrine cell differentiation, but failed to identify a clear branch for d-cell specification 

(Byrnes et al., 2018; Liu et al., 2019; Qiu et al., 2017a; Scavuzzo et al., 2018; Sharon et al., 

2019; Yu et al., 2019). In our data, an unsupervised approach including all cells also did not 

yield to trajectories defining individual hormone lineages (Figure 1C). We reasoned that when 

all cells are included, the substantial change in gene expression programs at the onset of 

Neurog3 activation might hinder the discovery of less pronounced differences in the initial b-, a-, 

and d-cell lineage decisions. To circumvent this issue, we focused analysis on cells after 

Neurog3 peak expression (Supplementary Figure 3) and performed semi-supervised 

clustering with marker gene information (Qiu et al., 2017b). Briefly, endocrine progenitors, b-, a-, 
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and d-cells were pre-assigned based on marker genes before attempting clustering. A prior 

study used a similar approach to resolve mixed hematopoietic lineages (Iterative Clustering and 

Guide-gene Selection, Olsson et al., 2016). We then performed iterative rounds of trajectory 

analysis, sequentially removing cells already assigned to an endocrine cell branch in each 

iteration, until all branches were identified (Figures 3A-B). This approach successfully 

partitioned b-, a- and d-cells into nearly exclusive, specific branches (Figure 3C) suggesting 

that expert curation can overcome some limitations of trajectory analysis (also see Discussion). 

TF networks regulating islet cell lineage gene expression 

To reveal the gene expression changes underlying distinct trajectories of endocrine cell 

specification, we performed differential gene expression analysis between cells assigned to the 

b-, a- and d-lineages. We defined the lineages as beginning from the duct cells and ending with 

hormone expressing endocrine cells (Figures 3A-B, Supplementary Table 4). We focused our 

analysis on transcription factors (TFs) due to their well-established role in determining cell fates. 

This analysis revealed 145 TFs whose expression changed significantly during endocrine cell 

differentiation (Supplementary Figure 4). We visualized how these TFs may be regulating 

distinct lineages by constructing a network based on TF expression patterns in each cell type 

(duct, b-, a- and d-cells) or state (early progenitor, late progenitor; Supplementary Table 5, 

also see Methods for details). For instance, Hes1 was detected in duct cells, and thus was 

connected to the node representing the duct cell.  

Topological examination of the TF expression-cell state interaction network revealed three 

network patterns. In Network Pattern 1, we found TFs highly specific to a single lineage. For 

example, 92% of cells in the b-cell lineage express Nkx6-1 and 71% of a-cells express Arx. 
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Nkx6-1 is thought to repress transcription of Arx, which specifies the a-cell lineage; conversely, 

Arx is postulated to repress transcription of Nkx6-1, which specifies the b-cell lineage (Schaffer 

et al., 2013). We found that Smarca1 is highly specific to the a-cell lineage, and this is 

consistent with recent reports of Smarca1 activation during a-cell development, prior to Gcg 

expression (Byrnes et al., 2018; Yu et al., 2019). Smarca1 is an ATP-dependent chromatin 

remodeler, which can be selectively recruited to cell type-specific enhancer elements 

(Vierbuchen et al., 2017). A second TF, Etv1 is a Neurog3 target, (Benitez et al., 2014) and in 

our data we find Etv1 is highly specific to the fetal a-cell lineage indicating this TF has a 

functional role in a-cell development. In our network, we confirmed that Hhex is specific to the d-

lineage (Zhang et al., 2014), and found additional factors. Zbtb20 has increased expression in d-

cells relative to b- and a-cells and to our knowledge, has not been reported before. Instead, 

Zbtb20 was recently identified as a TF upregulated in the a-cell lineage (Yu et al., 2019). 

Because the d- lineage was not defined in this report, it is possible that the uncategorized d-cells 

aligned with the a-lineage instead. Other TFs that are highly specific to the d-cell lineage but 

with no known functions include Zfhx2, Rere, and Cxxc4.  

In Network Pattern 2, we found TFs that are expressed in multiple cell types or states. For 

instance, the high mobility group proteins Hmgb2, Hmgb3, and Tead2, a YAP signaling factor, 

are initially expressed in duct cells, and continue to be expressed in early Neurog3pos 

progenitors. We also found known TFs, including Isl1, Rfx6, Pax6, and Meis2 in the b-, a-, and 

d-cell lineages. In line with a prior report, almost all endocrine cells in the b-, a-, and d- lineages 

appear to pass through a Fevpos stage after Neurog3 expression (Byrnes et al., 2018). In this 

network, Fev is most specific to late progenitors. After islet cells transit through a Fevpos stage, 

Fev expression rapidly declines in the b-cell lineage but remains at detectable levels in a- and d-

cells (Supplementary Figure 4).  
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Network Pattern 3 includes TFs that follow an ON-OFF-ON pattern as cells differentiate 

from duct to progenitors to endocrine lineages. For example, Xbp1 is abundant in duct cells, but 

its levels decrease in early and late Neurog3pos progenitors, then increases in b-, a-, and d-cells. 

In mice, loss of Xbp1 results in hyperglycemia (Lee et al., 2011), abnormal zymogen granules 

and aplasia of acinar cells (Hess et al., 2011). Xbp1 is an essential regulator of the unfolded 

protein response and endoplasmic reticulum (ER) stress (reviewed in Hetz, 2012). Similarly, 

Creb3 and Id2 follow the ON-OFF-ON pattern. These TFs were recently reported to be 

associated with ER and oxidative stress response programs in human islet b-cells (Xin et al., 

2018). 

 

Chromatin accessibility dynamics during islet endocrine cell differentiation 

To investigate chromatin accessibility changes during endocrine cell differentiation, we 

performed ATAC-seq (Buenrostro et al., 2013) on purified populations of duct, endocrine 

progenitor, and endocrine cells isolated from E15.5 pancreas using the Neurog3-eGFP knock-in 

mice (Lee et al., 2002) (Figure 4A, Supplementary Table 6). In these mice, the coding region 

of Neurog3 is replaced by an eGFP cassette, thereby regulating eGFP production from the 

endogenous Neurog3 cis-regulatory element, including the promoter. As reported previously, 

heterozygous Neurog3eGFP/+ animals form a complete endocrine pancreas with no discernable 

phenotypes (Lee et al., 2002). However, in homozygous Neurog3eGFP/eGFP animals, eGFPpos 

cells lack Neurog3 and fail to differentiate further into the endocrine lineage. 

To achieve requisite specificity needed for experiments involving purification of Neurog3-

expressing cells, we managed two concerns not addressed in prior studies (Scavuzzo et al., 

2018; Xu et al., 2014). First, since Neurog3 protein stability is transient and short-lived 
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compared to eGFP (White et al., 2008), we needed methods to discriminate between eGFPpos 

Neurog3pos progenitors and eGFPpos Neurog3neg endocrine cells that have ceased to express 

Neurog3. We achieved this using modified cell sorting strategies (Sugiyama et al., 2007; see 

Methods). Second, to address possible concerns about Neurog3 gene dosage effects on 

endocrine cell differentiation, we used mice that are wild-type (“Tg(eGFP); Neurog3”, Gu et al., 

2004), heterozygous, or homozygous null for Neurog3 (Figure 4B). This enabled direct 

comparison of chromatin states in endocrine progenitor cells with varying Neurog3 gene 

dosage. Specifically, we analyzed four distinct cell populations in different genetic backgrounds: 

(1) Neurog3pos hormoneneg cells (Neurog3); (2) eGFPpos Neurog3-null cells (Neurog3 null); (3)

hormonepos islet cells (endocrine); and (4) duct cells (duct), (Figures 4A-B; Supplementary 

Table 6). In total we performed ATAC-seq on 15 primary pancreatic cell samples.  

After aligning sequencing reads, we visually inspected loci near genes essential for 

pancreas development like Ptf1a, Neurod1 and Ins1 (Figure 4C). ATAC-seq revealed 

substantial reorganization of chromatin accessibility in regions near these and other genes (see 

below) during differentiation from duct cells to Neurog3pos endocrine progenitor cells, and 

endocrine cells. For instance, open chromatin “control regions” in the Ptf1a locus were detected 

in wild-type duct cells and Neurog3-null cells; the accessibility of this chromatin was then 

eliminated as duct cells transitioned into endocrine progenitors, a ‘closed’ state also maintained 

in endocrine cells (Masui et al., 2008). In Neurod1, an established Neurog3 target, promoter-

proximal chromatin was closed in duct cells but became accessible in Neurog3pos endocrine 

progenitors. In the Ins1 locus, chromatin in control regions remained closed until cells 

committed to the endocrine lineage. Thus, cell purification combined with ATAC-seq generated 

chromatin maps that corresponded to distinct differentiation stages. 
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To investigate the similarity in chromatin states between ATAC-seq samples, we calculated 

pairwise Pearson correlation coefficients and organized samples by clustering (Figure 4D). This 

analysis revealed three groups that corresponded to duct cells, Neurog3pos progenitors and 

endocrine cells. Chromatin profiles of cells isolated either from wild-type or heterozygous 

Neurog3 mice were similar. Unexpectedly, Neurog3-null cells clustered with wild-type duct cells 

(Figure 4D). If ductal epithelia harbored bipotent cells that could become either endocrine 

progenitors or duct cells, we expected to see a distinct clustering of Neurog3-null from duct 

cells. Thus, cells that activated Neurog3 transcription in the ductal epithelium, but could not 

differentiate into endocrine lineage have chromatin that is indistinguishable from duct cells. This 

suggests that chromatin ‘priming’ in duct cells prior to expression of Neurog3 is not required for 

endocrine differentiation. Furthermore, Neurog3 might be a pioneer transcription factor, whose 

functions include the capacity to initiate nucleosome displacement or conformational changes in 

inaccessible chromatin (Figure 4E) (Zaret and Mango, 2016).  

Differentially accessible chromatin regions reveal cis-regulatory elements that 

mediate endocrine lineage specification  

To identify differentially accessible chromatin regions in our sorted cell types, we analyzed 

the ATAC-seq signal at every peak across all samples using the DE-Seq algorithm (Anders and 

Huber, 2010). From a total of 116,942 ATAC-seq peaks, we found 10,687 that have significant 

accessibility changes between samples (FDR <0.001). k-means clustering of differentially open 

peaks revealed three main groups of genomic regions that represent the open chromatin 

profiles of distinct cell states (Figure 5A, Supplementary Table 7). In Group I we observed 

2,754 accessible regions in duct cells (either wild-type or Neurog3-null) that switch to a closed 
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state in Neurog3pos progenitors and remain closed in endocrine cells. Using the GREAT 

algorithm (McLean et al., 2010), we found that these regions were associated with genes that 

have established roles in exocrine pancreas cell development, gland development and cell 

proliferation like Fgfr, Smad, Ptf1a, Hes1, and Notch signaling (Figure 5B). Group II includes 

6,312 and Group III includes 1,621 accessible regions (Figure 5A). Based on the ATAC-seq 

signal, we observed that these regions are closed in duct cells, open in Neurog3pos progenitors 

and remain in open state in endocrine cells. The regions in Group III have significantly stronger 

ATAC-Seq signal in endocrine cells compared to endocrine progenitors, suggesting that other 

regulatory factors independent of Neurog3 might be enhancing the accessibility in these regions 

once the cells begin producing hormones. GREAT analysis linked chromatin from Groups II and 

III to genes known to regulate endocrine pancreas differentiation, or cardinal features of islet 

function including peptide hormone processing, and regulation of calcium ion-dependent 

exocytosis (Figure 5B).  

To discover TF motifs within these dynamic chromatin regions, we performed TF motif 

enrichment analysis using the HOMER algorithm (Heinz et al., 2010). Consistent with GREAT 

analysis, we found overrepresented motifs (Figure 5C) of exocrine lineage specific factors like 

Tead, Rbpj and Nr5a2 in accessible chromatin regions of duct cells in Group I. In contrast, our 

analysis of regions in Group II identified Neurog3, NeuroD, Rfx and Pax motifs— all known 

regulators of endocrine pancreas development. Likewise, the analysis of Group III regions 

yielded enriched TF motifs of lineage markers of b- and a-cells, including Mafb and Isl1. Thus, 

by combining cell sorting, mouse genetics, and ATAC-seq we identified developmentally 

resolved chromatin states, and found sequence motifs enriched for regulators of pancreas 

development, demonstrating the sensitivity and specificity of our approach. 
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Identifying TF occupancy in regulatory genomic regions during endocrine cell 

differentiation  

Chromatin accessibility assays, like ATAC-seq and Dnase-Seq, enable identification of TF 

occupancy sites where DNA is protected from enzymatic cleavage or transposition due to TF 

binding, leaving a “TF footprint” (Buenrostro et al., 2013; Maurano et al., 2012). We envisioned 

that an integrative approach combining TF footprint and single-cell gene expression profiles 

could uncover TF activity during endocrine pancreas differentiation. We used the BaGFoot 

algorithm to identify changes in TF occupancy between two cell states using our ATAC-seq 

samples (Baek et al., 2017). BaGFoot calculates two parameters for each TF motif: (1) footprint 

depth (FPD), the relative protection of DNA at the TF motif site, and (2) flanking accessibility 

(FA), the quantification of accessible chromatin near the TF motif (Figure 6A). TF binding 

dynamics is expected to affect these two parameters genome-wide; thus, by comparing the FPD 

and FA between two samples, we can infer changes in TF activity. For instance, a motif with a 

deep FPD, and high FA would indicate strong protection at the motif site. These results are 

represented in “bagplots”, which are analogous to “box and whisker” plots (Figure 6B, also see 

Methods).  

We calculated the FPD and FA values for more than 650 curated TF motifs using our ATAC-

seq data. Pairwise comparison of footprint signatures in duct cells and Neurog3pos progenitors, 

or duct cells and endocrine cells revealed changes in TF activity. Consistent with the HOMER-

based motif analysis, we found strong footprint signals for Gata and Onecut TFs, and Nuclear 

Receptors in duct cells. In endocrine cells, we detected footprints for homeobox TFs including 

Isl1, Hnf1a and Pou TFs (Figure 6 C-E, Supplementary Table 8). Comparison of Neurog3pos 

progenitors and endocrine cells revealed relatively modest TF activity changes (Figure 6D). 

Similar to the findings above, the most significant changes in TF footprint activity occurs during 
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the transition from ductal to endocrine progenitor state, supporting the view that activation of 

Neurog3 is the main driver of changes in chromatin accessibility and gene expression. 

 We also calculated the FA and FPD scores of the TF motifs we derived de novo from our 

ATAC-seq motif enrichment analysis (Figure 5C). These motifs displayed increased FA or FPD 

in the appropriate cell type (indicated in bold, Figures 6C-E and Supplementary Table 8), 

independently validating the TF occupancy at these sequences.  

While footprint depth and flanking accessibility are often correlated, some TFs only exhibited 

increased flanking accessibility without a detectable footprint, likely due to distinct DNA binding 

kinetics— for instance, those TFs with high OFF rates (Baek et al., 2017; Corces et al., 2018). 

TFs matching this profile were basic helix-loop-helix (bHLH) factors including Neurog3, Neurod1 

and Ascl2 in endocrine progenitors. In addition, some motifs were found in the second quadrant, 

displaying deeper FPD, but decreased FA in endocrine or Neurog3pos progenitor samples 

compared to duct cells. This profile is consistent with repressor TFs, whose DNA binding activity 

leads to decreased accessibility surrounding the motif. We found that Tead factors and ETS 

family TFs, including Etv6, Elf2/4, Erf were included in this group (Figure 6C, 6E).  

Paralogous TFs often bind similar DNA motifs, resulting in nearly identical footprint scores. 

For instance, Neurog3 motif could also be recognized by Neurog1 or Neurog2 (Figure 6C, E). 

Thus, footprint analysis alone cannot determine which TF family member might be occupying 

the regulatory sequences in a particular cell type. Integrating BaGFoot results with single-cell 

expression data overcomes this limitation. We found more than 50 TFs whose expression 

correlates with a matching footprint (Figure 6F, Supplementary Figure 5, Supplementary 

Table 9). Among the TFs whose expression was detected in at least 25% of the cells within 

each group (Figure 6F), we confirmed the activity of known regulators, for instance Nr5a2 and 
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Gata4 in duct cells (Hale et al., 2014; Xuan et al., 2012). In addition, we found footprints of 

several relatively less-studied Nuclear Receptor TFs (Nr2f6, Nr3c1) and we identified a CTF/NFI 

factor, Nfix that has increased activity in Neurog3pos progenitor cells (Figure 6D, 

Supplementary Figure 5). Taken together, footprint and expression analysis predicted dozens 

of regulators whose roles have not been previously explored in endocrine cell development, and 

provided quantitative evidence of selective TF occupancy in different pancreatic cell types.  

 

DISCUSSION 

Here, we established an integrative approach combining cell purification, genetic labeling, 

single-cell transcriptomics, chromatin accessibility assessment and TF footprint analysis to 

elucidate molecular mechanisms underlying pancreatic endocrine cell specification. We show 

that endocrine cell development is a dynamic process involving a network of TFs whose 

expression is selectively tuned to define specific hormone lineages. We were able to delineate 

gene expression changes leading to d-cell specification, and nominate unrecognized factors that 

could regulate d-cell function. We demonstrate that in developing pancreatic epithelial cells, 

chromatin undergoes substantial reorganization upon Neurog3 induction. In remodeled genomic 

regions during development, we identified enriched TF motifs and footprints that correspond to 

TF activity in specific cell types.  

A few prior studies (Scavuzzo et al., 2018; Yu et al., 2019) postulated that the Neurog3pos 

progenitors exhibit heterogeneity and temporal lineage biases. In our study, using the same 

mouse models and embryonic stages, we did not find evidence for such bias even though our 

gene expression results aligned well with differential gene expression reported by Scavuzzo and 

colleagues. Thus, differences in our findings may reflect interpretation of alternative analytical 
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approaches, rather than primary data. Similar points about challenges in single-cell analysis and 

biological interpretation were discussed in recent reviews (Kiselev et al., 2019; Tritschler et al., 

2019).  

Using an iterative, semi-supervised clustering approach, we successfully identified 

branching points that specify three hormone lineages, including b-, a-, and d-cell lineages. In 

our dataset we found only 13 PP cells, which did not provide sufficient statistical power to permit 

a PP-branch identification. Due to the known regulatory role of TFs, we focused on differentially 

expressed TFs between these lineages. We identified known, as well as previously under-

studied pancreatic TFs that may have roles in islet endocrine cell specification. Based on TF 

expression in specific developmental timelines, we generated a network and observed that 

lineage specification is governed by a network of TFs with dynamic, overlapping expression 

profiles. For instance, while Neurog3 is necessary for the endocrine lineage, it needs to be 

turned off to permit further differentiation of endocrine cell lineages. We speculate that this may 

explain the low efficiency observed in direct reprogramming approaches when a handful of 

lineage-specific TFs are constitutively overexpressed to force non-islet cells toward a b-cell fate 

(Hickey et al., 2013; Li et al., 2014). Our focused analysis on Neurog3pos cells revealed that the 

pan-endocrine state precedes specific endocrine lineages, and the early endocrine cells are 

polyhormonal as defined by their transcriptome. This may explain why the interconversion of 

hormone cell types does not require Neurog3 (Chakravarthy et al., 2017; Furuyama et al., 

2019). These results are also reminiscent of reports of polyhormonal cells generated during the 

in vitro differentiation experiments using human embryonic stem cells or adult tissues with 

endoderm origin (Galivo et al., 2017; Krentz et al., 2018; Lee et al., 2013; Petersen et al., 2017; 

Veres et al., 2019).  
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Chromatin accessibility is thought to be a better predictor of cell identity than transcriptome 

analysis, with changes in chromatin states often preceding changes in gene expression (Corces 

et al., 2016). By taking advantage of established cell markers and genetic models, we were able 

to dissect the chromatin accessibility changes during endocrine cell differentiation at 

unprecedented resolution. The unexpected similarity between duct cells and those that activate 

Neurog3 forces a re-evalution of extant endocrine cell development models. For example, our 

findings provide evidence that pancreatic ‘trunk cells’ previously postulated to be oligopotent 

progenitors are simply duct cells that default to the ductal lineage in the absence of Neurog3 

(Figure 4E). Comparison of Neurog3pos cells from heterozygous (Neurog3+/eGFP) and 

homozygous wild-type (Tg(eGFP);Neurog3+/+) mice showed that a single, wild-type Neurog3 

allele is sufficient to drive global chromatin reconfiguration in the pancreatic endocrine lineage. It 

is likely that in individual ductal epithelium cells, Neurog3 concentration needs to reach a critical 

threshold to achieve pioneering activity and to compete with histone proteins for DNA binding 

(Bankaitis et al., 2015; Klemm et al., 2019). 

Using a TF footprint algorithm, we provide quantitative, cell type-specific TF occupancy 

profiles at nucleotide resolution in pancreatic duct, endocrine progenitor and endocrine cell 

regulatory DNA. To our knowledge, this is the most comprehensive analysis of TF activity 

correlated with gene expression during pancreas development. TF-regulatory DNA interactions 

form the basis of gene regulatory networks, which are central to determining and maintaining 

cell type-specific transcription, cell fate and function. Further delineation of gene regulatory 

networks defining pancreatic cell lineages will be crucial for understanding pancreas disorders, 

and have the potential to improve gene therapy approaches using CRISPR-guided synthetic 

engineering to generate cells and tissues (Bevacqua et al., 2021). Expanding these strategies to 

human pancreas or in vitro differentiation efforts using emerging single-cell technologies that 
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query chromatin and gene expression profiles (Ma et al., 2020) could offer new approaches to 

investigating the pathogenesis of type 1 and type 2 diabetes.  

 

METHODS 

Animal models 

All animal experiments were conducted in accordance with Stanford University IACUC 

guidelines. Neurog3eGFP/+ knock-in reporter mice were a kind gift from Dr. Klaus Kaestner 

(University of Pennsylvania, USA) (Lee et al., 2002) and were maintained on a CD1 

background. Neurog3-Cre mice were obtained from Guoqiang Gu (Vanderbilt University, USA) 

and maintained on a mixed background of C57BL/6 and CD1 (Gu et al., 2002). Rosa-mTmG 

(Muzumdar et al., 2007) mice were obtained from the Jackson Laboratories and maintained on 

a mixed background of C57BL/6 and CD1. Tg-eGFP; Neurog3+/+ transgenic mice were a kind 

gift from Drs. Guoqiang Gu and Douglas Melton (Gu et al., 2004). Timed matings were used to 

obtain mice at embryonic day (E) E15.5 and E17.5 for experiments; observation of a vaginal 

plug was considered E0.5 for embryonic staging purposes. Both male and female mice were 

used in all experiments.  

 

Tissue processing and FACS 

Pancreata were dissected from E15.5 and E17.5 embryos and checked for GFP using a 

fluorescence dissecting microscope. GFPpos pancreata were then digested with Tryp-LE 

express (ThermoFisher, 12605-010) for 5 minutes at 37℃, with regular pipet agitation to disrupt 

tissue. The digestion reaction was stopped by adding FACS buffer, which contains Ca2+ and 

Mg2+ free PBS supplemented with 2% Bovine serum albumin and 10 mM EGTA. The cell 
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suspension was filtered to remove debris using a cell 70-micron cell strainer (BD Biosciences). 

Red blood cells were eliminated from dissociated cells using an RBC lysis buffer (BioLegend). 

Cells were then stained with Aqua live/dead viability dye (Thermo Fisher) to exclude dead cells 

during sorting. Cells were incubated with a blocking solution containing FACS buffer and goat 

IgG (Jackson Labs, 1:20 dilution) prior to staining with cell surface antibodies. After blocking, 

antibody staining was performed on ice for 30 minutes using the following antibodies: biotin 

mouse anti-CD133 (13A4, 1∶100; eBioscience), Streptavidin-APC (1∶200; eBioscience). We also 

used CD45-PE-Cy7 (eBioscience) to label and exclude leukocytes. We previously showed that 

CD133 labels Neurog3pos endocrine progenitors and duct cells (Sugiyama et al., 2007). By 

contrast hormonepos islet cells that no longer produce Neurog3 are CD133neg. After exclusion of 

CD45pos cells, the following gating strategies defined pancreas cell subpopulations: 

GFPposCD133neg cells were considered ‘endocrine’, GFPposCD133poscells were ‘Neurog3pos’ or 

‘Neurog3 null’ if obtained from null animals, and GFPnegCD133pos cells were considered ‘duct’ 

(Benitez et al., 2014; Sugiyama et al., 2007). Representative gates are shown in Figure 4B. 

Note that the GFP intensity of Neurog3-null cells is reduced. In wild type cells, Neurog3 

normally enhances its own expression through an auto-regulatory “positive feedback loop”. In 

null cells this mechanism is most likely absent (Ejarque et al., 2013; Lee et al., 2002; Wang et 

al., 2008).  

 

Single-cell RNA Sequencing 

Single-cell RNA-seq libraries were generated using the SMART-Seq2 method as described 

(Picelli et al., 2014). Dissociated cells were sorted directly into 96-well plates containing lysis 

buffer with ERCC RNA spike-in controls (ThermoFisher). The details about the sorted cell 
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populations, genotypes, and associated plate codes are available in the GEO metadata file 

linked to this study. The lysis reaction was followed by reverse transcription with template-switch 

using an LNA-modified template switch oligos to generate cDNA. After pre-amplification, DNA 

was purified and analyzed on an automated Fragment Analyzer (Advanced Analytical). cDNA 

fragment profile corresponding to each single cell was individually inspected and only wells with 

successful amplification products (concentration higher than 0.06 ng/ul) and no detectable RNA 

degradation were selected for final library preparation. Tagmentation assays and barcoded 

sequencing libraries were prepared using Nextera XT kit (Illumina) according to the 

manufacturer’s instructions. Barcoded libraries were pooled and subjected to 75 bp paired-end 

sequencing on the Illumina NextSeq instrument. 

 

RNA-Seq Read Alignment 

Raw reads passing quality control using FastQC were aligned to a custom reference genome 

consisting of Fasta files for mm10, ERCC spike in controls, and three transgenes: eGFP, 

tdTomato, and Cre. STAR was used to create the custom genome and read alignment (Dobin et 

al., 2012). The resulting BAM/SAM files were used to create a ‘master counts table’ using HT-

seq (Supplementary Table 1) (Anders et al., 2015). Cells had an average of 3,044 genes 

expressed per cell, ranging from 1,237 to 6,047 genes.  

 

Unsupervised Single-cell Clustering and Trajectory Analyses  

Clustering and trajectory analysis were performed using the single-cell analysis package 

Monocle 2 (v. 2.4.0) (Qiu et al., 2017b). A flowchart summarizing each analysis step is provided 
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in Supplementary Figure 2. Before starting the analysis, the transgenes GFP, Cre and Td-

tomato were removed from the master counts table (Supplementary Table 1). Unsupervised 

clustering aims to cluster the cells based on global gene expression profiles. First step is to 

choose which genes to use to cluster the cells. Based on the dispersion calculations, we set the 

mean_expression parameter to 1. Before performing dimension reduction, the data was 

examined using the plot_pc_variance_explained function, which plots the percentage of 

variance explained by each principal component on the normalized expression data. Based on 

the ‘elbow’ method, we determined that the first 5 dimensions showed the majority of data 

variability. Therefore, t-distributed stochastic neighbor embedding (t-SNE) dimension reduction 

was performed on the first 5 principal components. We set num_clusters to 7 to visualize cell 

clusters (Supplementary Figure 1). The identity of the cell clusters was revealed by mapping 

marker gene expression levels onto single-cells (Figure 1A-B). Clusters 4 and 6 were combined 

and labeled “Endocrine 1”. At this point, the 14 mesenchymal cells that formed Cluster 5, and 

genes that were expressed in less than 5 cells were filtered out. To establish pseudotime 

trajectories, Monocle’s differentialGeneTest function was used to find genes that vary 

among the clusters, specified as fullModelFormulaStr = “~Cluster”. Top 100 genes 

with the lowest q-value were used to order cells, and a pseudotime trajectory was constructed 

using the DDRTree method. To identify gene expression changes between cells aligned along 

the established pseudotime trajectories, we used Monocle’s differentialGeneTest function 

by specifying fullModelFormulaStr = “~Pseudotime”. We considered genes 

significant if the rounded q-value was less than or equal to 0.05. Gene ontology terms were 

found for each of the 7 clusters using DAVID v6.8 (Supplementary Table 3) (Huang et al., 

2009).  
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Semi-supervised Single-cell Clustering and Trajectory Analyses  

Semi-supervised clustering and trajectory analyses were performed to resolve individual 

endocrine lineage branching (Supplementary Figure 2). The process begins with defining 

marker genes that represent cell populations, then identifying the genes that co-vary with these 

markers, and finally ordering the cells based on these co-varying genes. Monocle provides the 

CellTypeHierarchy function for semi-supervised clustering analysis. Since our goal was to 

resolve the b-, a- and d-cell branches, we picked marker genes as Neurog3 for endocrine 

progenitors, Ins1 and Ins2 for b-cells, Gcg for a-cells, and Sst for d-cells. We set the expression 

threshold in each cell for these markers to 100 or more reads. Accordingly, cells that express 

more than one marker gene are labeled “ambiguous” and cells that do not fit into any marker 

gene category are labeled as “unknown”. The gene list was further filtered to remove genes if 

detected in less than 5 cells. Top 100 genes that co-varied with the marker genes (400 genes in 

total) were considered for the clustering and trajectory analysis. Note that the semi-supervised 

analysis was limited to the 317 cells that were placed after the Neurog3 peak expression in the 

unsupervised trajectory, which corresponds to the pseudotime point 6.7. The first iteration 

separated b-cells in one branch and the majority of a- and d-cells in a second branch. To split 

the a- and d-branches, we again focused on cells of interest, and excluded the cells on the b-

cell branch to create a new CellDataSet (cds) object in Monocle. In this new cds() object, 

cells were relabeled as a-, d-, and Neurog3pos cells based on marker gene expression. 

Trajectory analysis was performed as described earlier. The final iteration established 

trajectories with a- and d-cells separated on own branches. Similar to unsupervised clustering, 

Monocle’s differentialGeneTest (by specifying fullModelFormulaStr = 

“~Pseudotime”) function was used to identify genes whose expression changes significantly 

during each endocrine lineage specification. For differential gene expression analysis, cells with 
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pseudotime point > 5.7 and ≤ 6.7 were also included (peak Neurog3 expression) to visualize the 

cell fate transitions beginning from the Neurog3pos progenitors. Hence, three differential gene 

tests were performed to determine transcriptome changes from Neurog3pos progenitor cells to 

each of the three endocrine lineages. Results from differential expression analyses were filtered 

to include genes with a q-value less than 0.1 and those in the top 50% of normalized base mean 

expression among cells within each branch. All differentially expressed genes lists were further 

narrowed to TFs for a total of 145 TFs. These TFs are visualized in a heatmap where all cells 

were aligned in pseudotime order (Supplementary Figure 4).  

 

Analysis and classification of Neurog3pos progenitors 

The master read counts table (Supplementary Table 1) was subset to select Neurog3pos cells. 

We defined Neurog3pos cells as any cell with at least 10 read counts for Neurog3, resulting in 

214 cells. The semi-supervised clustering approach was used to label and cluster cells based 

on either Neurog3 or Chga expression (see the previous section). Top 100 genes that co-varied 

with the marker genes (200 genes in total) were considered for the clustering and trajectory 

analysis. t-SNE dimension reduction was performed on the first two principal components, and 

num_clusters was set to 3. Based on the Neurog3 levels, the clusters were named High, 

Medium, and Low. A trajectory was established by finding differentially expressed genes among 

the High, Medium, Low clusters, using Monocle’s differentialGeneTest function by 

specifying fullModelFormulaStr = “~Cluster”. Top 100 genes with the lowest q-value 

were used to order cells, and a pseudotime trajectory was constructed using the DDRTree 

method. The trajectory was colored based on embryonic day (Figure 2F) or cluster (Figure 2H).  
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To count hormone expressing cells, we analyzed the read counts of Ins1, Ins2, Gcg and Sst in 

each Neurog3pos cell. Any detectable expression (i.e. size-factor normalized counts > 0) was 

counted. The cells were then categorized as expressing zero, one, two or three hormones (Ins1 

and Ins2 reads were combined and presented as Ins). 

 

Expression Specificity Scores, TF-Cell Type/State Network 

We derived expression specificity scores for TFs that are differentially expressed during 

endocrine cell lineage specification. We have previously used this method to reveal cell type-

specific gene expression in human pancreas cells (Arda et al., 2018). ESS was calculated as 

follows: 

 𝑥! 	𝑖𝑠	𝑡ℎ𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑔𝑒𝑛𝑒	𝑖𝑛	𝑐𝑒𝑙𝑙	𝑠𝑡𝑎𝑡𝑒	𝑖  

 𝑛	𝑖𝑠	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙	𝑠𝑡𝑎𝑡𝑒𝑠  

 
𝐸𝑆𝑆 = 	

𝑚𝑒𝑑𝑖𝑎𝑛	(𝑥𝑖)

∑ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑖)
𝑛
𝑖=1

 
 

A cell state is defined here as population of cells that are quantitatively distinct based on their 

transcriptome. Two cell states (early progenitor, late progenitor) and four cell types (duct, b-, a- 

and d-cells) were used to determine the expression specificity score of each TF. The duct cells 

were categorized as cells with pseudotime values < 3 (53 cells) based on the unsupervised 

trajectory analysis. Early progenitor state has cells with pseudotime values between 3 and 6.7 

(111 cells). Late progenitor state cells have a pseudotime value greater than 6.7 and include 

those that were not assigned to an endocrine lineage (121 cells). The hormone producing cells 

consist of those assigned to their respective endocrine cell branch (90 cells in the b-lineage, 76 
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cells in the a-lineage, and 30 cells in the d-lineage). To obtain 𝑥!, we used the size-factor 

normalized single-cell RNA-Seq counts as gene expression values. Thus, a TF with an ESS of 

zero would indicate no expression in that cell type/state, and an ESS of 1 would indicate 

exclusive expression, i. e. the TF is only expressed in that cell state. We obtained the list of 

differentially expressed TFs by overlapping the gene the list with a curated TF list (Weirauch et 

al., 2014), yielding 145 TFs. The TF list was further narrowed to 87 by only including those that 

were detected in at least 50% of the cells in that cell type/state (Supplementary Table 5). The 

network was generated by Cytoscape (version: 3.8.2) (Shannon et al., 2003). The color and 

thickness of the network edges (connections) directly corresponds with the expression 

specificity score (ESS) of the TF in the interacting cell type/state. 

 

ATAC-seq assays and data processing 

Three mouse genotypes were used for ATAC-seq analysis, Tg-eGFP; Neurog3+/+, 

Neurog3eGFP/+, and Neurog3eGFP/eGFP. From these animals, different cell populations were 

isolated as described in the ‘Tissue processing and FACS’ section (also see Supplementary 

Table 6). ATAC-seq was performed following the protocol in Buenrostro et al., 2013. On 

average 10,000 sorted cells were used for each ATAC-seq assay. Sorted cells were pelleted at 

300 g, washed once with PBS. Nuclei were isolated, followed by the transposition reaction. 

Transposed DNA fragments were purified using the Qiagen MinElute kit and amplified 6-8 

cycles using the Nextera (Illumina) PCR primers. Libraries were sequenced as 2x50 on 

HiSeq2000 platform. ATAC-seq data processing and genome alignment was performed with 

PEPATAC (version 0.8.2), a pipeline developed to analyze ATAC-seq samples (Smith et al., 

2021). PEPATAC begins by trimming adapters using skewer (version 0.2.2) with the parameters 
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“-f sanger -t 8 -m pe”. Trimmed fastq files were then mapped to the mm10 genome with bowtie2 

(Langmead et al., 2009) and the parameter “--very-sensitive”. Lastly peaks were called using 

MACS2 (Feng et al., 2012) with “-q 0.01 --shift 0 –nomodel”. At the end of PEPATAC 

processing, 42-88 million reads aligned to the mouse genome and 15,377-55,676 peaks per 

sample were detected. These peak regions were then merged using BedTools (Quinlan and 

Hall, 2010) to generate a non-overlapping consensus peak list for downstream analysis. ATAC-

seq fragments corresponding to the peaks were quantified by using the annotatePeaks.pl 

function in HOMER suite, a genome analysis tool (v.4.10) (Heinz et al., 2010). DE-Seq (Anders 

and Huber, 2010) was used to find regions with significantly different ATAC-seq counts by 

running a generalized linear model with the modelFormula set to “count~condition” and 

“count~1”. Accordingly, DE-Seq calculates P-values and FDR. Peaks passing the FDR 

threshold < 0.001 were considered ‘differentially open regions’ (DORs) between cell types 

(~10,600 DORs). Pearson correlation coefficient method was used to determine the similarity 

between ATAC-seq samples based on DORs. The results were visualized using the R package 

ggcorrplot with hierarchical clustering. DORs and samples were clustered by Cluster 3.0 tool 

using the k-means method (de Hoon et al., 2004). ATAC-seq fragment counts were further 

normalized by log2 transformation after shifting values +1 for visualization in TreeView 

(Saldanha, 2004). To assign DORs to regulatory domains and putative target genes we used 

the GREAT algorithm (v3.0.0) (McLean et al., 2010) with default settings. GREAT also outputs 

enriched GO Terms associated with these regions. For the GO Term enrichment analysis, 

DORs were used as test regions against whole genome (mm10) as background. 
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TF motif enrichment analysis 

HOMER’s findMotifsGenome.pl function with ‘size 500 -len 6,8’ options was used to find 

enriched TF motifs in each DOR group (Heinz et al., 2010). HOMER’s de novo motif discovery 

analysis outputs a position weight matrix (PWM) for each significant motif. These PWMs were 

queried in the CisBP database (Weirauch et al., 2014) to find transcription factors associated 

with the significant motifs. 

 

BaGFoot analysis and integration of gene expression 

BaGFoot footprint analysis was performed as described in (Baek et al., 2017). Narrow peaks 

were called for all ATAC-seq samples using MACS2 (Feng et al., 2012) and merged to generate 

a set of consensus peaks for BaGFoot. Peaks overlapping with black listed regions 

(downloaded from http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-

mouse/mm10.blacklist.bed.gz, Amemiya et al., 2019) were removed from the analysis. 662 

mouse TF motifs were curated from TRANSFAC (Matys et al., 2006), JASPAR (Mathelier et al., 

2016) and UniPROBE (Newburger and Bulyk, 2009). In addition, we included 19 de novo motifs 

derived from our ATAC-seq data by HOMER motif analysis. ATAC-seq sample replicates were 

grouped as follows: the duct dataset consisted of duct-het, duct-null, and Neurog3-null samples, 

the Neurog3 dataset consisted of Neurog3-het and Neurog3-Tg samples, and the endocrine 

dataset consisted of Endo-het and Endo-Tg samples. Each group were compared pairwise to 

detect TF footprint activity at motif locations. BaGFoot results are presented in “bag plots”, 

where each data point represents a TF motif. In a bag plot, the bag area contains 50% of the 

data (similar to the box in the box plot), the fence contains 97%-100% of the data points (similar 

to the whiskers in a box plot) (Rousseeuw et al., 1999). Any data point outside the fence is an 
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outlier. Most TF motifs are not expected to be different between two conditions, and thus are 

localized around the origin. The significant motifs were statistically determined by Hotelling’s T-

squared test and were labeled as outliers.  

Based on the BaGFoot results, we compiled a list of outlier TFs (and their paralogs) to 

analyze their expression levels in the scRNA-Seq data. 481 cells were divided into duct, 

progenitor, and endocrine cell types to obtain average expression levels for outlier TFs. Cells 

were assigned to one of these three cell types based on their placement from the pseudotime 

trajectory analyses. Endocrine cells are a combination of cells aligned on the b-, a-, and d-

branch (Supplementary Table 9). The TFs whose expression was detected in at least 25 cells 

within each cell group were listed in Figure 6F. Those detected in fewer than 25% of the cells 

were shown in Supplementary Figure 5. 
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Figure 1:  

(A) t-SNE plot showing single-cell clusters, colored by cluster. Each dot is a single-cell. 

Cluster names are indicated on the graph. 

(B) Marker gene expression levels overlaid onto the t-SNE plot. Cpa1 (exocrine), Neurog3 

(endocrine progenitor), and Chga (pan-endocrine). 

(C) Alignment of single-cells onto a pseudotime trajectory beginning from duct cells and 

ending with hormone producing endocrine cells. Colors represent the clusters in (A). 

(D) Heat map representation of > 2500 differentially expressed genes during pancreatic 

endocrine cell differentiation, organized into different clusters. Rows represent genes, 

columns represent single-cells ordered by the pseudotime order. 

(E) Graphs representing expression trends per cluster determined by fitting a loess curve of 

average gene expression per cluster, plotted over pseudotime. Each point represents 

the average expression of genes within each cluster for a single-cell along pseudotime. 

Associated GO terms are listed in the text boxes. 
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Figure 2:
(A) t-SNE plot showing Neurog3 expressing cell subsets. Each dot is a single-cell, colored by
clusters, or (B) Neurog3 expression.
(C) Box plots show normalized Neurog3 and Chga expression in each cluster.
(D) Box plots show normalized hormone transcripts detected in each cluster.
(E) Stacked bar plot showing the percent of cells within each cluster expressing zero, one, two, or
three hormone genes (Ins1 or Ins2, Gcg, Sst).
(F) t-SNE projection of Neurog3 expressing cells colored by the embryonic day they were
isolated.
(G) Pseudotime trajectory of Neurog3  positive cells colored by the embryonic day they were
isolated.
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Figure 3:  

(A) (top) t-SNE plots showing semi-supervised clustering of single cells, first iteration to 

resolve b-lineage. Each dot is a single cell, colored by marker gene expression. (bottom) 

Trajectory of cells beginning at the arrow, each dot is a single cell and are colored by 

marker gene expression. High expression of Ins1 and Ins2 is seen in cells at the end of 

the b-branch. 

(B) (top) t-SNE plots showing semi-supervised clustering of single cells, second iteration to 

resolve the a- and d-lineages. Each dot is a single cell, colored by marker gene 

expression. (bottom) Trajectory of cells beginning at the arrow, each dot is a single cell 

and are colored by marker gene expression. High expression of Gcg is seen on the a-

branch, and Sst is seen in cells at the end of the d-branch. 

(C) Bar graph indicating the percent of endocrine cells that were assigned in the appropriate 

branch; 88% for b-, 100% for a-, and 80% for d-cells 

(D) Network showing the relationship between TF expression and cell state. The edges 

represent the expression specificity of TFs in each state. Thickness and color of the 

edges directly correspond to the expression specificity scores (ESS, see Methods). ESS 

values range from 0 to 1, where ESS=1 means TF is exclusively expressed in that cell 

type, and ESS=0 means no expression. Ubiquitous expression is ESS=0.166. 
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Figure 4: 

(A) ATAC-seq workflow used in this study.  

(B) Representative FACS plots showing sorted cell populations and gating strategy. Three 

mouse genotypes were used to collect four types of cell populations from E15.5 

embryos.  

(C) ATAC-seq reads obtained from different cell populations visualized on the UCSC 

browser near the three gene loci; Ptf1a, Neurod1, Ins1. 

(D) Pearson correlation matrix showing the similarity of ATAC-seq samples. Value of 1 

indicates high correlation, 0 indicates no correlation, and -1 indicates anti-correlation. 

The samples are colored as in (A). 

(E) Suggested model for endocrine pancreas differentiation, where Neurog3 functions as a 

pioneer factor to shift the default ductal lineage to the endocrine lineage. 
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Figure 5:

(A)Heat map shows differentially open chromatin regions. Each column is an ATAC-seq sample, 
each row is an open chromatin region, organized by k-means clustering. Three groups of open 
regions were identified and indicated on the graph. 

(B)Bar graphs show significant GO Terms associated with open regions identified in (A).

(C)Position weight matrices of enriched TF motifs found in each of the three open chromatin 
groups. 
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Figure 6

Background

N
um

be
r o

f T
n5

 
 c

ut
s 

pe
r b

p

Motif

Footprint
Base

Flanking
Height

Flanking 
Accessibility

= log2

Footprint
Depth

= log2

Flanking Height
Background

Flanking Height
Footprint Base

A

C

B
Sample A Sample B

Increased TF 
activity in 
Sample A

Increased TF 
activity in 
Sample B

D

E F

endocrine
progenitor endocrineendocrineduct

endocrine
progenitor

Bag
Fence
Outlier

duct endocrineendocrine

-Δ
FP

D

-Δ
FP

D

ΔFA
−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

−0
.2

−0
.1

0.
0

0.
1

0.
2

Atoh1

Bhlha15

Bhlhe22
Bhlhe23

Elf3
Elf4
Elk1
Elk3
Elk4

Erf
Erg

Esrra
Esrrb

Etv1
Etv2
Etv3
Etv4
Etv5

Etv6

Fev
Fli1

Gabpa

Gm4881
Gm5454

Msc

Myt1l

Neurod2

Neurog1

Neurog2

Nr5a2
Olig1

Olig2

Tcf21Twist2

Tead2

Nr5a2

Neurog3

Neurod1

Ahctf1

Ascl2

Atoh8

Cebpa

Cebpd

Dbx1

Esrrg

Hesx1

Rarb

Six6

Tcfap4

Tlx2

-Δ
FP

D

ΔFA

ΔFA

-Δ
FP

D

ΔFA

−0.2 0.0 0.2 0.4

0.
00

0.
05

0.
10

0.
15

−0
.2
0

−0
.1
5

−0
.1
0

−0
.0
5

Arntl
Bbx

Bhlhe40

Grhl1

Homez

Hsfy2

Mlx

Nfix

Nr5a2

Tead2

Dlx5

Hnf1a

Hoxa4

Isl1

Lmx1a

Onecut3

Rreb1

Sp140

Srebf2

Nr5a2

−0.5 0.0 0.5

0.
1

0.
2

0.
3

−0
.2

−0
.1

0.
0

Atoh1Bhlhe22
Bhlhe23

Elf2
Elf3
Elf4
Elk1
Elk3
Elk4

Erf
Erg

Esrra

Esrrb

Esrrg

Ets1

Etv1
Etv2
Etv3
Etv4
Etv5
Etv6

Fev
Fli1
Gabpa
Gm4881
Gm5454

Grhl1 Homez Msc

Myt1l

Neurod2
Neurog1

Neurog2

Nfix
Nr5a2

Olig1
Olig2

Tcf21

Tead2

Nr5a2
Onecut2

Gata1

Neurog3

Bhlha15

Dbx2

Gata4

Lhx3

Meox2

Noto

Nr4a3

Tcfcp2

Tlx2

Gabpa
Cebpg
Nr2c2ap
Mlxip
Nr3c1
Bbx
Tcf25
Mlx
Isl1
Mlxipl
Gata4
Etv6
Bhlha15
Cebpz
Grhl2
Nr0b2
Nr5a2
Tcf19
Elf4
Tead1
Elf2
Nr2f6
Ahctf1
Tcf4
Erf
Nr1h2
Tcf3
Tead2
Hnf1b
Neurod2
Neurog3
Tcf20
Neurod1
Tcf12

Duct EndocrineProgenitor

Average scaled expression Percent of cells expressing
TF in each group

0% 25%50%75%
Duct EndocrineProgenitor

−1−0.500.51

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478217doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478217


Figure 6: 

(A) Cartoon describing how footprint depth (FPD) and flanking accessibility (FA) are 

calculated from ATAC-seq data. 

(B) Guide to interpret pairwise comparisons using a bagplot. 

(C-E) Bagplots displaying TFs with upregulated activity when comparing two samples. 

Outliers are marked by red squares, TFs in the fence are marked by blue circles, and TFs in 

the bag are marked by grey diamonds. Bolded TFs correspond to the de novo motifs found 

in the HOMER analysis. 

(F) Heat map shows average expression levels of outlier TFs in duct, progenitor, or 

endocrine cells. TFs are ordered by hierarchical clustering, expression levels are scaled 

to each row. Each TF is detected in at least 25% of cells in each group. 
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Supplementary Figure 1
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Supplementary Figure 1. 

A) Illustration of the scRNA-Seq workflow performed in this study. See methods for details.
B) t-SNE plot showing single cell clusters after unsupervised clustering approach.
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Supplementary Figure 2: 

Flowchart summarizing the sc-RNA-Seq data analysis performed in this study using Monocle. 
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Supplementary Figure 3
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Supplementary Figure 3

Distribution of Neurog3 transcript levels in single cells, ordered by the pseudotime 
defined in Figure 1C.
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Supplementary Figure 4 

Heat maps showing dynamic expression level changes through endocrine cell differentiation 

beginning with Neurog3pos progenitor cells in b-, a-, or d-branch. 145 TFs were found to be 

differentially expressed along this pseudotime order obtained from semi-supervised clustering 

analysis. For visualization purposes, the TF list is split into those with high (top) or low (bottom) 

expression. Color scale indicates log2 transformed normalized expression values after loess 

smoothing. 
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Supplementary Figure 5
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Supplementary Figure 5

Heat map shows average expression levels of outlier TFs in duct, progenitor, 
or endocrine cells. TFs are ordered by hierarchical clustering; expression 
levels are scaled to each row. Each TF is detected in less than 25% of cells for 
each group.
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