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Abstract20

The use of spatial maps to navigate through the world requires a complex ongoing transformation of ego-21

centric views of the environment into position within the allocentric map. Recent research has discovered22

neurons in retrosplenial cortex and other structures that could mediate the transformation from egocentric23

views to allocentric views. These egocentric boundary cells respond to the egocentric direction and dis-24

tance of barriers relative to an animals point of view. This egocentric coding based on the visual features of25

barriers would seem to require complex dynamics of cortical interactions. However, computational models26

presented here show that egocentric boundary cells can be generated with a remarkably simple synaptic27

learning rule that forms a sparse representation of visual input as an animal explores the environment. Sim-28

ulation of this simple sparse synaptic modification generates a population of egocentric boundary cells with29

distributions of direction and distance coding that strikingly resemble those observed within the retrosplenial30

cortex. This provides a framework for understanding the properties of neuronal populations in the retrosple-31

nial cortex that may be essential for interfacing egocentric sensory information with allocentric spatial maps32

of the world formed by neurons in downstream areas including the grid cells in entorhinal cortex and place33

cells in the hippocampus.34

1 Introduction35

Animals can perform extremely complex spatial navigation tasks, but how the brain implements a naviga-36

tional system to accomplish this remains largely unknown. In the past few decades, many functional cells37

that play an important role in spatial cognition have been discovered, including place cells (O’Keefe and38

Dostrovsky, 1971; O’Keefe, 1976), head direction cells (Taube et al., 1990a,b), grid cells (Hafting et al.,39

2005; Stensola et al., 2012), boundary cells (Solstad et al., 2008; Lever et al., 2009), and speed cells (Kropff40

et al., 2015; Hinman et al., 2016). All of these cells have been investigated in the allocentric reference frame41

that is viewpoint-invariant.42

However, animals experience and learn about environmental features through exploration using sensory43

input that is in their egocentric reference frame. Recently, some egocentric spatial representations have44

been found in multiple brain areas such as lateral entorhinal cortex (Wang et al., 2018), postrhinal cortices45
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(Gofman et al., 2019; LaChance et al., 2019), dorsal striatum (Hinman et al., 2019), and the retrosplenial46

cortex (RSC) (Wang et al., 2018; Alexander et al., 2020). In the studies by Hinman et al. (2019) and47

Alexander et al. (2020), a very interesting type of spatial cell, the egocentric boundary cell, was discovered.48

Similar to allocentric boundary cells (Solstad et al., 2008; Lever et al., 2009), egocentric boundary cells49

(EBCs) possess vectorial receptive fields sensitive to the bearing and distance of nearby walls or boundaries,50

but in the egocentric reference frame. For example, an EBC of a rat that responds whenever there is a wall51

at at particular distance on the left of the rat means that the response of the EBC not only depends on the52

location of the animal but also its running direction or head direction, i.e., the cell is tuned to a wall in the53

animal-centered reference frame.54

Alexander et al. (2020) identified three categories of EBCs in the rat RSC: proximal EBC whose egocentric55

receptive field boundary is close to the animal, distal EBC whose egocentric receptive field boundary is56

further away from the animal, and inverse EBC that respond everywhere in the environment except when57

the animal is close to the boundary. Some examples of proximal, distal and inverse EBCs are shown in58

Figure 1. Furthermore, EBCs in this area display a considerable diversity in vector coding; namely the59

EBCs respond to egocentric boundaries at various orientations and distances. Somewhat surprisingly, there60

are also EBCs tuned to a wall that is behind the animal (see the bottom plot of Figure 1b for an example).61

Though there is increasing experimental evidence that suggests the importance of egocentric spatial cells,62

there have been few studies explaining how egocentric boundary cells are formed and whether they emerge63

from neural plasticity.64

In this study, we show how EBCs can be generated through a learning process based upon sparse coding65

that uses visual information as the input. Furthermore, the learnt EBCs show a diversity of types, namely66

proximal, distal and inverse, and they fire for boundaries at different orientations and distances, similar67

to that observed in the experimental study of the vector coding for EBCs (Alexander et al., 2020). As68

Bicanski and Burgess (2020) pointed out in a recent review, the fact that some EBCs respond for boundaries69

behind the animal suggests that these cells do not solely rely on sensory input and appear to incorporate70

some mnemonic components. However, our model shows that by solely taking visual input, without any71

mnemonic component, some learnt EBCs respond to boundaries that are behind the animal and out of view.72
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Figure 1: Six example EBCs from Alexander et al. (2020). The plots in the left column are the 2D
spatial ratemaps, the middle column plots are trajectory plots showing firing locations and head directions
(according to the circular color legend shown above a), and the right column plots are the receptive fields of
the respective EBCs (front direction corresponds to top of page). a) Proximal EBCs whose receptive field is
a wall close to the animal. The two example EBCs displayed here are selective to proximal walls of left and
right, respectively. b) Distal EBCs whose receptive field is a wall further from the animal. The two example
EBCs displayed here are selective to distal walls of rear-right and behind, respectively. c) Inverse EBCs that
fire everywhere except when there is wall near the animal. The two example EBCs displayed here only stop
firing when there are wall in front of and on the left of the animal, respectively.

These boundaries can, nevertheless, be inferred from distal visual cues, suggesting that the competition73

introduced by sparse coding drives different model cells to learn responses to boundaries at a wide range of74

different directions.75

We next show that the model based on sparse coding that takes visual input while a simulated animal ex-76

plores freely in a 2D environment can learn EBCs with diverse tuning properties and these learnt EBCs can77

generalize to novel environments.78

2 Materials and Methods79

2.1 The simulated environment, trajectory and visual input80

2.1.1 Environment81

The simulated environment is programmed to match the experimental setup of Alexander et al. (2020) as82

closely as possible. It consists of a virtual walled arena 1.25 m by 1.25 m. One virtual wall is white and the83

other three are black. The floor is a lighter shade of grey with RGB values (0.4, 0.4, 0.4).84
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2.1.2 Trajectory85

The simulated trajectory is generated randomly using the parameters from Raudies and Hasselmo (2012).86

The simulated animal starts in the center of the arena facing north with the white wall to the right. This is87

used as the 0° bearing direction. The velocity of the animal is sampled from a Rayleigh distribution with88

mean 13 cm/s while enforcing a minimum speed of 5 cm/s.89

The direction of motion is modelled by a random walk for the bearing, where the change in bearing at each90

time step is sampled from a zero mean normal distribution with standard deviation 340° per second and91

scaled to the length of the time step.92

A complication for the simulation is how to deal with the walls. Following Raudies and Hasselmo (2012),93

we encode the following. If the simulated animal will approach within 2 cm of one of the walls on its94

next step, its velocity is adjusted to halfway between the current speed and the minimum speed (5 cm/s).95

Additionally we change the bearing by turning away from the wall by 90◦.96

2.1.3 Visual input97

The simulated environment and trajectory above are realised using the Panda3D game engine (panda3d.98

org), an open-source framework for creating virtual visual environments, usually for games. The visual99

input of the simulated animal is modelled using a camera with a 170◦ field of horizontal view to mimic the100

wide visual field of rat and a 110◦ field of vertical view. This input is used to generate a grayscale 8-bit101

image 170×110 pixels, which corresponds approximately to the visual acuity of the rat, namely 1 cycle per102

degree (Prusky et al., 2000). The camera is always facing front, meaning that the head direction is aligned103

with the movement direction for the simulated animal. The simulation is run at 30 frames per second until104

40000 frames have been collected, which approximately corresponds to a running trajectory over a period105

of 1300 s (21 min, 40 s).106

Model results shown in this paper are based on the visual input with 170◦ field of view (FOV) except107

Section 3.3 where different FOVs (60◦, 90◦, 120◦, 150◦, and 170◦) are simulated to investigate how the108

width of FOV affects the distribution of learnt EBCs.109
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2.2 Learning egocentric boundary cells (EBCs)110

2.2.1 Non-negative sparse coding111

Sparse coding (Olshausen and Field, 1996, 1997) was originally proposed to demonstrate that simple cells112

in the primary visual cortex (V1) encode visual input using an efficient representation. The essence of113

sparse coding is the assumption that neurons within a network can represent the sensory input using a linear114

combination of some relatively small set of basis features (Olshausen and Field, 1997). Along with its115

variant, non-negative sparse coding (Hoyer, 2003), the principle of sparse coding provides a compelling116

explanation for neurophysiological findings for many brain areas such as the retina, visual cortex, auditory117

cortex, olfactory cortex, somatosensory cortex and other areas (see Beyeler et al. (2019) for a review).118

Recently, sparse coding with non-negative constraint has been shown to provide an account for learning of119

the spatial and temporal properties of hippocampal place cells within the entorhinal-hippocampal network120

(Lian and Burkitt, 2021, 2022). In this study, non-negative sparse coding is used to learn the receptive field121

properties of EBCs found in the RSC.122

2.2.2 Model structures123

As the simulated animal runs freely in the 2D environment, an image representing what the animal sees is124

generated at every location. This image is used as the visual stimulus to the simulated animal. To explore125

where in the visual processing chain EBCs arise we investigate two models: (i) Raw Visual (RV) model, a126

control model that uses the raw visual data (model structure shown in Figure 2a), and (ii) V1-RSC model,127

a more biological model that uses the processed data corresponding to processing in the early visual system128

and processing in the V1 before projecting to the RSC (model structure shown in Figure 2b).129

The learning principle used in both the RV and V1-RSC models is non-negative sparse coding. Given that130

the RV model is designed as a control model to investigate whether raw visual input can give rise to EBCs,131

while the V1-RSC model is a more biological model that incorporates visual processing in the early visual132

systems and V1, we use slightly different implementations of non-negative sparse coding. Specifically, the133

RV model uses a built-in function from the SciKit-Learn python package (Pedregosa et al., 2011) while the134

V1-RSC model uses the implementation from our previous work (Lian and Burkitt, 2021).135
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Figure 2: Structures of Raw Visual (RV) model and V1-RSC model. The simulated animal runs freely in
the 1.25 m×1.25 m simulated environment. The simulated visual scene the animal sees at different locations
is the visual stimulus to the simulated animal. a) RV model: the raw visual input is directly used as the input
to a network that implements non-negative sparse coding. b) V1-RSC model: the raw visual input is pre-
processed by the early visual system and then projected to V1 that involves simple cell and then complex
cell processing; complex cells in V1 then project to modelled EBCs in RSC and a V1-RSC network is
implemented based on non-negative sparse coding (described in Equations 2 & 3).

2.2.3 Raw Visual model: using the raw visual data136

In the RV model, the raw visual data is used as the input to the model, which is a 40000×18700 matrix. This137

contains the raw visual data (170×110) flattened for all 40000 time steps. One sample of raw visual input is138

displayed as the embedded ‘image’ in Figure 2a. Non-negative sparse coding of this model is implemented139

by applying non-negative matrix factorisation (Lee and Seung, 1999) with sparsity constraints using the140

built-in function from the SciKit-Learn python package (Pedregosa et al., 2011). 100 dictionary elements141

are generated, which we identify with the model neuron responses used in the V1-RSC model. Since the142

simulated animal only has access to the visual data as it is running, training on the 40000 × 18700 input143

dataset is only performed for a single iteration to simulate the early stages of receptive field generation.144
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2.2.4 V1-RSC model: using a more biological model from V1 to RSC145

Early visual processing: Processing in the early visual system describes the visual processing of the retinal146

ganglion cells (RGCs). In this study, this is done using divisively normalised difference-of-Gaussian filters147

that mimic the receptive fields of RGCs in the early visual system (Tadmor and Tolhurst, 2000; Ratliff et al.,148

2010). For any input image, the filtered image I at point (x, y) is given by149

I(x, y) =
Ic(x, y)− Is(x, y)

Id(x, y)
, (1)

where Ic, Is, and Id are the response of the input image filtered by three unit-normalised Gaussian filters:150

center filter (Gc), surround filter (Gs), and divisive normalisation filter (Gd). Gc−Gs implements the typical151

difference-of-Gaussian filter that characterises the center-surround receptive field of retinal ganglion cells152

and Gd describes the local adaptation of RGCs (Troy et al., 1993). The receptive field size of RGCs is set153

to 9 × 9. The standard deviations of Gc, Gs and Gd are set to 1, 1.5 and 1.5, respectively (Borghuis et al.,154

2008). RGCs are located at each pixel point of the input image except these points that are within 4 pixels155

of the edges of the input image. For a given input image with size 170× 110, the processed image after the156

early visual system has size 162 × 102. One sample of raw visual input and its corresponding processed157

input by the early visual system are displayed as the embedded ‘image’ and ‘early visual’ in Figure 2b.158

V1 processing: Next, visual information processed by the early visual system projects to V1 and is further159

processed by simple cells and complex cells in V1 (Lian et al., 2019, 2021). The receptive field of a simple160

or complex cell is characterised by a 13 × 13 image. Simple cells are described as Gabor filters with161

orientations spanning from 0◦ to 150◦ with step size of 30◦, spatial frequencies spanning from 0.1 to 0.2162

cycles per pixel with step size of 0.025, and spatial phases of 0◦, 90◦, 180◦ and 270◦. In addition, a complex163

cell receives input from 4 simple cells that have the same orientation and spatial frequency but different164

spatial phases (Movshon et al., 1978a,b; Carandini, 2006). Therefore, at each location of a receptive field,165

there are 6 × 5 × 4 = 120 simple cells and 6 × 5 = 30 complex cells. As the receptive field only covers166

a small part of the visual field, the same simple cells and complex cells are repeated after every 5 pixels.167

Given that an input image from the early visual system has size 162 × 102 and the size of a receptive field168

is 13 × 13, there are 27 × 20 = 540 locations that have simple cells and complex cells. Overall, there are169
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120× 540 = 64800 simple cells and 30× 540 = 16200 complex cells in total. For a given visual stimulus170

with size 170 × 110, complex cell responses can be represented by a 16200 × 1 vector. After the vision171

processing in V1, complex cell responses in V1 project to the RSC.172

Model dynamics: Similar to our previous work (Lian and Burkitt, 2021, 2022), we implement the model173

via a locally competitive algorithm (Rozell et al., 2008) that efficiently solves sparse coding as follows:174

τ u̇ = −u + AT I−Ys ,

s = max(u− λ, 0),

(2)

and175

∆A = η(I−As)sT with A ≥ 0, (3)

where I is the input from V1 (i.e., complex cells responses), s represent the response (firing rate) of the176

model neurons in the RSC, u can be interpreted as the corresponding membrane potential, A is the matrix177

containing basis vectors and can be interpreted as the connection weights between complex cells in V1 and178

model neurons in the RSC, Y = ATA−1 and can be interpreted as the recurrent connection between model179

neurons in the RSC, 1 is the identity matrix, τ is the time constant of the model neurons in the RSC, λ is180

the positive sparsity constant that controls the threshold of firing, and η is the learning rate. Each column181

of A is normalised to have length 1. Non-negativity of both s and A in Equations 2 & 3 is incorporated to182

implement non-negative sparse coding. Additional details about the above implementation of non-negative183

sparse coding can be found in Lian and Burkitt (2021).184

Training: For the implementation of this model, there are 100 model RSC neurons and the parameters are185

given below. For the model dynamics and learning rule described in Equations 2 & 3, τ is 10 ms, λ is 0, and186

the time step of implementing the model dynamics is 0.5 ms. The simulated visual input of the simulated187

trajectory that contains 40000 positions is used to train the model. Since the simulated trajectory is updated188

after every 30 ms, at each position of the trajectory, there are 60 iterations of computing the model response189

using Equation 2. After these 60 iterations, the learning rule in Equation 3 is applied such that connection190

A is updated. The animal then moves to the next position of the simulated trajectory. The learning rate η is191

set to 0.3 for the first 75% of the simulated trajectory and 0.03 for the final 25% of the simulated trajectory.192
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Note that the model with λ = 0 implements non-negative matrix factorisation (Lee and Seung, 1999), which193

is a special variant of non-negative sparse coding. However, when λ is set to a positive value such as 0.1,194

the learnt EBCs display similar features, except that the neural response is sparser.195

2.3 Collecting model data196

After the RV model and V1-RSC model finish learning using simulated visual input sampled along the197

simulated trajectory, a testing trajectory with simulated visual input is used to collect model responses198

for further data analysis. The experimental trajectory of real rats from Alexander et al. (2020) is used199

as the testing trajectory and it contains movement direction as well as head direction. In addition, for the200

experimental trajectory, head direction is not necessarily identical to movement direction because the animal201

is not head-fixed in the experiment. Simulated visual input from the experimental trajectory is generated202

using the same approach described above, except that the camera is not facing front but aligned with the203

head direction from the experimental data. Both models are rate-based and thus the model responses are204

then transformed into spikes using a Poisson spike generator with a maximum firing rate 30 Hz for the whole205

modelled population.206

Results displayed in the main text are generated using model data collected from an experimental trajectory207

that has different movement and head directions. However, results of model data collected from a simu-208

lated trajectory where head direction is aligned with movement direction are also given in Supplementary209

Materials.210

2.4 Experimental methods211

An electrophysiological dataset collected from the RSC of male rats performing random foraging in a212

1.25 m×1.25 m arena was used from published prior work (Alexander et al., 2020) to make comparisons213

between model and experiment data of EBCs. For additional details relating to experimental data acquisi-214

tion see Alexander et al. (2020). In addition, the data analysis techniques from this experimental paper were215

used to analyze the data from the simulations.216
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2.5 Data analysis217

2.5.1 Two-dimensional (2D) spatial ratemaps and spatial stability218

The analysis of the neural activity in the simulation used the same techniques that were used to analyze pub-219

lished experimental data from the RSC (Alexander et al., 2020). Animal or simulation positional occupancy220

within an open field was discretized into 3 cm×3 cm spatial bins. For each model neuron, the raw firing221

rate for each spatial bin was calculated by dividing the number of spikes that occurred in a given bin by the222

amount of time the animal occupied that bin. Note that spiking in the model was generated by a Poisson223

spike generator. Raw firing ratemaps were smoothed with a 2D Gaussian kernel spanning 3 cm to generate224

final ratemaps for visualization.225

2.5.2 Construction of egocentric boundary ratemaps226

The analysis of egocentric boundary ratemaps (EBR) used the same techniques used for published experi-227

mental data (Alexander et al., 2020). EBRs were computed in a manner similar to 2D spatial ratemaps, but228

referenced relative to the animal rather than the spatial environment. The position of the boundaries relative229

to the animal was calculated for each position sample (i.e., frame). For each frame, we found the distance,230

in 2.5 cm bins, between arena boundaries and angles radiating from 0◦ to 360◦ in 3◦ bins relative to the231

animal’s position. Angular bins were referenced to the head direction of the animal such that 0◦/360◦ was232

always directly in front of the animal, 90◦ to its left, 180◦ directly behind it, and 270◦ to its right. Intersec-233

tions between each angle and environmental boundaries were only considered if the distance to intersection234

was less than or equal to half the length to the most distant possible boundary (in most cases this threshold235

was set at 62.5 cm or half the width of the arena to avoid ambiguity about the influence of opposite walls).236

In any frame, the animal occupied a specific distance and angle relative to multiple locations along the arena237

boundaries, and accordingly, for each frame, the presence of multiple boundary locations were added to238

multiple 3◦ × 2.5 cm bins in the egocentric boundary occupancy map. The same process was completed239

with the locations of individual spikes from each model neuron, and an EBR was constructed by dividing240

the number of spikes in each 3◦ × 2.5 cm bin by the amount of time that bin was occupied in seconds.241

Smoothed EBRs were calculated by convolving each raw EBR with a 2D Gaussian kernel (5 bin width, 5242

bin standard deviation).243
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2.5.3 Identification of neurons with egocentric boundary vector tuning244

The identification of model neurons with significant egocentric boundary vector sensitivity used the same245

criteria for identification of real neurons showing this response (Alexander et al., 2020). The mean resul-246

tant, R̄, of the cell’s egocentric boundary directional firing, collapsed across distance to the boundary, was247

calculated as248

R̄ =

(
1

nm

n∑
θ=1

m∑
D=1

Fθ,De
iθ

)
, (4)

where θ is the orientation relative to the rat, D is the distance from the rat, Fθ,D is the firing rate in a given249

orientation-by-distance bin, n is the number of orientation bins, and m is the number of distance bins. The250

mean resultant length (MRL), L̄, is defined as the absolute value of the mean resultant and characterized the251

strength of egocentric bearing tuning to environment boundaries. The preferred orientation of the egocentric252

boundary ratemap was calculated as the mean resultant angle (MRA), φ̄,253

φ̄ = arctan

(
=(R̄)

<(R̄)

)
, (5)

where = and < are the real and imaginary parts of their arguments respectively.254

The preferred distance was estimated by fitting a Weibull distribution to the firing rate vector corresponding255

to the MRA and finding the distance bin with the maximum firing rate. The MRL, MRA, and preferred256

distance were calculated for each model neuron for the two halves of the experimental session independently.257

A model neuron was characterized as having egocentric boundary vector tuning (i.e., an EBC) if it reached258

the following criteria: 1) the MRL from both session halves were greater than the 99th percentile of the259

randomized distribution taken from Alexander et al. (2020) (L̄ > 0.14), 2) the absolute circular distance in260

preferred angle between the 1st and 2nd halves of the baseline session was less than 45◦, and 3) the change261

in preferred distance for both the 1st and 2nd halves relative to the full session was less than 50%. To refine262

our estimate of the preferred orientation and preferred distance of each model neuron we calculated the263

center of mass (COM) of the receptive field defined after thresholding the entire EBR at 75% of the peak264

firing and finding the largest continuous contour (‘contour’ in Matlab). We repeated the same process for265

the inverse EBR for all cells to identify both an excitatory and inhibitory receptive field and corresponding266
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preferred orientation and distance for each model neuron.267

2.5.4 Von Mises mixture models268

Distribution of preferred orientation estimates was modeled as mixtures of Von Mises distributions using269

orders from 1 to 5 (“fitmvmdist” found at https://github.com/chrschy/mvmdist). Optimal270

models were identified as the simplest model increasing model fit by 10% over the one-component model.271

Theta of each Von Mises component is reported, and a distribution function of the optimal model was272

generated to visualize mixture model fit.273

3 Results274

3.1 Learnt EBCs are similar to those found in the experimental study275

3.1.1 Results using Raw Visual model276

100 dictionary elements (model cells) of the RV model were trained on a simulated trajectory and then277

tested on the experimental trajectory as described in Section 2.3. 38% of these model cells possessed278

significant and reliable sensitivity to the egocentric bearing and distance to environmental boundaries. A279

similar but lightly larger percentage was observed when these model cells were tested on the simulated280

trajectory (41%). Figure 3 shows six examples of learnt cells that are proximal, distal and inverse EBCs.281

Plots of the full set of 100 RV model cells tested using experimental and simulated animal trajectories are282

given in the Supplementary Materials A.1 & A.2.283

3.1.2 Results using V1-RSC model284

100 model cells of the V1-RSC model were also trained using on a simulated trajectory and then tested on285

the experimental trajectory, as described in Section 2.3. Of these cells, 85% possessed significant egocentric286

boundary vector sensitivity when tested on the real animal trajectory and a similar percentage was observed287

on the simulated trajectory (90%). Twelve examples showing the activity of cells with learned EBC receptive288

fields on the experimental trajectory are displayed in Figure 4. The four sets of plots in Figure 4a depict289

representative examples of proximal EBCs with different preferences for egocentric orientation, and the four290
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Figure 3: Examples of learnt EBCs recovered using experimental trajectory: Raw Visual model. Sim-
ilar to Figure 1, each row with three images shows the spatial ratemap, firing plot with head directions and
egocentric ratemap. a) Proximal EBCs, b) Distal EBCs, and c) Inverse EBCs with different preferences of
egocentric orientation.

sets of plots in Figure 4b show representative examples of distal EBCs, also showing different preferences for291

egocentric orientation. The four sets of plots in Figure 4c show examples of learned inverse EBCs. Each row292

consists of EBCs with similar orientations. These examples illustrate that they code for different orientations293

and distances in the animal-centered framework. Plots of the full set of 100 V1-RSC model cells generated294

using experimental and simulated animal trajectories are given in the Supplementary Materials A.3 & A.4.295

These result show that, after training, the learnt RSC cells exhibit diverse egocentric tuning similar to that296

observed in experimental data (Alexander et al., 2020), including the three different types identified ex-297

perimentally: proximal, distal and inverse. The results likewise show that the cells are activated by walls298

at different orientations in the egocentric framework. In other words, this model learns diverse egocentric299

vector coding; namely the learnt cells code for boundaries at different orientations and distances.300
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Figure 4: Examples of learnt EBCs recovered using experimental trajectory: V1-RSC model. Similar
to Figure 1, each row with three images shows the spatial ratemap, firing plot with head directions and
egocentric ratemap. a) Proximal EBCs, b) Distal EBCs, and c) Inverse EBCs with different preferences of
egocentric orientation.

3.1.3 Population statistics of EBC orientation and distance301

The EBCs that are learnt using RV model and V1-RSC model, illustrated in Figures 3 & 4, show considerable302

similarity to those found in experimental studies (Alexander et al., 2020). After the model is trained on303

simulated visual data sampled from a virtual environment with a simulated trajectory, model responses are304

collected with both experimental trajectory (where head direction is not necessarily aligned with moving305

direction) and simulated trajectory (where head direction is the same as moving direction), see “Collecting306

model data” of “Materials and Methods” for details. Then the egocentric tuning properties of all the model307

cells are investigated using the technique in “Data analysis” of “Materials and Methods”.308

A summary of percentages of cells that are classified as EBCs for both experimental and model data is dis-309

played in Table 1. Alexander et al. (2020) reported 24.1% (n=134/555) EBCs in the experimental data. RV310

model has 41% (n=41/100) and 38% (n=38/100) EBCs recovered by simulated trajectory and experimental311

trajectory, respectively. V1-RSC model has 90% (n=90/100) and 85% (n=85/100) EBCs recovered by sim-312

ulated trajectory and experimental trajectory, respectively. Above all, our proposed model is successful in313
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learning EBCs from visual input.314

Table 1: Percentages of EBCs of experimental and model data.

Experimental Raw Visual model V1-RSC model
Sim. traj. Exp. traj. Sim. traj. Exp. traj.

EBC 24.1%, n=134/555 41%, n = 41/100 38%, n=38/100 90%, n=90/100 85%, n=85/100

The extent of the similarity between experimental and model data is shown in Figure 5, which demonstrates315

that both RV and V1-RSC models generate EBCs whose characteristics resemble experimentally observed316

data on a population level. Thus, visual input alone may give rise to EBC-like receptive fields. The vector317

coding of an EBC indicates the coding of orientation and distance. Experimental data (left of Figure 5) shows318

that EBCs in the RSC have a lateral preference for orientation and a wide range of distance tuning. Learnt319

EBCs of both the RV model and V1-RSC model have qualitatively similar distributions to the experimental320

data of both preferred bearing and distance. That said, the distribution of preferred orientations and distances321

in the experimental dataset significantly differed from EBCs in the V1-RSC (Kuiper test for differences in322

preferred orientation; k = 3443; p = 0.002; Wilcoxon ranksum test for differences in preferred distance; p =323

0.03) but not the RV model (Kuiper test for preferred orientation; k = 1644; p = 0.05; Wilcoxon ranksum test324

for preferred distance; p = 0.49). These differences partly arise from 1) an overall lack of V1-RSC EBCs325

with preferred egocentric orientations in front of or behind the animal and 2) a more uniform distribution of326

preferred distances with lower concentration in the proximal range for V1-RSC model EBCs.327

Different visual inputs imply different spatial information about the animals’ position, so salient visual328

features may correlate with spatial tuning properties of neurons. By solely taking visual input, the model329

based on sparse coding promotes diverse tuning properties (different types of EBCs and diverse population330

responses) because of the inherent competition of the model. Difference between experimental and model331

data is discussed further in the Discussion Section 4.2 & 4.4.332

3.2 Learnt EBCs generalize to novel environments333

EBCs are experimentally observed to exhibit consistent tuning preferences across environments of different334

shapes or sizes (LaChance et al., 2019; Alexander et al., 2020). We next examined whether learnt EBCs of335

the two models exhibited similar characteristics. To do so, we exposed model units that were trained on the336
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Figure 5: Population statistics of experimental and model data. Distributions of orientation (top row)
and distance (bottom row) in the Raw Visual model (middle column) and V1-RSC model (right column)
resemble experimental distributions observed in RSC (Alexander et al., 2020) (left column; blue and yellow
histograms correspond to real neurons recorded in the right and left hemispheres, respectively). Model data
in this figure is collected using experimental trajectory.

baseline (1.25m2) session to both a circular and expanded (2m2) novel environments.337

We observed many learnt units that continued to exhibit egocentric receptive fields across environments338

(Figure 6a-e). However, there were notable differences in the preferred egocentric bearing and distances of339

the receptive fields of individual units as well as the generalizability of tuning across environments between340

the unprocessed (RV) and feature processed (V1-RSC) models. The RV model tended to have greater341

turnover of units with EBC-like properties between the baseline, circle, and expanded arenas while the342

population of EBCs in the V1-RSC model overlapped substantially between environments (e.g., only 1 RSC-343

V1 unit was an EBC solely in the baseline session; Figure 6f). Interestingly, both models exhibited more344

robust egocentric bearing tuning in circular when compared to square environments (Figure 6g; Kruskall-345

Wallis test w/ post-hoc Tukey-Kramer; RV χ2 = 42.3; V1-RSC χ2 = 63.5; both p <0.001). Consistent346
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with this observation, RV model units were more likely to exhibit EBC-like tuning in circular environments347

(Figure 6b,f) while V1-RSC model units showed no preference for environment shape (Figure 6f).348

The RV and V1-RSC models also diverged when examining the properties of egocentric boundary tuning349

curves across environments. While there were fewer preserved EBC units in the RV model across sessions,350

those that did maintain EBC-like tuning tended to have the similar preferred orientations between baseline,351

circular, and expanded arenas (Figure 6h, left column; Kuiper test for different preferred orientations; kcircle352

= 270; k2m = 144; both p = 1). In contrast, V1-RSC units had significant differences at the population level353

in preferred orientations between the circular environment and baseline session (Figure 6h, top right; Kuiper354

test; kcircle = 1334; p = 0.001). This likely arose from subsets of V1-RSC units that exhibited movement of355

their preferred egocentric bearing to the contralateral side of the agent between arenas (Figure 6d,h). V1-356

RSC units were extremely reliable in their preferred orientation within both sized square arenas, indicating357

that the egocentric receptive fields in this model were highly sensitive to environmental geometry (Figure 6h,358

bottom right; Kuiper test; k2m = 1105; p = 1). In fact, small numbers of V1-RSC units with EBC-like359

tuning in square environments exhibited a complete disruption of egocentric receptive fields in circular360

environments consistent with experimental observations (Figure 6e; A.S. Alexander, unpublished).361

Larger alterations to EBC receptive fields across environments were observed for the distance component362

in both models. Many units exhibited drastic changes to their preferred egocentric distance with a bias363

towards a shift further from the animal (Figure 6h; ∆Pref Dist. = PDbaseline - PDmanip; Signed rank test for364

0 median differences; all conditions and models p<0.05). This observation was especially apparent in the365

V1-RSC model and, in particular, in the arena expansion manipulation (Figure 6h, bottom right). In the 2m2
366

environment, shifts in preferred distances that moved receptive fields further away from the animal could367

indicate that subsets of EBCs anchored their activity to the center of the environment rather than boundaries,368

as reported in postrhinal cortices (Figure 6d; LaChance et al. 2019). These simulations indicate that, in a369

manner consistent with experimentally observed EBCs, most model-derived units exhibit consistent EBC-370

like tuning between environments of different shapes and sizes.371
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Figure 6: Model EBCs exhibit mostly consistent tuning when the environment is manipulated. a)
3 examples of EBCs in the Raw Visual (RV) model across baseline (1.25m2), circular, and expanded (2m2)
environments. Left plots, firing ratemap as a function of position of the agent. Middle plots, trajectory
plot showing agent path in gray and position at time of spiking as colored circles. Color indicates heading
at the time of the spike as indicated in the legend. Right plots, egocentric boundary ratemap. b) RV unit
with EBC coding in circular but not square environments. c) 2 examples of EBCs in the V1-RSC model
across baseline (1.25m2), circular, and expanded (2m2) environments. Plots as in a. d) V1-RSC unit that
has contralateral orientation tuning between square and circular environments. e) V1-RSC unit that loses
an EBC receptive field when moving from square to circular environments. f) Venn diagrams for RV (left)
and V1-RSC (right) EBCs across all simulated arenas. Overlaps indicate units with EBC tuning in multiple
arenas. Numbers indicate total count out of 100 simulated units. BL, baseline (1.25m2); Circle, circular; 2m,
expansion (2m2). g) Scatter plots of mean resultant length (MRL) for detected EBCs in each environment.
Abbreviations as in f. h) Changes to preferred orientation and distance in RV and V1-RSC model EBC units
between baseline and manipulation sessions. Rows are ‘baseline versus circle’ (top) or ‘baseline versus
2 meter’ (bottom) comparisons. Left four plots, RV model with polar plots depicting change to preferred
orientation (∆Pref Orient. = PObaseline - POmanip) and histograms depicting change to preferred distance
(∆Pref Dist. = PDbaseline - PDmanip). Radial and y-axes are the proportion of units with EBC-like tuning in
both conditions. Negative values on the right histograms indicate receptive fields moving farther from the
animal, vice versa for positive values. Right four plots, same as left plots but for the V1-RSC model.
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3.3 The width of visual field affects the orientation distribution of learnt EBCs372

The preferred egocentric bearings of EBCs from both experimental data and model simulations are concen-373

trated at lateral angles (Figure 5) and overlap significantly with the facing direction of the eyes. Thus, it374

is possible that the distribution of EBC-preferred bearings reflects the visual field of the animal. We next375

examined model EBC receptive field properties in simulations of agents possessing varying fields of view376

(FOV, Figure 7). Consistent with this hypothesis, the distribution of preferred bearings is primarily for-377

ward facing in simulations with convergent FOVs and spread in more lateral orientations as the visual field378

approaches a more naturalistic width. Indeed, at a 170° width field of view, the distribution of preferred379

orientations becomes bimodal in both models with mean angular preferences of each mode falling near380

0/360° and 180° as observed in experimental data (Figure 5). Accordingly, the combination of visual sparse381

coding and physical constraints on animal visual fields may define core properties of EBC receptive fields382

and enable the prediction of preferred bearings in other species.383

Furthermore, Figure 7 shows that both models generate more behind-animal EBCs when FOVs are small384

(60◦, 90◦ and 120◦). Given that there is no mnemonic component in the model and the wall behind the385

animal is completely out of its view when FOV is small, the result here suggests that the model based on386

sparse coding promotes the diversity of EBC tuning properties even though only visual input is used.387
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Figure 7: EBC preferred bearings as a function of field of view. a) Top row, distribution of preferred
egocentric bearings for EBCs in the Raw Visual model as a function of width of field of view. Preferred
bearings move from forward to lateral facing as the visual field increases in width. Pink traces, Von Mises
Mixture model fits of preferred bearing distribution with mean angles depicted and indicated on top left.
Bottom row, mean egocentric boundary ratemaps across all EBCs identified for each simulation. Blue to
yellow, zero to maximal activity. b) Same as in a, but for the V1-RSC model.

4 Discussion388

4.1 Summary of key results389

In this study, the results of two different learning models for RSC cell responses are compared with experi-390

mental RSC cell data. Both models take visual images as the input, using trajectories of the environment that391

are either measured experimentally or simulated. The Raw Visual (RV) model takes the raw visual images as392
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the input, while the V1-RSC model incorporates visual information processing associated with simple and393

complex cells of the primary visual cortex (Lian et al., 2019, 2021). After learning, both models generate394

EBCs that are proximal, distal and inverse, similar to experimentally observed EBCs in the RSC (Alexander395

et al., 2020). Moreover, the learnt EBCs have similar distributions of orientation and distance coding to the396

distributions measured in experimental data. The learnt EBCs also show some extent of generalization to397

novel environments, consistent with the experimental study (Alexander et al., 2020). Furthermore, as the398

field of view of visual input increases, the orientation distribution of learnt EBCs becomes more lateral.399

Overall, our results suggest that a simple model based on sparse coding that takes visual input alone can400

account for the emergence and properties of a special type of spatial cells in the navigational system of the401

brain - egocentric boundary cells (EBCs). For another recent model that describes the learning of EBCs, see402

Uria et al. (2022). In the future, this framework can also be used to understand how other visual input (such403

as landmarks, objects, etc.) affects the firing of spatially-coded neurons, as well as how other sensory input404

contributes to the tuning properties of some neurons in the navigational system.405

4.2 Comparison between experimental and model data406

Though the model data indicates that both models can learn EBCs similar to experimental ones and the407

population statistics of orientation and distance coding resembles experimental data, there are still some im-408

portant differences between model and experimental data that can shed light on the mechanisms associated409

with EBC responses.410

Experimental data shows that the orientation distribution is more skewed towards the back, while the dis-411

tributions of model data are more lateral (see Figure 5). There are many more behind-animal EBCs in the412

experimental study compared with the model data when the field of view is 170◦ (Figure 5, but we found that413

our model can generate more behind-animal EBCs when the field of view is as narrow as 60◦ (see Figure 7,414

suggesting that the competition brought by sparse coding promotes diverse EBC tunings solely based on vi-415

sual input without any mnemonic component. The difference of population responses among experimental416

data, RV model data, and V1-RSC model data seems to indicate that a major source of these differences is417

the extent to which the modelled visual input corresponds to that in the visual system. Whether more bio-418

physically accurate simulated visual input could further reduce these differences is discussed in Section 4.3419
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& 4.4.420

Additionally, there is still a substantial difference in how cells respond in the vicinity of corners of the421

environment. In simulation, the allocentric ratemaps of some learnt EBCs show overlapping #-like wall re-422

sponses (see the bottom two examples in Figure 4b and examples in Supplementary Materials A.5), whereas423

the experimental data seems to “cut off” the segments of #-like response close to the corner. Our models424

only use visual input while the real animal integrates a variety of different sensory modalities into spatial425

coding. We infer that the integration of information from different sensory modalities could be responsible426

for cutting off the overlapping wall responses.427

The percentage of EBCs for different data sets also differ, as seen from Table 1. The overall percentage of428

EBCs was lower in the experimental data than in both types of simulations. This likely arises from the focus429

of the simulations on coding of static visual input stimuli across a range of different positions and directions430

in the environment. Though the cells created by this focused simulation show striking similarity to real431

data, the retrosplenial cortex is clearly involved in additional dimensions of behavior, such as the learning of432

specific trajectories and associations with specific landmarks. Previous recordings show that neurons in the433

retrosplenial cortex code additional features such as the position along a trajectory through the environment434

(Alexander and Nitz, 2015, 2017; Mao et al., 2018, 2020) and the relationship of landmarks to head direction435

(Jacob et al., 2017; Lozano et al., 2017; Fischer et al., 2020). Human functional imaging also demonstrates436

coding of position along a trajectory (Chrastil et al., 2015), as well as the relationship of spatial landmarks437

to specific memories (Epstein et al., 2007). The neuronal populations involved in these additional functions438

of retrosplenial cortex are not included in the model, which could account for the EBCs making up a larger439

percentage of the model neurons in the simulations.440

4.3 Rat vision processing441

Rats have very different vision from humans, in part because their eyes are positioned on the side of their442

head, whereas human’s eyes are facing front. Consequently rats have a wide visual field and a strong lateral443

vision. In this study, rat vision is simulated by a camera with a 170◦ horizontal view and 110◦ vertical view,444

except for the results in Section 3.3. In Section 3.3, when different horizontal fields of view are used, we445

found that the model can generate more behind-animal EBCs with smaller field of view and the orientation446
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becomes more lateralized as the field of view increases. Though the view angle of 170◦ is wider compared447

with human vision, the simulated vision might not be as lateral as in real rats. Due to the built-in limitations448

of the Panda3D game engine used to simulate the visual input, we were unable to generate visual input449

at degrees more lateral than the 170 degree range used here. Additionally, real rats have binocular vision450

instead of a monocular vision simulated in this study. This will be investigated in future studies, in which the451

rat vision will be mimicked by simulating visual input using two laterally positioned cameras. As a more452

biophysically accurate simulated visual input is used, we infer that this could further reduce differences453

between model and experimental data, including generating more behind-animal EBCs when the field of454

view is large.455

4.4 Differences between Raw Visual model and V1-RSC model456

Both the RV and V1-RSC models take the visual input and generate EBC responses using learning methods457

based on the principle of sparse coding. However, there are significant differences between the two models.458

The RV model takes the raw image as the input while the V1-RSC model incorporates vision processing459

similar to that of the brain that detects lines or edges in the visual input. In other words, the RV model learns460

cells based on the individual pixel intensities while the V1-RSC model learns cells based on the existence of461

visual features such as lines or edges. Because the environment consists of three black walls and one white462

wall, this difference may result in the white wall affecting the RV model more than the V1-RSC model. In463

particular, this could explain why the learnt EBCs of the V1-RSC model tend to be more omnidirectional in464

their firing for all four walls compared with the RV model (see examples of both models in Supplementary465

Materials), which may be related to the role of RSC as the egocentric-allocentric “transformation circuit”466

proposed by Byrne et al. (2007) and Bicanski and Burgess (2018) that transforms upstream egocentric467

sensory responses (vision in this paper) into downstream allocentric spatial cells. Another difference lies468

in the percentage of learnt EBCs between two models, where the V1-RSC model learns more EBCs (see469

“Comparison between experimental and model data”, Section 4.2, above). We infer that this difference also470

originates from the different visual input processing carried out in the models. Geometries (lines or edges)471

seem to be important for the EBCs firing, so the ability to detect such features in the V1-RSC model may help472

the model learn more EBCs. In addition, the RV model shows more diverse tuning properties of learnt EBC473
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population than the V1-RSC model (see Figure 5), while the V1-RSC model shows better generalization474

to novel environments (see Figure 6), likely caused by the V1 pre-processing of the model. Differences475

between the responses in the two models also point to the effect that the processing of visual input carried476

out in the early visual pathway (retina to primary visual cortex) has upon RSC cell responses (Lian et al.,477

2019, 2021). Since the V1-RSC model is a better model of rat’s vision processing system, we infer that478

its model EBCs will be more similar to EBCs in the brain (also see Section 4.3, above). Furthermore, the479

model will better account for experimental data as a more biophysically accurate simulated visual input is480

used.481

Code Availability482

The code of implementing the model is made available at https://github.com/yanbolian/483

Learning-EBCs-from-Visual-Input.484
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A Supplementary Materials576

A.1-A.4 of this section provide all learnt cells of both Models recovered by simulated and experimental577

trajectories. A.5 provides two examples of learnt EBCs of V1-RSC model that show overlapping wall578

response in their ratemaps. Each row with three images below and in the following subsections shows the579

spatial ratemap, firing plot with head directions and egocentric ratemap.580
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A.1 All learnt cells of Raw Visual (RV) model using experimental trajectory581
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A.2 All learnt cells of Raw Visual (RV) model using simulated trajectory582

36

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2022.01.28.478267doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478267
http://creativecommons.org/licenses/by-nc/4.0/


37

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2022.01.28.478267doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478267
http://creativecommons.org/licenses/by-nc/4.0/


38

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2022.01.28.478267doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478267
http://creativecommons.org/licenses/by-nc/4.0/


39

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2022.01.28.478267doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478267
http://creativecommons.org/licenses/by-nc/4.0/


40

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2022.01.28.478267doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478267
http://creativecommons.org/licenses/by-nc/4.0/


A.3 All learnt cells of V1-RSC model using experimental trajectory583
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A.4 All learnt cells of V1-RSC model using simulated trajectory584
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A.5 Examples of learnt EBCs that show overlapping wall response585

Plotted here are two examples of learnt EBCs that show overlapping wall response in their ratemaps. Each586

row with three images shows the spatial ratemap, firing plot with head directions, and egocentric ratemap.587

These two examples of learnt EBCs from the V1-RSC model do not “cut off” the segments close to the588

corner such that the spatial ratemaps have overlapping #-like responses.589
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