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Abstract: 
 
Transcription factors read the genome, fundamentally connecting DNA sequence to gene 
expression across diverse cell types. Determining how, where, and when TFs bind chromatin will 
advance our understanding of gene regulatory networks and cellular behavior. The 2017 
ENCODE-DREAM in vivo Transcription-Factor Binding Site (TFBS) Prediction Challenge 
highlighted the value of chromatin accessibility data to TFBS prediction, establishing state-of-the-
art methods. Yet, while Assay-for-Transposase-Accessible-Chromatin (ATAC)-seq datasets grow 
exponentially, suboptimal motif scanning is commonly used for TFBS prediction from ATAC-seq. 
Here, we present “maxATAC”, a suite of user-friendly, deep neural network models for genome-
wide TFBS prediction from ATAC-seq in any cell type. With models available for 127 human TFs, 
maxATAC is the largest collection of state-of-the-art TFBS models to date. maxATAC 
performance extends to primary cells and single-cell ATAC-seq, enabling state-of-the-art TFBS 
prediction in vivo. We demonstrate maxATAC’s capabilities by identifying TFBS associated with 
allele-dependent chromatin accessibility at atopic dermatitis genetic risk loci. 
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Introduction: 
 
Most disease-associated genetic polymorphisms fall outside of protein-coding sequences1. 
Instead, they overlap significantly with enhancers, promoters, and other locus-control regions2. 
Causal variants are thought to contribute to disease phenotypes by altering gene transcription in 
specific cell types3,4. Gene regulatory networks (GRNs) describe the control of gene expression 
by transcription factors (TFs)5 at genome-scale. GRN reconstruction for human cell types will thus 
be crucial to identifying how noncoding genetic variants contribute to complex phenotypes through 
altered TF binding, chromatin looping and other gene regulatory mechanisms.  
 
The Assay for Transposase Accessible Chromatin (ATAC-seq) opens new opportunities for GRN 
inference and genetics. This easy-to-use, popular technique provides high-resolution chromatin 
accessibility with low sample input requirements6. Thanks to advances in single-cell (sc)ATAC-
seq, it is now possible to computationally resolve the chromatin accessibility profiles of individual 
cell types from heterogeneous tissues and limited clinical samples7–9. Whether from single cells 
or “bulk” populations, integration of TF-binding predictions from ATAC-seq improves GRN 
inference10,11. Although other experimental approaches more directly measure TF occupancy 
(e.g., ChIP-seq), they require substantial optimization, are costly in time and reagents, and are 
sometimes impossible due to a lack of quality antibodies. Indeed, hundreds of TFs are expressed 
in a given cell-type condition but profiling of >50 TFs has been accomplished for very few human 
cell types12. Furthermore, for some rare cell types and physiological conditions, limited sample 
material precludes direct measurement of TF occupancies.  
 
Thus, the computational community collectively pioneered methods to predict TF binding sites 
(TFBS) from chromatin accessibility13. In 2017, the “ENCODE-DREAM in vivo TFBS Prediction 
Challenge” established two top-performing TFBS prediction algorithms14,15 that vastly improved 
performance over popular motif scanning (median area under precision-recall .4 versus .1).  
 
Yet these top-performing TFBS methods are rarely used in popular ATAC-seq analysis 
pipelines16–20. Several factors are to blame: (1) The coverage of top-performing TFBS models is 
poor relative to motif-scanning. State-of-the-art models exist for fewer than 30 TFs, while there 
are motifs available for at least 1200 of the ~1600 human TFs21. (2) Most models for TFBS 
prediction from chromatin accessibility were trained on DNase-seq rather than ATAC-seq. 
Although both data types provide high-resolution accessibility data, there are notable differences 
between the technologies22, and the DNase-seq-trained models14,15,23,24 have yet to be tested on 
ATAC-seq inputs. Thus, despite the promise of ATAC-seq for GRN inference and human 
genetics, the quality of TFBS prediction from ATAC-seq remains primitive, even as ATAC-seq 
data generation grows exponentially in both basic and biomedical research. 
 
To enable state-of-the-art TFBS prediction from ATAC-seq, we built “maxATAC”, a collection of 
top-performing, user-friendly deep neural networks models for genome-scale TFBS prediction 
from ATAC-seq (Fig. 1). maxATAC currently includes models for 127 human TFs, making it the 
largest collection of state-of-the-art TFBS models available. This effort required extensive curation 
of existing ChIP-seq and ATAC-seq datasets as well as select data generation. Benchmarking 
led to methodological advances for TFBS prediction from ATAC-seq. As a result, our models 
perform well on both bulk and single-cell ATAC-seq, expanding state-of-the-art TFBS capabilities 
to rare cell types in vivo. We use maxATAC to discover TFBS associated with allele-dependent 
chromatin accessibility at atopic dermatitis genetic risk variants, showcasing the potential for 
maxATAC to uncover molecular regulatory mechanisms in complex diseases. 
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Results: 
 
maxATAC models offer state-of-the-art TFBS prediction from ATAC-seq at genome scale 

 

State-of-the-art TFBS prediction methods use supervised learning and thus generally require 
paired TF-binding (e.g., ChIP-seq) and chromatin accessibility data in at least three cell types for 
benchmarking (2 for training, 1 to test generalizability in a new cell type, Methods). We identified 
existing ChIP-seq and ATAC-seq data from cistromeDB25 and ENCODE12 (Fig. 1A, Methods). 
We generated new OMNI-ATAC-seq data for three cell lines with abundant available TF ChIP-
seq, enabling benchmarking for 74 TF models (≥3 cell types)	and model construction for 127 TFs 
≥2 cell types, Fig. 1B).  
 

Deep convolutional neural networks (CNNs) provide state-of-the-art performance for many 
sequenced-based prediction tasks, including prediction of TFBS26–28. They require no prior 
knowledge of TF motifs and instead learn complex patterns in input DNA sequence (nonlinear 
combinations of what often look like TF motifs) de novo. We thus chose deep CNNs to model 
TFBS from ATAC-seq and DNA sequence (Fig. 1C, S1A, Methods). We utilize dilated 
convolutional layers to capture spatially distant relationships across the input sequences in a 
multiscale manner28. Our maxATAC models are thus capable of high resolution TFBS prediction 
(at 32bp) using information-sharing between proximal sequence and accessibility signals (+/-
512bp).  
 
Given our objective to construct state-of-the-art TF models for as many TFs as possible, we 
developed training approaches to improve performance from minimal data (e.g., only 2-3 training 
cell types). We built a training strategy to enrich for true positive (TP) and challenging true-
negative (TN) examples of TFBS. Challenging TN, for example, might arise when a TFBS in one 
cell type is a TN (not a TFBS) in another cell type, due to potentially subtle differences in the 
chromatin environment. Because only ~1% of the chromatin is expected to be accessible or bound 
by TFs in a given cell type29, for each TF model, we defined “regions of interest” as the union of 
accessible chromatin and TFBS (e.g., ATAC-seq and ChIP-seq peaks) for each training cell type. 
We found that increasing the representation of ATAC-seq and TFBS in training examples (relative 
to randomly selected genomic regions) improved performance, and we refer to this practice as 
“peak-centric” training. Furthermore, we introduced “pan-cell” training, to increase the number of 
challenging TN examples. In pan-cell training, regions of interest (e.g., TFBS) in one cell type are 
equally likely to be selected from the other training cell type(s), which often do not share the TFBS 
and, in that way, the training examples are enriched for challenging TN examples (see Methods). 
Peak-centric, pan-cell training outperformed random sampling, with particularly strong gains for 
smaller training dataset sizes (Fig. S1B). 
 
For benchmarking, we compared maxATAC TFBS predictions to “gold-standard” TF ChIP-seq 
experiments in independent test cell types and chromosomes (Methods). By using all possible 
train-test cell type splits, we report a distribution of precision-recall statistics30 for each of the 74 
“benchmarkable” TFs (area under precision recall (AUPR) or precision at 5% recall, Fig. 2, S2, 

Table S1).  
 
The maxATAC models offer state-of-the-art TFBS prediction from ATAC-seq. We first compared 
maxATAC model performance to the most popular method of TFBS prediction, TF motif scanning 
in ATAC-seq peaks. maxATAC outperformed standard motif scanning for every TF (Fig. 2A, 

S2A). For the vast majority of TFs, maxATAC also performed favorably to TFBS prediction using 
the average ChIP-seq signal for that TF across the training cell types (Fig. 2B, S2B). Comparison 
to this important null model31 ensured that the maxATAC models learned ATAC-seq and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 29, 2022. ; https://doi.org/10.1101/2022.01.28.478235doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478235


A

Tr
an

sc
rip

tio
n 

Fa
ct

or

Fig. 1. Overview of maxATAC. (A) Trained maxATAC models use DNA sequence and ATAC-seq signal to predict TFBS in
new cell types. (B) The maxATAC training data per TF and cell type with ATAC-seq (top: 74 "benchmarkable" TF models with ≥
3 cell types available, bottom: 53 TF models with only 2 cell types for training). Blue boxes indicate ChIP-seq from ENCODE,
while red boxes indicate data from GEO. Red stars denote cell types for which in-house OMNI-ATAC-seq was generated. (C)
Example applications of maxATAC TFBS prediction to primary cells, scATAC-seq, and clinical studies combining DNA
sequencing with ATAC-seq.
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sequence features predictive of new TFBS in new cell types, not just TFBS in common with the 
training cell types. A direct comparison to the top-performing ENCODE-DREAM Challenge 
models is problematic due to differences in (1) technologies (ATAC-seq versus DNase-seq), (2) 
the cell types and number of samples available for model training, and (3) an incompletely 
overlapping set of TF models (74 for maxATAC and 12 for ENCODE-DREAM with 9 TFs in 
common). Acknowledging these caveats, we report that maxATAC performance, at AUPRMEDIAN 
= .43, is roughly on par with the top-performing models at the ENCODE-DREAM Challenge 
(AUPR MEDIAN = .4415 or .4114) and a state-of-the-art method for TFBS prediction from ATAC-seq 
(Fig. 2D, Table S1). 
 
Given this good performance, we extended maxATAC model construction to all 127 TFs in our 
training dataset. Because 53 of the TFs had only two cell types available for training (i.e., no 
opportunity to estimate test performance), we explored the relationship between validation AUPR 
and test AUPR for the 74 benchmarkable TF models. Here, validation AUPR corresponds to 
performance on validation chromosome 2 in cell types used for training and validation, while test 
AUPR corresponds to performance on held-out test chromosome 1 for a cell type independent of 
training and validation cell types (Methods).  
 
We observed a nearly one-to-one correspondence between validation and test performance (Fig. 

2C, S2C-D). Given the strongly predictive relationship between validation and test performance, 
the final maxATAC models were constructed using all data. For each TF model, we estimated 
confidences for maxATAC scores based on interpretable validation performance metrics 
(precision, recall, f1-score), so that users can choose confidence cutoffs suited to their research 
goals (Methods). For example, in the context of GRN inference with the Inferelator

32, initial, noisy 
TFBS predictions from ATAC-seq are subsequently refined by gene expression modeling, so a 
GRN modeler might prioritize high recall over high precision. In contrast, a researcher interested 
in experimental validation of a TFBS at a particular locus might prioritize high precision. 
Interpretable confidence cutoffs are a unique aspect of the maxATAC software package, which 
we further benchmark in primary cells (below). 
 
Uncovering determinants of performance for the maxATAC TF models 

 
Test (Fig. 2D-E) and validation (Fig. S2E-F) performance varied dramatically across TFs, with 
AUPRmedian ranging from .75 for CTCF to .01 for NFXL1 (Fig. 2D). We, thus, explored potential 
factors that could explain the performance disparities across TF models. Given (1) the close 
correlation between validation and test performance and (2) that validation performance is 
available for all 127 TF models (versus 74 for test), we analyzed performance variation for both 
validation and test. 
 
Model performance showed a modest dependence on the number of training cell types available 
(Fig. S3A-B). While the interquartile range for models trained with 5 cell types was above the 
overall median AUPR performance (.40), the interquartile range for models trained with 2-4 cell 
types contained the overall median. We credit robust prediction in the small training data set 
regime (2-4 cell types) to our peak-centric, pan-cell model training strategy (Methods). 
 
We also visualized model performances per TF family (Fig. S3C-D). The 127 maxATAC TF 
models span 25 TF families, with 1-13 TF models per family. Ets and bZIP family models had 
above-average performances across metrics. Extension of maxATAC to construct models for new 
TFs will improve representation per family and help resolve these emerging trends. 
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There was a strong relationship between model test (or validation) performance and the number 
of TFBS in the test (or validation) cell types (Fig. S3D-E, Pearson correlation = .61 or .60, P<10-

15 for both test and validation comparisons). Test cell types with more TFBS will have a higher 
AUPR, because, just by random chance, it is more likely that a genomic region is a positive 
example (TFBS). Thus, the number of positive examples (TFBS) in a test cell type directly 
influences AUPR, and it is helpful to account for this background by calculating random precision 
or AUPR (AUPRRANDOM., Eqn. 6, Methods). As a complementary metric to compare 
performances across TFs, we therefore also report log2-foldchange of AUPR relative to 
AUPRRANDOM (Fig. 2F, S2G). By this metric, the top-ranked models by test AUPR (CTCF, NRF1, 
ATF2) fell to 67th, 6th, and 45th, respectively (Fig. 2F). By log2(AUPR:AUPRRANDOM), performance 
ranged from a median ~1,300-fold over background (IRF3) to ~26-fold (IKZF1).  
 
While all maxATAC models outperformed motif-scanning (Fig. 2A), maxATAC performance was 
comparable to averaged train ChIP-seq signal for several TFs (Fig. 2B). Relative performance 
(maxATAC versus averaged train ChIP-seq) was not simply explained by the number of training 
ChIP-seq experiments available, suggesting a role for TF-intrinsic factors (Fig. S4B). We 
hypothesized that training ChIP-seq signal would perform well for TFs whose binding patterns 
changed little across cell types, while maxATAC integration of context (ATAC-seq) with sequence 
would be especially critical for TFs whose binding patterns varied across cell types. We used 
Jaccard overlap33 of TFBS between pairs of training cell types as a proxy for cell-type specificity 
(Fig. S4C). High cell-type specificity explained some of the biggest maxATAC performance gains 
(e.g., for TCF12, JUNB, TCF7). On the other hand, for TFs with the least cell-type specificity, 
maxATAC had small performance gains over averaged ChIP-seq signal (~35% higher AUPR for 
NFE2L2, GABPA, ATF2) and on-par performance for CTCF and NRF1. Thus, maxATAC 
modeling is especially important for TFs with context-specific binding sites but also beneficial for 
TFs with many shared TFBS across cell types. 
 
Five of the maxATAC TF models (GATAD2B, NFXL1, ZBTB40, ZNF207, and ZNF592) have no 
characterized motif in the CIS-BP database34, suggesting that prediction for these TFs might be 
especially challenging (motif-less models are highlighted with red dots in Fig. 2A-B, S2A-B). 
Indeed, three of the models (NFXL1, ZNF207, ZNF592) had the 1st, 4th and 5th-lowest test AUPRs. 
However, two models had good test performance: ZBTB40 at AUPRmedian = .42) and GATAD2B 
at AUPRmedian = .31. Model interpretation, to uncover the predictive sequence and chromatin 
accessibility features for these – and all 127 – maxATAC models, will be the subject of future 
investigation. 
 
maxATAC models extend state-of-the-art prediction to scATAC-seq and primary cells 

 
Having constructed the largest suite of top-performing TFBS models for ATAC-seq, we next 
tested whether these models, trained on population-level data from cell lines, could perform well 
in new domains: single-cell ATAC-seq and primary cells. The maxATAC models were specifically 
designed to improve prediction of TFBS from rare cell types and in vivo settings, where limited 
sample material or cell sorting strategies would preclude experimental TFBS measurement. Thus, 
we evaluated the maxATAC models on scATAC-seq. 
 
Clustering of individual cells into cell types and subpopulations is a key first step in scATAC-seq 
analysis. Next, for each cluster, accessibility per cell is summed to create “pseudobulk” ATAC-
seq signal for each computationally inferred population of cells. From pseudobulk profiles, regions 
of chromatin accessibility are detected and annotated with TFBS predictions in standard scATAC-
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seq pipelines18,19. Pseudobulk scATAC-seq profiles are natural inputs for TFBS prediction with 
maxATAC.  
 
For benchmarking, we took advantage of an experiment in which nuclei from 10 cell lines were 
mixed together for scATAC-seq19. Seven of the cell lines overlapped our maxATAC benchmarking 
cell types (Fig. 3A), providing the opportunity to estimate test performance of maxATAC on 
scATAC-seq for 63 models (Fig. 3, Table S2). As expected, maxATAC outperformed popular TF 
motif scanning (Fig. 3B). In side-by-side comparison in the same test cell types, maxATAC 
performed nearly as well on scATAC-seq as population-level ATAC-seq (Fig. 3C). The 
comparative performance was cell-line dependent. Predictions from scATAC-seq of HeLa, THP-
1, Jurkat and HEK293T performed similarly to bulk (Fig. 3D). In contrast, maxATAC predictions 
on scATAC-seq were, on average, slightly worse than bulk ATAC-seq for MCF-7, K562 and 
GM12878 (Fig. 3C). Undersampling is a potential concern with any genomic assay, and single-
cell technologies in particular35. Thus, we examined whether undersampling might explain the 
poorer performance for MCF-7, K562, and GM12878 relative to the other “on-par” cell lines. 
However, there was no strong correspondence between relative performance and the number of 
cells or total number of fragments per pseudobulk population (Fig. S5A-C). Given the near-
decade spanning ChIP-seq, ATAC-seq and scATAC-seq data generation, changes due to tissue 
culture or passaging of cell lines are potential confounders driving relative performance 
differences. Nevertheless, performance of maxATAC on scATAC-seq is state-of-the-art.  
 
We next evaluated the performance of maxATAC on stimulated primary cells. In particular, we 
examined activation of naïve CD4+ T cells five hours following T-cell receptor (TCR) and CD28 
stimulation, a timepoint at which ATAC-seq and ChIP-seq of TCR-dependent TFs (FOS, JUNB 
and MYC) had been collected36 (Fig. 4A). In addition to being a test of performance on primary 
cells, the ATAC-seq data were generated using the standard ATAC-seq protocol (in contrast to 
the OMNI-ATAC-seq benchmark data). maxATAC predictions for all three TFs outperformed TF 
motif scanning in ATAC-seq peaks (Fig. 4B-D). Even at low recall, maxATAC performance was 
on-par (JUNB) or better (MYC, FOS) than TF motif scanning, with unparalleled at recall >10%. 
The TF motif-scanning precision-recall curves drop off suddenly at ~10% recall because motif 
scanning is not genome-scale (i.e., it is limited to ATAC-seq peaks) (Methods).  
 
We also investigated how the performance metrics associated with the FOS, JUNB and MYC 
maxATAC models extrapolated to this new test dataset. JUNB and MYC models had 4-5 
benchmark cell types, and their associated test and validation performance metrics were good 
predictors of performance in the CD4+ T cells (Fig 4E). In contrast, the FOS model was 
constructed from only two cell types, and its performance, although far superior to motif-scanning, 
was lower than estimated by validation performance. Aggregation of additional maxATAC training 
data will be the focus of future work.  
 
We attribute maxATAC’s generalizability to several key observations and methodological 
strategies. Good performance across ATAC-seq protocols required an extended genomic 
blacklist37 and a robust normalization strategy. We highlight that these strategies were developed 
using an independent scATAC-seq dataset in GM1287838, so the performance reported above 
truly represents test performance (Fig. 4). In contrast to DNase-seq, ATAC-seq is variably 
contaminated with accessibility signal from mitochondrial chromosomes39,40. For example, in 
GM12878, we detected genomic regions of high chromatin accessibility in OMNI-ATAC-seq that 
were not present in scATAC-seq (or DNase-seq) (Fig. S6). Those regions shared high sequence 
similarity with mitochondrial DNA, and, in general, we found less mitochondrial contamination in 
scATAC-seq than bulk. Thus, we expanded our blacklist to include chromatin regions with high 
mitochondrial sequence similarity. Despite the augmented blacklist, several of the transformed 
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Fig. 4. maxATAC models perform well in primary human cells. (A) Study design for maxATAC benchmarking in primary
human CD4+ T cells. Precision-recall curves for maxATAC predictions (red line) and TF motif predictions (blue line) for (B) FOS,
(C) JUNB, and (D) MYC compared to TFBS from ChIP-seq. (E) Comparison of test performance in primary cells (red) to the
estimates of test (green) and validation (yellow) performance (available with each trained maxATAC model) as well as TFBS
prediction by TF motif scanning (teal). Each point corresponds to a unique train-test cell type split, and error bars indicate
standard deviation; test performance minimally requires 3 cell types and therefore was available for MYC (n=6 cell types) and
JUNB (n=5 cell types), but not FOS (n=2 cell types).
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cell lines still had extreme, outlying ATAC-seq signal (Fig. S7). Some of these regions overlapped 
cancer-specific driver super enhancers (e.g., TRIM37 in MCF-7). To be robust to these biological 
outlier regions, we normalized ATAC-seq data to the 99th-percentile highest signal (in contrast to 
the absolute max in standard min-max normalization; Methods); this strategy proved critical to 
maxATAC performance in scATAC-seq and primary cells (Fig. S8).  
 
maxATAC identifies allele-dependent TFBS at atopic dermatitis genetic risk variants   

 
Identifying the cellular and molecular drivers of phenotypic diversity is a fundamental goal of basic 
and translational research. Complex traits are products of genetic and environmental factors. 
Chromatin accessibility is sensitive to environmental factors, like age41 and microbiome42, and 
therefore a critical complement to genetic profiling of patients across disease spectra, from cancer 
to autoimmune and obesity-related diseases. While previous work in deep neural network 
modeling focused on interpretation of genetic variants27,28,43, maxATAC integrates both genetic 
(sequence) and environmental (ATAC-seq) signals and is therefore ideally suited to the 
elucidation of molecular drivers of diseases involving both genetic and environmental 
components.  
 
We demonstrate the potential for maxATAC in the context of a complex disease. Atopic dermatitis 
(AD) is one of the most common skin disorders in children. Its etiology involves both genetic and 
environmental factors, with 29 independent AD risk loci known44,45. Here, we take advantage of 
an important genomics resource in AD: ATAC-seq and RNA-seq of activated CD4+ T cells, along 
with whole-genome sequencing, of AD patients and age-matched controls (Fig. 5A)46. Previous 
analysis of this dataset identified several AD risk variants with allele-dependent chromatin 
accessibility in activated T cells46.  
 
Here, we use maxATAC to identify TFBS associated with allele-dependent chromatin accessibility 
at these AD risk loci (Table S3). To avoid error associated with phasing of DNA and ATAC-seq 
signal (into maternal and paternal strands), we identified a pair of AD and age-matched controls 
(“AD2”, “CTL2”) where the AD patient was homozygous for the AD risk haplotypes while the 
control was homozygous for the AD non-risk haplotype at two independent loci tagged by two 
variants: rs6062490 and rs1151624 (Fig. 5B). For both variants, we considered the full haplotype 
block (linkage disequilibrium R2>.8), using donor-specific DNA sequence and accessibility to 
predict TFBS for 105 expressed TFs with maxATAC models available (Fig. 5C-G, Fig. S9A 

Methods).  
 
The rs6062490 haplotype block is ~34.2kb and contains 30 noncoding SNPs interspersed 
between exons of two protein-coding genes: RTEL1 and TNFRSF6B (Fig. 5D). TNFRSF6B is an 
anti-apoptotic gene, and serum levels of this protein are increased in patients with atopic 
dermatitis46,48. The rs1151624 haplotype block is ~11.3kb and contains 19 noncoding SNPs cis 
to three genes: ZGPAT, LIME1, and SLC2A4RG (Fig. 5E). SLC2A4RG is a known eGene, 
(associated with an eQTL) in activated CD4+ T cells47, while LIME1 is a transmembrane protein 
that controls effector T cell migration to sites of inflammation47. Thus, genes at both risk loci have 
ties to T cell biology, a T-cell eQTL, and AD. 
 
For both loci, we ranked TFs based on the number of predicted differential TFBS regions between 
AD2 and CTL2 (Fig. 5F, S9B). Although TFBS were generally increased in the AD patient relative 
to the control in these loci (53 TFs), three TFs had a predicted decrease in binding sites in AD2 
(KMT2A, LEF1, STAT5A), while 50 TFs had no TFBS predicted in these loci. MYB and FOXP1 
showed the greatest differential binding, and their TFBS were predominantly increased in the AD 



Fig. 5. maxATAC TFBS prediction at atopic dermatitis risk loci in patient-derived CD4+ T cells. (A) In a previous study (Eapen et al., 2021), peripheral CD4+
T cells were isolated from atopic dermatitis (AD) patients and age-matched controls (CTL) and TCR-stimulated prior to ATAC-seq, RNA-seq and DNA-seq data
generation. (B) Of nine AD risk loci shown to exhibit allele-dependent chromatin accessibility in T cells by Eapen et al., we identified a pair of donors in which the
AD patient (AD2) was homozygous for the risk allele and the age-matched control (CTL2) was homozygous for the non-risk allele at two independent
loci: rs1758201 and rs6062490. (C) 105 of the 127 maxATAC TFs were expressed in the donor pair, and these TFs were selected for TFBS prediction with
maxATAC. We identified differential TFBS in the haplotype blocks containing (D) rs6062490 and (E) rs1758201. Purple triangles represent SNPs in linkage
disequilibrium (R2>.8) with the AD risk alleles. In the heatmap below, red or blue intervals (32bp) indicate respective gain or loss of TFBS in the AD patient relative
to control and black represents intervals with shared TFBS. TFBS are determined using a cutoff that maximizes the predicted F1-score per TF model. (F) The 20
TFs with the greatest number of differential binding regions between AD2 and CTL2 are shown. (G) IGV screenshots showing regions (highlighted in yellow) of
predicted differential TFBS in CTL2 (blue tracks) compared to AD2 (red tracks). The haplotype block is indicated in green. The top 4 signal tracks represent
donor-specific ATAC-seq signal and genetic variants. The bottom 6 signal tracks represent predicted TF binding sites.
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patient. FOXP1 has been previously implicated in the maintenance of T cell quiescence and its 
expression is typically repressed in activated T cells48. MYB is a critical regulator of regulatory T 
cell differentiation and immune tolerance49. Thus, both TFs have known roles in T-cell biology. 
We visualized regions of each haplotype block, putative cis-regulatory modules, where MYB and 
FOXP1 were predicted to bind with several other factors (Fig. 5G, S10).  
 
Although limited in statistical power, we examined the correlation between expression of genes 
at these loci in AD patients and age-matched controls (Fig. S9B-G). We observed a trend for 
increased expression of SL2A4RG and decreased expression of ZGPAT in AD patients harboring 
the risk variant rs1151624 (trend held for all 4 homozygous-risk AD patients relative to their 
homozygous or heterozygous non-risk controls). We observed increased expression of all three 
genes (RTEl1, RTEL1-TNFRSF6B, TNFRSF6B) associated with rs6062490, when comparing the 
single pair of homozygous-risk AD to homozygous non-risk control, but we observed inconsistent 
trends from the two donor pairs in which the AD patients were homozygous risk and controls were 
heterozygous non-risk. These trends, in addition to support for SLC2A4RG as an eGene in CD4+ 
T cells47, nominate potential molecular mechanisms, specific TFs that might alter the expression 
of genes important to T cell function (MYB and FOXP1) in AD patients. Interestingly, for the 
regions shown in Fig. 5G, neither FOXP1 nor MYB had motif occurrences in the differential ATAC-
seq peaks, highlighting the unique predictive capabilities of maxATAC. 
 
maxATAC analysis of this clinical genomics study provided “in silico ChIP-seq" for 105 TFs, in a 
setting where experimental measurement of TF occupancy for 105 factors would have been 
infeasible. Application of maxATAC to the growing number of genetic studies with population-
level and single-cell ATAC-seq will improve the power of these studies to accurately predict TF 
mediators of allelic chromatin accessibility and gene expression. Furthermore, many genetic tools 
use overlap with TFBS to nominate potentially causal risk variants, where TFBS are predicted 
based on suboptimal TF motif scanning or ChIP-seq in a potentially suboptimal cell type or 
condition, due to lack of data in the in vivo disease context. Integration of maxATAC TFBS 
predictions into genetic analysis pipelines will be the focus of future work.  
 
Discussion: 
 
Genomic measurement and machine learning capabilities are advancing at an unprecedented 
pace. The possibilities for computational modeling to address fundamental questions in biology 
and human health have never been greater. Leveraging the fastest-growing chromatin-state 
measurement ATAC-seq, maxATAC seeks to make this moment’s state-of-the-art in transcription-
factor binding prediction readily achievable across the basic and biomedical research spectrum. 
Rigorously benchmarked across cell lines, primary cells, and single-cell ATAC-seq, maxATAC 
will improve TFBS predictions and knowledge gain from ATAC-seq studies. With maxATAC and 
its user-friendly codebase (soon to be available from https://github.com/MiraldiLab/maxATAC), 
state-of-the-art, genome-scale TFBS prediction can be accomplished for 127 human TFs using a 
single ATAC-seq or scATAC-seq experiment.   
 
We echo a top-performing group in the “ENCODE-DREAM in vivo TFBS Prediction Challenge”14, 
acknowledging that state-of-the-art computational prediction of TFBS from ATAC-seq, at median 
AUPR = .4, is not yet accurate enough to replace TFBS measurement, when experimentally 
feasible. There are many avenues for improvement. For example, maxATAC models TFBS as 
binary, on-or-off events, despite the quantitative nature of the population-level TFBS 
measurements used for model training. Recent works28,50 introduced new loss functions, 
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specifically designed to quantitatively model chromatin state signal from NGS. Furthermore, 
BPnet’s base-pair resolved architecture has already been tested on TF ChIP-seq50 and appears 
well-poised to leverage highly-resolved ATAC-seq as model input, too.  
 
TF binding in vivo is a multivariate process involving cooperation, competition, and co-binding 
among TFs. Yet each maxATAC TF model was trained independently, with predictions made for 
each TF one-at-a-time. In genomics, multi-task modeling of multiple TFs together is a common 
technique to enhance recovery of predictive sequence features, especially those involved in co-
binding, relative to single TF models51. The sparsity of our training data (Fig. 1B), combined with 
our goal to predict TFBS in new cell types, limited application of traditional multi-task learning 
approaches. Pre-training and transfer learning with large genomics resources could bridge the 
gap, providing richer, multi-task-like features for maxATAC43, while we await experimental 
advances in massively parallel TF occupancy measurements. Relatedly, TFs mediate interactions 
between enhancers and promoters, yet, with maxATAC, each 1kb genomic interval is modeled 
independently. Chromatin-looping interactions could improve TFBS prediction, and, in the 
absence of context-specific experimental data, be inferred from existing looping data52 or 
estimated from covariance of functional genomics assays53 (including scATAC-seq54). 3D-
chromatin interactions could be incorporated using graph neural networks55,56 or with simple post-
processing, like affinity propagation57 of TFBS labels based on 3D contacts.  
 
For some TFs, experimental-quality TFBS prediction will require more than ATAC-seq signal, 
especially for signal-activated TFs that bind pre-existing accessible chromatin. Thus, future 
directions for maxATAC will include addition of new data types, to implicate TFs based on 
transcriptional activity and methylation status of chromatin. Finally, the coverage of maxATAC 
models is still small relative to TF motif models (127 versus ~1200 for human TFs21). Thus, 
identification and generation of additional TFBS and ATAC-seq data is a top priority.  
 
In summary, this work represents a significant resource, advancing community access to state-
of-the-art TFBS prediction from popular ATAC-seq and scATAC-seq protocols.  
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Methods: 
 
Data and Code Availability 

 
The maxATAC codebase will soon be available from https://github.com/MiraldiLab/maxATAC, 
including basic usage (maxATAC installation, ATAC-seq data processing and TFBS prediction 
with the trained maxATAC models) and advanced (model training and benchmarking). OMNI-
ATAC-seq data generated by this study will be deposited in the GEO database. 
 

maxATAC Training Data 

 
We curated training data for maxATAC from the CistromeDB58 and ENCODE12 databases (Figure 

1A-B), identifying cell types that had (1) a high number of human TF ChIP-seq experiments and 
(2) ATAC-seq data. We limited ATAC-seq training data to higher quality OMNI59 and required 
paired-end sequencing, while, for ChIP-seq, we utilized both paired- and single-end sequencing. 
We required sequencing depth ≥ 20 million reads per biological replicate (sum of the spot numbers 
for SRR IDs per SRX ID). We manually verified the cell type, TF, and experimental source of each 
experiment. To ensure that ATAC-seq and ChIP-seq were derived from the same experimental 
conditions per cell type, we eliminated any ATAC-seq or ChIP-seq experiment in which the cell 
type was perturbed (including genetically modified, transfected with exogenous vectors, or treated 
with vehicle controls, environmental perturbations, metabolic manipulations, or differentiation 
protocols).  
 
ChIP-seq 
 
When available, we utilized processed ENCODE ChIP-seq experiments over other publicly 
available data. For TF and cell type pairs with multiple ChIP-seq experiments available, we chose 
the most recent experiment with the greatest number of reproducible TFBS (peaks) detected by 
IDR analysis60. If available, we selected conservative over optimal IDR peak sets. We excluded 
any experiment with a red flag (i.e., a ”critical issue” was identified by ENCODE) as well as 
experiments with fewer than 500 TFBS detected. This resulted in 371 TF-cell type conditions from 
ENCODE. 

The remainder of our ChIP-seq training data required processing and additional quality 
control. Using snakemake61, we followed ENCODE362 standards for ChIP-seq read alignment, 
read filtering, and peak calling; this workflow is available from the maxATAC codebase. In brief, 
each biological replicate was summarized according to SRX ID for a total of 316 experiments. 
Fastq files were downloaded (SRAtools fasterq-dump v. 2.10.8) with technical replicates 
concatenated per SRX ID. Fastq files were assessed for adapter contamination and read quality 
statistics (FastQC v. 0.11.9). Samples flagged for high levels of N sequences were removed. 
TrimGalore! (v. 0.6.7) was used to remove adapter contamination and trim the low-quality bases 
at the 3’ end of the sequencing read with the settings (-q 20). Samples with (1) < 15 million reads 
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after filtering or (2) average read length < 20 bp after trimming were excluded from the analysis. 
Reads were aligned to the hg38 reference genome using bowtie2 (v. 2.4.4)63 (--very-sensitive --
maxins 2000). The aligned reads were quality filtered with samtools (v. 1.9)64 (-F 1804 -q 30) and 
PCR duplicates were removed with samtools markdup (-r -s). Prior to peak-calling, we also 
excluded reads mapping to blacklist regions compiled from ENCODE data23 as well as 
centromeres, telomeres, and annotated gaps24. MACS2 (v 2.2.2.7.1)65 was used to call peaks on 
the filtered BAM file with parameters (--nomodel --extsize 147). For cell types and TF 
combinations with multiple biological replicates, we provided all filtered BAM files during peak 
calling. Peaks meeting an FDR = 5% cutoff were retained as TFBS for benchmarking. TF-cell 
type conditions with fewer than 500 TFBS detected were excluded. 

Further QC of the “non-ENCODE” ChIP-seq involved TF motif analysis and biological 
replicate Pearson correlation of > .6 (when available). We used HOMER (v. 4.11)16 with the CIS-
BP (v. 2.0)34 database to test for enrichment of expected motifs in ChIP-seq peaks. CIS-BP 
provides multiple motifs per TF, so we selected the most highly enriched motif per TF and then 
ranked motif enrichment scores at the TF level. We excluded ChIP-seq experiments in which the 
ChIP’d TF was not ranked among the top-10 enriched TFs. From 316 experiments, we derived 
72 TF-cell type conditions. In total, our 127 TF models cover 443 unique cell types and TF 
combinations across 20 cell types (Fig 1B). 
 
ATAC-seq 

 
We combined ENCODE with in-house OMNI-ATAC-seq for our 20 benchmark cell lines. In-house, 
we ordered HepG2, LoVo and HEK293 cells from ATCC66 tand targeted a median sequencing 
depth of 20 million reads for each cell type. OMNI-ATAC-seq was later released62 for one of these 
cell types (HepG2), so we combined biological replicates for this cell type. To evaluate strategies 
for alignment, signal normalization and smoothing, we processed ENCODE along with in-house 
ATAC-seq. ENCODE ATAC-seq were downloaded,converted to FASTQ (SRAtools fasterq-

dump) and then subsampled to a depth of 30 million reads per biological replicate, to limit compute 
time for alignment. For both ENCODE and in-house data, we evaluated sequencing quality with 
FastQC. Sequencing adapters and bases with a PHRED score < 30 were trimmed with the 
package Trim Galore!

67 using the parameters (-q 30 -paired). We excluded ATAC-seq 
experiments with < 20 million reads. 

Alignment. We investigated several alignment strategies, using GRCh38 as the reference 
genome. We tested the performance of STAR (v. 2.7.0a)68, bowtie2 (v. 2.4.4)63, and bwa-mem (v. 
0.7.17) aligners on TFBS predictions. Two STAR alignment strategies were tested, one with 
default parameters (--alignIntronMax 1 --alignMatesGapMax 2000 --alignEndsType EndToEnd) 
and the second with parameters from the TOBIAS69 TF footprinting package (--alignIntronMax 1 
--alignMatesGapMax 2000 --alignEndsType EndToEnd --outMultimapperOrder Random --
outFilterMultimapNmax 999 --outSAMmultNmax 1 --outFilterMismatchNoverLmax 0.1 --
outFilterMatchNmin 20 --alignSJDBoverhangMin 999 --alignEndsProtrude 10 ConcordantPair). 
For STAR, a MAPQ score of 255 indicates properly paired reads with a single match and a 
samflag of 3 indicates properly paired and oriented reads. Thus, we filtered for STAR-aligned 
reads with a MAPQ score of 255 and samflag of 3 (samtools view -f 3 -b -q 255). For bowtie2, we 
used parameters (-p 8 --very-sensitive --maxins 2000), while we used default parameters for bwa-
mem, applying post-alignment filters for reads with MAPQ score of ≥ 30 and samflag 3. For all 
alignments, we removed duplicates (e.g., PCR artifacts) with samtools rmdup and samtools 

fixmate with parameter (-n), and further filtered for reads mapping to autosomal chromosomes. In 
contrast to normalization strategies, the maxATAC models performed robustly across the 
alignment methods tested (Fig. S8). We chose bowtie2 alignment for subsequent analyses. 

Inference of ATAC-seq Tn5 sites and smoothing. The Tn5 transposase dimer inserts 
sequencing adapters with a strand specific bias that results in a 9bp sequencing extension70–72, 
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therefore, reads are shifted +4 on the (+) strand or -5 on the (-) strand so that the corresponding 
read ends are centered at the Tn5 cut site. We first converted the filtered BAM files to bed intervals 
using BEDtools

73
 bamtobed and awk (awk 'BEGIN {OFS = "\t"} ; {if ($6 == "+") print $1, $2 + 4, 

$2 + 5, $4, $5, $6; else print $1, $3 - 5, $3 - 4, $4, $5, $6})'. In contrast to other pipelines74,75, we 
retain both cut sites per fragment, to maximize coverage and ultimately prediction from, e.g., 
scATAC-seq of rarer cell types in vivo. We used a 1bp window around the inferred cut sites to 
generate a high-resolution cut site signal. Given our goal of applying maxATAC to scATAC-seq 
in addition to ATAC-seq at typical sequencing depths (~20 million reads), we smoothed the sparse 
Tn5 cut site signal to overcome noise due to under sampling. We found that extension of Tn5 
insertion sites by +/- 20bp (BEDtools slop) performed well (on par with +/- 5 or 10bp and better 
than single-bp resolution, data not shown); the resulting 40bp window also corresponds to the 
~38 bp wide Tn5 transposase dimer72.  

Extended blacklist. Initial testing of maxATAC models on scATAC-seq in GM12878 
highlighted the need for an extended blacklist37. We discovered regions of extreme OMNI-ATAC-
seq signal that were not present in DNase-seq or scATAC-seq data and therefore likely indicative 
of platform-specific technical artifacts. For example, regardless of alignment method, high signal 
regions were detected in OMNI-ATAC-seq but not DNase-seq or scATAC-seq of the same cell 
type (GM12878); these corresponded to mitochondrial chromosome duplication events and 
regions of low mappability (Fig. S6-7). Thus, our final blacklist included (1) blacklisted regions 
from ENCODE data76, (2) centromeres, telomeres, and annotated gaps available from UCSC 
table browser77 for hg38, (3) regions ≥1kb with ≥ 90% sequence identity to chrM78, and (4) regions 
with low mappability on chr21 (Table S4). Inferred Tn5 cut sites within blacklisted regions were 
removed with bedtools intersect.  

ATAC-seq normalization and signal tracks. For comparison of ATAC-seq signal tracks and 
combination of biological replicates, we scaled ATAC-seq signal per replicate to 20 million 
mapped reads (RP20M), a process involving signal conversion to BEDgraph interval coverage 
tracks (bedtools genomecov) using the scale factor, derived from Eq. 1 and 2, and parameters (-
bg -scale scale factor). The scale factor is multiplied by the count at each position to yield RP20M 
normalization: 

 
Eq. 1              "#20&	()*+,-	.,*-( = 	 !"#$%

&'(#'$!)$*	,'-%. × 20,000,000 
 

Eq. 2              ()*+,	2*)34. = /
&'(#'$!)$*	,'-%.	 × 20,000,000 

 
For cell types with multiple replicates, we average the RP20M values across all available samples, 
using (pyBigWig; v. 0.3.18) to generate bigwig files.  

For maxATAC input, we initially applied standard min-max normalization to the RP20M 
ATAC-seq signal tracks, scaling bp signal by the min and max across RP20M tracks: 

 
Eq. 3              5675*80%((6:7*+) = 	 &)*$23	4	5)$526!%	4	5)$

, 
 
where min corresponds to the minimum RP20M signal and maxP% corresponds to the pth-
percentile (highest) RP20M signal. Standard min-max normalization uses the absolute maximum 
or “max100%”. However, despite an ATAC-specific blacklist, regions of extreme ATAC-seq signal 
persisted in a cell-type-specific manner (Fig S7). Although often biological in nature (e.g., TRIM37 
locus in MCF-779, Fig. S7C), these outlying signals interfered with min-max normalization of 
ATAC-seq and cross-platform performance on scATAC-seq (Fig. Supp. S8). To improve 
robustness80, we replaced the absolute max (p=100%) in Eq. 3 with the 95th-percentile and 99th-
percentile signals (p=95% or 99%). These strategies enabled high-quality prediction in initial tests 
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of maxATAC on scATAC-seq in GM1287881, while a standard max-min strategy did not (Fig. S8). 
This normalization strategy was then independently tested on another scATAC-seq dataset19 
(Fig. 3). 

Peak Calling. We called peaks with MACS265 to identify “regions of interest” for training 
(see Model Training) and TFBS prediction with PWMs (a key comparator). The Tn5 cut sites 
(per biological replicate, when available) served as input to MACS2. Our parameter settings (-f 
BED -shift=0 -ext=40 -keep-dup=all) center the signal over the Tn5 insertion, smooth by extension 
+/-20bp and ensure that each inferred Tn5 binding site contributes to the peak call. (We keep all 
duplicate Tn5 cut sites because PCR duplicates were removed in previous steps.) We retained 
ATAC-seq peaks per cell type if they met an FDR = 5% cutoff. 

 
Model Architecture 

The maxATAC models are deep dilated convolutional neural networks28,82 that predict 
transcription factor binding sites as a function of ATAC-seq and DNA sequence (Fig. Supp. 9). 
Model inputs are 1,024bp x 5, with four dimensions corresponding to one-hot encoded DNA 
sequence and the fifth corresponding ATAC-seq signal (processed as described above). The 
output of each TF model is a 32 x 1 array of TFBS predictions, resolved to 32bp. The CNN is 
composed of five convolutional blocks, each consisting of two repeating double-layers (ReLU-
activated 1D convolutional operations) followed by batch normalization. The max-pooling layer is 
interspersed between convolutional blocks to reduce the spatial dimensions of the input. The 
kernel widths are fixed at 7bps for all convolutional blocks, while the number of filters grows by a 
factor of 1.5 per block, from 15 (first block) to 75 (last block). The final output layer uses sigmoid 
activation for binary prediction of TFBS. The dilation rate of the convolutional filters increases 
from one, one, two, four, eight, and sixteen across blocks. As a result, the receptive field gradually 
expands to +/-512bp in the ultimate hidden layer. Thus, information is shared across the length 
of the 1024bp input, in a distance-dependent manner (i.e., proportional to spatial proximity of the 
regions), while the resolution of TFBS predictions is preserved at 32bp. 

 
Model Training 

 
Train, validation, and test sets 
 
The goal of maxATAC is TFBS prediction from ATAC-seq in new cell types. Thus, for a TF with 
TF ChIP-seq and ATAC-seq available from N ≥ 3 cell types, N-1 cell types were used for training 
and validation, while the Nth was reserved for the test set. In addition, to avoid overfitting DNA 
sequence, the autosomal chromosomes were split into independent training (chromosomes 3, 4, 
5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17,18, and 20), validation (chr2 and chr19) and test (chr1 and 8) 
sets. Given the 32bp resolution of maxATAC predictions, positive examples of TFBS resulted if 
the 32bp region had >50% overlap with the set of ChIP-seq TFBS derived per TF-cell type 
conditions (detailed above). 
 
Training routines 
 
The maxATAC models were trained through optimization of the cross-entropy loss function via 
stochastic gradient descent using the ADAM optimizer83, with an initial learning rate of 0.001, for 
100 epochs (batch size of 1000 and 100 batches per epoch) and Glorot initialization of the 
weights84. Given the breadth of TFs in our benchmark, the diversity of their binding mechanisms 
and variable amounts of training data available per model, we used minimum validation cross 
entropy loss to select model parameters (an epoch) per TF model. 

As described in Results, we developed a sampling strategy for model training, to enrich 
true positive (TP) and challenging true-negative (TN) examples of TFBS. Because only ~1% of 
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the chromatin is expected be accessible in a given context, for each TF model, we defined 
“regions of interest” as the union of accessible chromatin and TFBS (for that TF) for each training 
cell type. Furthermore, to increase the number of challenging TN examples, we introduced “pan-
cell” training, so that regions of interest for one cell type were equally likely to be selected from 
the other training cell type(s). Using a small subset of the benchmark data (11 TFs, limiting train 
to A549, HepG2, IMR-90, K562, MCF-7, and SK-N-SH cell lines, and test to GM12878), 100% 
peak-centric, pan-cell training outperformed (1) commonly used random sampling from the 
genome85 and mixed random and peak-centric strategies (e.g., 50-50, Fig. S2A). Thus, 100% 
peak-centric, pan-cell training was used for the final maxATAC models. 

Following previous work25, we doubled the number of training examples by including 
sequence and signal from the reverse-complement in addition to the typically used forward strand. 
Although a part of our final maxATAC training routine, this strategy increased training time but did 
not robustly improve test performance (data not shown). For this reason, it is not the default for 
model training in the maxATAC codebase. 

 

Performance evaluation 

 
Precision-recall analysis 
 
Genome-wide, the number of true positive (TP) TFBS are scarce relative to true negative (TN), 
unbound regions, so we used precision-recall statistics rather than receiver-operator 
characteristic (ROC)30. ROC weights TP and TN equally, and therefore a less informative metric 
of performance in unbalanced classification problems, like TFBS prediction. We report area under 
precision-recall (AUPR), precision at 5% recall and log2(AUPRmodel/AUPRrandom), as described in 
Results.  

We ranked maxATAC TFBS prediction for precision-recall analysis. maxATAC output is a 
score, ranging from 0 and 1, indicating the probability of a TFBS in each 32bp genomic interval. 
Each unique score is a unique rank. We benchmark our predictions by binning the signal from the 
validation or test chromosome(s) of interest using pyBigWig and report the max value per bin of 
length 200bp. (200bp was selected for comparison with the DREAM-ENCODE TFBS Prediction 
Challenge.) The ranking of our predictions is based on the maximum score in the 200bp signal 
region.  

Blacklisted regions are excluded for precision-recall analysis. The ChIP-seq gold standard 
is binned into 200bp intervals, and a bin is labeled positive if any of the bin overlaps a ChIP-seq 
peak. For every rank, we calculate precision and recall relative to the ChIP-seq gold standard. 
We calculate the precision as the number of predictions that were found in the gold standard at 
each rank (Eq. 4). We calculate recall as the percent of the gold standard that was recovered at 
each rank (Eq. 5). Random precision is calculated as the number of bins overlapping the gold 
standard divided by the total number of bins evaluated (Eq. 6). AUPR calculations were 
implemented using the python package sklearn

86.  
 

Eq. 4         B.,)6(647 = #	"8	9)$&	:)%.	;<	9)$,)$*	-=',)!%)"$&	">'=32--)$*	?.@04&'(	*"3,	&%2$,2=,
#	"8	9)$&	:)%.	;<	9)$,)$*	-=',)!%)"$&	  

 
Eq. 5      .,)*++ = 	 #	"8	9)$&	:)%.	;<	9)$,)$*	-=',)!%)"$&	">'=32--)$*	?.@04&'(	*"3,	&%2$,2=,#	"8	9)$&	">'=32--)$*	?.@04&'(	*"3,	&%2$,2=,  

 
Eq. 6         .*7-45	B.,)6(647 = 	 #	"8	9)$&	">'=32--)$*	?.@04&'(	*"3,	&%2$,2=,#	"8	9)$&	2!="&&	%.'	!.="5"&"5'  

 
Comparison to other TFBS methods 

 



 16 

TFBS prediction with PWM models. We obtained DNA sequences for ATAC-seq (or 
scATAC-seq) peaks identified per cell type (bedtools getfasta). We used the motif-matching 
algorithm MOODS18 together with the TF PWM database CISBP v22 to identify motif occurrences 
with a P< 1x10-5. For TFs with multiple PWM, we used all for our analysis, and, when multiple 
motif matches occurred within the same genomic region, we removed exact coordinate 
duplicates, but left overlapping motif matches. To rank TFBS predictions (e.g., at 200bp 
resolution), we binned the genome into set-width, non-overlapping bins using bedtools 

makewindows. For each bin, we counted the number of TF motif matches that overlapped the bin 
by at least 1 bp using bedtools intersect. We used the number of motif matches per bin to rank 
our predictions for precision-recall analysis. 

TFBS prediction with Average Training ChIP-seq Signal. We used average ChIP-seq 
signal from the training cell types to predict TFBS in a held-out test cell line. Specifically, for each 
TF, we averaged the arcsinh of the ChIP-seq signal p-value across training cell types at each 
genomic position87, using the averaged signal to rank TFBS for precision-recall analysis.  

 

Prediction with the maxATAC Models 
 
The final maxATAC models were constructed using all benchmark cell types available for a given 
TF (Fig. 1C), while maintaining train, validation, and test chromosomes, so that the test 
performance of these models could eventually be evaluated with new data (e.g., as we did with 
ATAC-seq and ChIP-seq from primary CD4+ T cells, Fig. 4). In addition to publishing the final 
maxATAC models, we took advantage of the good correlation between validation and test 
performance (Fig. 2C, S2C-D) and mapped maxATAC scores to intuitive validation performance 
statistics precision, recall, log2(Precision / Precisionrandom), and F1-Score. Per TF model, the 
validation performance on Chr2 was averaged across each of the validation cell types. Given that 
precision is not necessarily a monotonic function of maxATAC score, we ensured one-to-one 
mapping in the following way: For a precision value mapping to multiple maxATAC scores, we 
selected the maxATAC score cutoff that maximized recall.  
 

maxATAC evaluation on scATAC-seq, primary cells and in discovery mode 

 
scATAC-seq 
 
We evaluated maxATAC on scATAC-seq during (1) method development (Fig. S8) and (2) 
independent testing (Fig. 3). For method development, we downloaded scATAC-seq fragment 
files for GM12878 (500 and 5000 cell experiments)88 from the 10X Genomics website 
(https://www.10xgenomics.com/resources/datasets). For testing, we downloaded the high-
loading, mixed-cell line scATAC-seq experiment SRX9633387 from GSE16269075, which we 
processed to cell-type specific pseudobulk fragment files. We annotated cells and removed 
doublets using demuxlet. 

Fragment files were filtered for reads aligning to the hg38 genome. For each pseudobulk, 
Tn5 cut sites were identified, signal tracks generated and minmax99%-normalized for maxATAC 
prediction, as described for bulk ATAC-seq.  
 
Primary cell types 
 
We downloaded ATAC-seq (GSE116696) and ChIP-seq data for 3 TFs (FOS:GSM3258569, 
MYC:GSM3258570, and JUNB:GSM3258571) in primary CD4+ T cells stimulated with anti-
CD3/anti-CD28 beads for 5 hours89, processing ATAC-seq and ChIP-seq for maxATAC and 
precision-recall analysis as described above. 
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Sequence-Specific TFBS prediction in CD4+ T cells from atopic dermatitis patients 
 
We derived both DNA sequence and ATAC-seq signal inputs for maxATAC from a genetics atopic 
dermatitis (AD) study46, combining whole genome sequencing (WGS) and OMNI-ATAC-seq (of 
peripheral blood CD4+ T-cells stimulated with anti-CD3 and anti-CD28 beads for 5 hours) for 6 
AD patients and 6 age-matched controls. We used patient-specific genetic variant calls and the 
nine AD risk variants previously associated with allele-dependent chromatin accessibility 
identified by Eapen et al. We sought to identify pairs of AD patients and age-matched controls 
that were homozygous for the risk and non-risk alleles, respectively. Focusing on homozygous-
risk and homozygous-nonrisk obviated the need for phasing (i.e., to resolve ATAC-seq signal into 
maternal and paternal DNA strands). We focused on two independent AD risk loci that met our 
criteria. For these loci, we applied maxATAC to patient- and control-specific DNA sequence and 
ATAC-seq signal to make TFBS predictions in the haplotype blocks containing the risk variants 
(linkage-disequilibrium R2>.8), for the patient pair, AD2 and CTL2. Haplotype blocks were defined 
by the homozygous risk variants identified above and all SNPs in linkage disequilibrium with the 
risk variant (R2 ≥ .8) were used for patient-specific sequence prediction with maxATAC. The 
furthest genetic variant positions in LD with risk variant defined the prediction window, which was 
extended + or - 512 bp to contain the most distal variants in LD. We limited TFBS prediction to 
TFs with nominal mRNA expression (DESeq2 VST counts ≥ 9) in activated CD4+ T cells, 
measured in parallel RNA-seq by Eapen et al. 
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Supplementary Table Legends 

 
Table S1. Performance metrics for 127 transcription factor models in bulk ATAC-seq. This 
table consists of results generated from maxATAC prediction for each cell-type and transcription-
factor pair. Results include maxATAC test AUPR for chr1, TF motif scanning AUPR for chr1, 
Average ChIP-seq signal AUPR for chr1, and analgous metrics for validation performance on 
chr2.  Additional annotations such as the number of ChIP-seq peaks and TF family annotations 
are also included. 
 
Table S2. Performance metrics for 193 cell type and transcription factor models in scATAC-

seq data. This table consists of maxATAC AUPR for chr1 in bulk ATAC-seq, maxATAC AUPR 
for chr1 in scATAC-seq, and TF motif scanning AUPR for chr1 in scATAC-seq for all 193 models 
tested. 
 
Table S3. Atopic dermatitis risk loci with allele-dependent ATAC-seq signal. This table 
contains the variants that are associated with allele-dependent ATAC-seq signal and are in 
linkage disequilibrium with an atopic dermatitis risk variant. Each genetic variant is annotated with 
the patient genotype, Linkage Disequilibrium R2 value, and gene expression information for genes 
near these variants.   
 
Table S4. Extended maxATAC blacklist. This BED file (hg38 coordinates) contains the 
blacklisted regions that were excluded from our analysis. These regions include the low 
mappability arm of chr21, segmental duplications with high sequence similarity to chrM, 
telomeres, centromeres, and annotation gaps.  


