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ABSTRACT 23 

Invasive electromyography opened a new window to explore motoneuron behaviour in vivo. 24 

However, the technique is limited by the small fraction of active motoneurons that can be 25 

concurrently detected, precluding a population analysis in natural tasks. Here, we developed a 26 

high-density intramuscular electrode for in vivo human recordings along with a fully 27 

automatic methodology that could detect the discharges of action potentials of up to 67 28 

concurrently active motoneurons with 99% accuracy. These data revealed that motoneurons 29 

of the same pool receive common synaptic input at frequencies up to 75 Hz and that late 30 

recruited motoneurons inhibit the discharges of those recruited earlier. These results 31 

constitute an important step in the population coding analysis of the human motor system in 32 

vivo. 33 

INTRODUCTION 34 

The introduction of intramuscular needles and wires for electromyography (EMG) by 35 

Adrian and Bronk (1929) and Basmajian and Stecko (1962) opened a window to explore the 36 

neural underpinning of movement control. By recording muscle fibre action potentials, 37 

intramuscular EMG reveals the timing of the action potentials discharged by the innervating 38 

spinal motoneurons (MN). The analysis of motor units (MUs) from intramuscular EMG 39 

decomposition rapidly became the standard approach to study MN behaviour in vivo in 40 

humans and other species (Desmedt, 1973). 41 

Nonetheless, the use of EMG to assess MNs also imposes some constraints. Some 42 

intramuscular electrodes are highly selective to detect the electrical activity of a small 43 

number of muscle fibres. This makes it easy to identify the discharge times of a few MUs 44 

through EMG decomposition, which is conventionally based on spike sorting of action 45 

potentials with similar morphology (LeFever and De Luca, 1982). However, the electrode 46 
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selectivity implies that only a small fraction of the hundreds of active MNs can be studied 47 

concurrently. To increase the number of sampled MUs, investigators have serially recorded 48 

single MU activity. While serial recordings have unravelled patterns of MN firing, a MN 49 

population analysis is still missing, which limits our understanding of the process of 50 

generation of the neural output of the spinal cord. Currently, there is no robust method that 51 

provides simultaneous decoding of a large portion of the active MNs in natural tasks. 52 

The identification of large populations of concurrently active MUs is necessary to 53 

characterise the synaptic inputs received by MNs. Coherence among spike trains of the 54 

homonymous MN pool reflects the common synaptic input at various frequency bands. A 55 

single MN cannot accurately sample an input with a frequency greater than half its average 56 

discharge rate (Lazar and Pnevmatikakis, 2008; Lazar and Tóth, 2004), which is usually in 57 

the range 10 - 40 Hz (Enoka and Fuglevand, 2001). As a result, sampling by few MNs limits 58 

the frequency range at which coherence (and thus common synaptic input) can be observed. 59 

However, as the common synaptic input is spread to the whole MN pool (Farina et al., 2014), 60 

pooling the spike trains extracted from large populations of MUs allows sampling at higher 61 

frequencies.  62 

As a further example, analysis of the output of a population of MNs is also a way to 63 

investigate connectivity among MNs, e.g. due to Renshaw inhibition (Eccles et al., 1961; 64 

Renshaw, 1941). Renshaw cells receive collateral projections from MN axons and synapse on 65 

MNs mediating recurrent inhibition back to the MN pool. However, the distribution of 66 

recurrent inhibition throughout the MN pool is unknown in humans (Alvarez, 2019). Most 67 

knowledge about recurrent inhibition stems from experiments on anesthetized animal 68 

preparations, and direct translation of findings to human studies of intact MNs during natural 69 

behaviour is challenging. Again, technological advances for sampling large populations of 70 

MUs in vivo in humans are necessary (Alvarez, 2019). 71 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 30, 2022. ; https://doi.org/10.1101/2022.01.29.478247doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.29.478247


4 
 

A way to increase the number of concurrently detected MUs in natural tasks uses 72 

decomposition of activity recorded with high-density grids of surface electrodes (Holobar et 73 

al., 2009). However, surface EMG only detects the activity of superficial MUs (Farina et al., 74 

2010). As an alternative approach to increase the number of sampled MUs, we previously 75 

introduced multichannel intramuscular electrodes based on thin-film technology (Farina et 76 

al., 2008; Muceli et al., 2015), which provide a large and unbiased sample of MUs from both 77 

deep and superficial muscles. These electrodes comprise a linear array of detection points in a 78 

flexible wire that can record across the muscle cross-section. Tens of MUs can be 79 

concurrently detected with these systems (Muceli et al., 2015). Yet, these systems are limited 80 

to only 16 electrode sites and they require partially manual spike sorting. Spike sorting 81 

software for multichannel intramuscular EMG indeed currently relies on human oversight to 82 

edit the results (McGill et al., 2005). 83 

When increasing the number of recorded signals, the EMG decomposition process 84 

must be applied to each recorded EMG channel. With conventional spike sorting, this 85 

increases computation time as well as manual editing of the results (Enoka, 2019). 86 

Alternative to spike sorting, blind source separation (BSS) methods can be applied to separate 87 

sources (MUs) when a large number of observations (EMG channels) is available (Negro et 88 

al., 2016). However, classic BSS limits the maximum number of extracted sources to the 89 

number of observations (in practice to less than the observations). 90 

Here, we describe two breakthroughs in the technology to investigate MN behaviour 91 

in vivo. First, we designed, manufactured and tested a novel implantable electrode array for 92 

human studies with a much greater number of recording sites and higher site density than any 93 

previous systems. The novel design allowed the implantation of the array acutely with 94 

needles of similar size to those used in conventional concentric needle recording. Second, we 95 

used a fully automatic decomposition algorithm (no manual editing) that enabled the 96 
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decoding of the high-density multiunit recordings with accuracy comparable to that achieved 97 

by extensive manual editing of each trace by an expert operator. Further, with this new 98 

technology, we addressed two fundamental open questions in MN physiology. We found that 99 

a MN pool receives common synaptic input is a frequency range up to 75 Hz, much greater 100 

than previously thought. We then analysed the effect of individual MU discharges on the MN 101 

population output to determine the connectivity among MNs. 102 

RESULTS 103 

Intramuscular thin-film electrode array 104 

We designed and manufactured a high-density intramuscular array with 40 platinum 105 

electrodes of area 5257 μm2 each (Fig. 1 A), linearly distributed over a 2-cm length. Figure 106 

1B shows the complete layout of the double-sided thin-film structure. The structure is built 107 

on a polyimide substrate, has a total length of 7 cm and is U-shaped with two filaments of 108 

width 655 μm and 150 μm (Fig. 1C), and thickness of 20 μm. The wider filament contains 109 

two linear arrays of 20 oval electrodes each (Fig. 1A), with 1-mm inter-electrode distance on 110 

the top (cyan) and bottom (green) sides of the polyimide (Fig. 1C). The two arrays have a 111 

shift of 0.5 mm (Fig. 1C). Since the double-sided structure is only 20-μm thick, it is 112 

equivalent to a linear array of electrodes with 0.5 mm inter-site distance. The number of 113 

electrodes is limited by the number of interconnection lines fitting on the filament. The 114 

advantage of two arrays on the two sides of the structure is that the filament width can be 115 

reduced for a given number of electrodes. Also, the occurrence of short-circuits during 116 

manufacturing is reduced. The narrower filament is inserted into a 25-gauge needle (100 117 

Sterican, B. Braun, Melsungen, Germany), to introduce the thin-film structure into a muscle, 118 

with a procedure similar to that used in classic fine wire EMG. The needle is withdrawn 119 

leaving the array inside the muscle. 120 
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[FIGURE 1] 121 

Signal quality and motor unit yield 122 

The electrode array was tested in three healthy men (S1-S3). Two arrays were inserted 123 

in the tibialis anterior of subject S1, while one array was implanted in the other two subjects. 124 

S1 performed a steady contraction at 20% of maximal force (MVC), whereas S2 and S3 125 

contracted the tibialis at 30% MVC. The electrodes recorded high quality signals, with a 126 

baseline noise of 15.8 ± 9.9 μV (average ± standard deviation across 4 arrays of 40 channels 127 

each). Figure 1D displays representative signals recorded from S1 to show the signal-to-noise 128 

ratio. Figure 1E shows the firing patterns of the MUs extracted via manual decomposition 129 

from the signals recorded from array1 in S1. In the raster plot, each row represents a different 130 

MU, and each vertical line the discharge of an action potential. Within the selected time 131 

frame (5 s), 45 MUs were consistently active, 1 MU was recruited during the contraction and 132 

1 had a few isolated discharges. Figure 3F shows a representative example of a MU action 133 

potential detected across several electrodes of the 40-channel array. 134 

The recorded signals were decomposed independently into the constituent MU action 135 

potential trains by two expert investigators (SM and AH). We refer to the two decomposition 136 

processes as manual and automatic decomposition. For manual decomposition, intramuscular 137 

EMG signals from each thin-film system were decomposed channel by channel using spike 138 

sorting software (McGill et al., 2005), manually edited for resolving missed discharges and 139 

superimpositions, and merged (after resolving differences in the discharge patterns of the 140 

same MU extracted from different channels) so that each MU’s activity was represented by a 141 

unique firing pattern. For automatic decomposition, all signals from the same array were 142 

decomposed with the BSS method (see Methods and Holobar and Zazula (2007)). We then 143 
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compared the MU firing patterns extracted by the two decomposition procedures (manual and 144 

automatic) via the rate of agreement (RoA). 145 

Table 1 reports the data obtained via the decomposition process. The activity of 161 146 

MUs was manually decomposed from the signals recorded from the 4 arrays, yielding 38735 147 

unique discharges in 20 s. The RoA between all possible pairs of MUs detected from the 148 

same array (1225, 630, 741, 630, for S1 array1, S1 array2, S2, and S3, respectively) ranged 149 

from 0 to 11%, confirming that all identified MU spike trains had few common discharges, 150 

i.e., they were unique. The number of channels in which the peak-to-peak amplitude of the 151 

corresponding action potential exceeded 10 times the RMS baseline noise ranged from 4 to 152 

40 (median 18) for all MUs but 3 (148 MUs in total). The presence of the same MU over 153 

multiple channels contributed to the accurate extraction of the MU firing patterns (Mambrito 154 

and De Luca, 1984). The average firing rate was 14.8 ± 1.7, 11.0 ± 1.2, and 12.7 ± 1.9 Hz for 155 

S1-3, in agreement with previous studies (Connelly et al., 1999; Erim et al., 1996). Most 156 

MUs were active for the whole 20 s interval, but 10 of 161 fired less than 50 times each and 157 

were excluded from the calculation of the average firing rate and number of channels 158 

exceeding baseline to increase the reliability of the estimates. There were no MUs in common 159 

between array1 and array2 of S1 (RoA between all possible pairs (1800) ranged between 0 160 

and 5%). The cross-spike triggered averaging procedures produced averages at the baseline 161 

noise level, further confirming that there were no MUs in common between array1 and 162 

array2. 163 

[TABLE 1] 164 

Decomposition accuracy 165 

The manual decomposition of each channel (20-s recording) took >8h by the expert 166 

operator. The fully automatic decomposition of each array (40 channels, 22 s) took 2h and 9 167 
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min of computational time on average across the 4 arrays (Intel CORE i9 vPro 9Gen 168 

Processor with 32 GB RAM). Table 1 includes the comparison between the output of the 169 

manual and automatic decomposition procedures. About 80% of the MUs identified by 170 

manual decomposition were identified by the automatic decomposition. Only one MU 171 

identified by automatic BSS did not match a MU extracted by manual decomposition. The 172 

investigator who performed the manual decomposition initially identified the unmatched MU, 173 

but she discarded it from further analysis because of lack of confidence in the decomposition 174 

accuracy due to the low amplitude of its action potentials. Eight MUs that were not extracted 175 

by the automatic decomposition (21%) fired less than 50 times. 176 

The average RoA across the 123 MU spike trains that were identified by both 177 

procedures (manual and automatic) was 99 ± 3%. Of those 123 spike trains, 64 matched the 178 

automatic results with a 100% RoA, and 36 had a RoA ≥ 99%. We inspected the 179 

disagreement between the output of the two procedures and found that only 3 common MUs 180 

had a RoA in the range 80 to 85% due to misalignments in discharge timings which was 181 

greater than our strict threshold of 0.5 ms. One of the three MUs had a satellite action 182 

potential. Among the common MUs, 16 discharges identified by the manual decomposition 183 

and missed by the automatic decomposition were doublets. 184 

Taken together, these results indicate that the high-density intramuscular array yields 185 

high MU sampling and the activity of most of the MUs can be reliably extracted by a fully 186 

automatic procedure with comparable accuracy to manual decomposition. 187 

Motor unit population coherence 188 

We calculated the coherence between groups of MUs of increasing numerosity (Fig. 189 

2). Figure 2A shows 20 s of spike trains extracted from S1. Figure 2B shows the 190 

corresponding coherence for groups of MUs between 1 and 34. The coherence was 191 
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statistically significant (i.e., above the 95% confidence level) for frequencies of about 75 Hz, 192 

proving that the synaptic input bandwidth goes well beyond the β band. Similarly, the 193 

coherence was still significant at ~75 Hz for S3 (Fig. 2D). In both cases, an increase of 194 

coherence in the gamma band with the number of MUs is clear. On the contrary, for S2, the 195 

coherence bandwidth was limited to 40 Hz (Fig. 2C). 196 

[FIGURE 2] 197 

Reciprocal effect of motoneuron discharges on the homonymous pool 198 

The discharge of a MN depends on supraspinal and spinal inputs, including from 199 

interneurons. A particular class of interneurons, the Renshaw cells, cause recurrent inhibition 200 

of the homonymous MN pool (Hultborn et al., 1979). Renshaw cells are facilitated during 201 

weak and inhibited during strong contractions (Hultborn and Pierrot‐Deseilligny, 1979). We 202 

expected to see the effects of reciprocal inhibition in our recordings when the subject exerted 203 

forces of 20 or 30% MVC. As there are opposing views on the distribution of recurrent 204 

inhibition between early- and late-recruited MUs within the same MN pool (Granit et al., 205 

1957; Haase et al., 1975; Hultborn et al., 1988), we separately investigated higher and lower 206 

threshold MUs. Results are reported in Fig. 3 as synchronization cross-histograms. Firing rate 207 

was considered a surrogate of recruitment order, in that early recruited MUs discharge faster, 208 

at a given moderate level of force, than those recruited later (De Luca and Erim, 1994). As 209 

can be observed in both S1 and S3, late recruited MNs caused more inhibition of the 210 

discharges of the early recruited MNs at ~15 ms (dip in Fig. 3 A and C) than the converse. 211 

On the other hand, for S2 (Fig. 3B), inhibition continued up to ~40 ms. No dips were 212 

observed in the cross-histograms obtained by applying different perturbations (see 213 

METHODS, Connectivity among motoneurons) to the original firing patterns and 214 
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maintaining the firing rate unchanged (control condition; results not shown), implying that 215 

the latter did not influence the results presented. 216 

[FIGURE 3] 217 

DISCUSSION 218 

We have presented the development of a high-density electrode array for 219 

intramuscular recordings that enables the automatic accurate extraction of tens of MUs 220 

concurrently active. We have shown representative examples of MU population analysis 221 

enabled by our system. 222 

Intramuscular array 223 

Our electrode array configuration consists of polymer (Hassler et al., 2011) and metal 224 

that are micromachined (Stieglitz et al., 2000) into a thread containing 40 electrodes. The 225 

materials and minimal thickness (20 μm) confer the required flexibility to interface the 226 

muscle without being unpleasant for the subject. Each electrode has an area of 5257 μm2. 227 

Such small electrodes inevitably present high electrical impedance which reduces the signal-228 

to-noise ratio. The contacts were therefore coated with microrough platinum that increases 229 

the active surface and reduces the impedance by 10 times compared to an untreated electrode 230 

(Muceli et al., 2015, 2019). The array has electrodes manufactured on both sides of the 231 

substrate (Poppendieck et al., 2015) to enable increased spatial resolution and to reduce the 232 

likelihood of short-circuits. This improvement in the technology allowed us to build 40 233 

electrodes in a 2-cm long filament. 234 

Motor unit decomposition 235 

Four intramuscular electrode arrays were tested in 3 subjects. Electrodes were inserted 236 

into the tibialis anterior and used to acquire EMG during isometric contractions at moderate 237 
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force. Each array yielded an average number of 40 concurrently active MUs. Eighty-six MUs 238 

could be extracted from a contraction at 20% MVC with two high-density electrode arrays in 239 

S1. Given that the tibialis anterior is assumed to comprise about 450 MUs (Enoka, 1995) and 240 

the relatively low muscle force exerted by S1, the identified 86 MUs represent a relative large 241 

proportion of those that were active during the contraction. 242 

On average, 31 MUs per array could be automatically decomposed with an accuracy 243 

of 99% when compared with manual expert decomposition. Compared to previous systems 244 

with fewer electrodes (Muceli et al., 2015), the number of automatically extracted MUs with 245 

the proposed high-density electrode is 2 to 3 times greater and the accuracy substantially 246 

higher (Negro et al., 2016). For example, our previous attempt at automatic decomposition of 247 

EMG recorded with two arrays of 16 channels each yielded 22 out of 53, 24 of out 57, and 21 248 

out of 60 (i.e., about 40%) manually detected MUs at different force levels, with an average 249 

RoA of 94%. Our high-density system enabled automatic decomposition of about 80% of the 250 

manually detected MUs action potential trains constituting the interference EMG with a 99% 251 

RoA. Eight MUs identified by manual decomposition discharged less than 50 times, which 252 

was insufficient for the automatic identification. The yield of MUs per channel was also 253 

superior to that achieved by BSS of high-density surface EMG data from the tibialis anterior 254 

(21 MUs/64 channels) (Del Vecchio et al., 2020) that in any case can only detect MUs with 255 

large action potentials at the skin surface. 256 

The automatic decomposition was validated against the manually decomposed 257 

dataset. The RoA between the two procedures was 99% on average (across 123 MUs). This 258 

value is remarkably high and can be attributed to the high-density of channels. The 259 

comparison between the two decomposition procedures is a conservative approach for 260 

estimating accuracy. As signals were decomposed independently by two decomposition 261 

methods and operators, the likelihood that the same mistake is made in the two cases is very 262 
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low (Mambrito and De Luca, 1984). Therefore, the procedure of validation of the automatic 263 

decomposition in this study is robust. In addition, the average pulse-to-noise ratio across the 264 

124 MUs automatically extracted was 42 dB, greater than values reported for surface EMG 265 

decomposition (Holobar et al., 2014), further confirming the high accuracy of the automatic 266 

decomposition procedure. 267 

We inspected the disagreement between the two decomposition procedures, and we 268 

identified two sources of errors (doublets and misalignments). Some of the doublets could not 269 

be identified by the automatic BSS decomposition. This is to be expected as doublets may 270 

have an action potential with smaller amplitude compared to the main action potential when 271 

the second input (forming the doublet) arrives at the end-plate before the muscle had fully 272 

recovered (Denslow, 1948). As the BSS algorithm can only identify action potentials with 273 

similar shape, a decrease in amplitude prevented the BSS from associating the doublet to the 274 

same MU as the main action potential. Nonetheless, an adaptive change in threshold for 275 

detection may in the future solve this problem. 276 

Three MUs found by both decomposition procedures had misalignment for discharges 277 

>0.5 ms and this influenced the RoA for those MUs. These misalignments are not necessarily 278 

errors. The MU action potential train detected at a certain electrode produces time-locked 279 

trains in other electrodes that fall in that MU territory, but can also exhibit some jitter from 280 

discharge to discharge due to fluctuations in muscle fiber conduction velocity (Stålberg and 281 

Sonoo, 1994). In retaining only one firing pattern per MU, we discarded this information on 282 

the jitter. Also, one of the three MUs had a satellite potential which showed some size and 283 

temporal jitter. The two algorithms may have used either the main potential or the satellite 284 

potential as a reference for the alignment, which may then cause misalignments. Note that the 285 

results of the automatic decomposition did not undergo any post-processing. Otherwise, some 286 
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mistakes could have been easily corrected by plotting the firing rate against time to detect any 287 

inconsistencies. 288 

Finally, this work validated for the first time BSS decomposition on a very large 289 

number of MUs. Previous validation via comparison between surface and intramuscular data 290 

was limited to an average of 1 MU per contraction commonly found in the two datasets 291 

(Holobar et al., 2010). In this study, rather than two datasets, we compared the decomposition 292 

performance when the same signals were independently analysed by two operators using two 293 

different procedures. The total number of common MUs was 123, i.e., 31 per electrode array. 294 

MU population coherence 295 

Our coherence analysis showed that the synaptic input common to the MN pool may 296 

have frequency content up to 75 Hz (Fig. 2 B and D) and that the estimated coherence 297 

increases with the number of MUs included in the analysis. Therefore, large populations of 298 

concurrently active MUs are necessary to infer characteristics of the neural drive. For a 299 

certain frequency of the synaptic input to be detected as common (i.e., statistically significant 300 

in the coherence plot), the synaptic input has to be sampled at least twice as fast as that 301 

frequency component (Lazar and Pnevmatikakis, 2008). Each MN integrates the supraspinal 302 

and afferent inputs and discharges an action potential when the net input exceeds the 303 

recruitment threshold. Under the assumption of a common input uniformly distributed to the 304 

whole MN pool (Farina et al., 2014), the effective sampling frequency of the synaptic input is 305 

the cumulative frequency of all active MNs, i.e. the frequency of the spike train obtained 306 

pooling all spike trains together. In voluntary sustained contractions, a MN usually discharges 307 

less than 40 action potentials per second (Enoka and Fuglevand, 2001). As a result, sampling 308 

by few MNs limits the maximal frequency of the signal recorded from the output of the spinal 309 
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cord, while large populations allow the synaptic input to be reconstructed more accurately 310 

from the MN output. 311 

The very large frequency content identified for the neural drive from the spinal cord 312 

to muscles is unexpected as muscles can only contract within a narrow bandwidth (<10 Hz) 313 

(Baldissera et al., 1998). The issue of the mismatch between the bandwidth of the neural 314 

drive and of the muscle dynamics has been previously discussed in relation to the β band 315 

(Watanabe and Kohn, 2015). It has long been known that beta oscillations are present in MN 316 

output (Ibáñez et al., 2021) while they are filtered out by the muscle contractile properties. 317 

The new observation of a much greater frequency content than the β oscillations indicates the 318 

variety of common inputs received by the MN pool. Gamma-range cortico-muscular 319 

coherence has been observed during strong isometric voluntary contractions (Ushiyama et al., 320 

2012), and during dynamic contractions (Andrykiewicz et al., 2007), suggesting that the 321 

gamma-band rhythmic drive from the cortex contributes, at least in part, to the EMG activity 322 

at that frequency band. Our results show that human muscles can manifest rhythmic electrical 323 

oscillations in the gamma-band also during low intensity isometric contractions. 324 

Reciprocal influence of motoneuron discharges onto the homonymous pool 325 

Our study included the analysis of the influence of the discharges of early recruited 326 

MUs on those recruited later (Fig. 3, R1 → R2) and vice versa (Fig. 3, R2 → R1). We 327 

observed that the highest value of the six cross-histograms was obtained at 0 s,  indicating the 328 

common drive received by the MN pool (De Luca and Erim, 1994). Early recruited MUs 329 

were less likely to fire for about 15 ms (Fig. 3A and C, S1 and S3, R2 → R1) or 40 ms (Fig. 330 

3B, S2, R2 → R1) after the discharge of later recruited MUs. This observation fits with 331 

recurrent inhibition by Renshaw cells which occurs with similar timing (Bhumbra et al., 332 

2014). Recurrent inhibition has been studied in isolated cells in in vitro experiments or in 333 
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anesthetized animal preparations. The main method to test homonymous recurrent inhibition 334 

in humans is indirect and relies on changes in H-reflex modulation caused by presumed 335 

recurrent effects (Pierrot-Deseilligny and Burke, 2005). An elegant method to evaluate 336 

recurrent inhibition in humans at individual MN level has been proposed by Özyurt et al. 337 

(2019). However, this method can only be used to assess the impact of the largest on smaller 338 

MUs as it evaluates the effect of electrical stimulation on the background firing of small 339 

MUs. On the contrary, our method can be applied in both directions across the MN pool 340 

during voluntary contractions. Özyurt et al. (2019) reported an average latency for recurrent 341 

inhibition of 37.7 ms from a peripheral stimulus for the soleus muscle, which is compatible 342 

with the dips at ~ 40 ms visible in the cross-histograms of S2 (Fig. 3B). For S1 and S3, 343 

inhibition occurred earlier than for S2 (Fig. 3A and C). 344 

In conclusion, we present a novel high-density intramuscular array along with a 345 

methodology that fully automatically identifies the spike trains of relatively large number of 346 

MUs, unveiling new knowledge behind MN population coding. We demonstrated that the 347 

number of automatically identified MUs is high enough to reveal the presence of significant 348 

coherence between groups of MNs in the frequency range up to 75 Hz and the effect of 349 

Renshaw inhibition on the homonymous MN pool. These results constitute an important step 350 

forward in the in vivo population coding analysis of the human motor system. 351 
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FIGURE CAPTIONS 475 

FIGURE 1: Design of the double-sided electrode array and representative recordings. (A) 476 

Close-up of an oval electrode. (B) Whole structures with the tracks running towards the 477 

connection pad. (C) Close-up of the electrode array tip. Electrodes represented in cyan are 478 

located on the top side of the thin-film array and those in green are located on the bottom side 479 

of the wider filament. (D) Representative recordings obtained from the tibialis anterior of S1 480 

during a contraction at 20% of the maximal force (MVC). (E) Firing pattern of 45 MUs 481 

extracted from the signal shown in D. (F) Multichannel action potentials of a representative 482 

motor unit obtained by averaging the red-coloured EMG channels in panel D with the firing 483 

pattern of the same colour in panel E as a trigger. 484 

FIGURE 2. Coherence between populations of motor units. (A) Firing pattern of 68 motor 485 

units active during 20 MVC contraction (S2, 2 arrays). Coherence between combinations of 486 

cumulative spike trains (CSTs) obtained by pooling an increasing number of motor units 487 

from subject S1 (B), S2 (C), and S3 (D). Black dashed horizontal line is the 95% confidence 488 

limit. Coherence increased with the motor unit numerosity and the population coherence was 489 

significant up to 40 Hz in S2, and up to 75 Hz in S1 and S3, respectively. Note: 60 s of data 490 

were used for S1, 20 s for S2 and S3. 491 

FIGURE 3. Analysis of motor unit synchronization for subjects S1 (A), S2 (B), and S3 (C). 492 

Left panels show the average discharge rate of the motor units in a 20 s time interval. Central 493 

R1→ R2 (R2 → R1) panels display the influence of earlier (later) recruited motor units on 494 

the discharge timing of the later (earlier) recruited motor units via cross-histograms between 495 

pairs of motor unit spike trains. The two rightmost columns represent the same values in 496 

logarithmic scale so that the inhibition can be more readily visualised.  497 
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TABLE 1: Decomposition performance for the high-density intramuscular signals: manual 498 

versus automatic decomposition 499 

ID 

Number of 

MUs 

(manual) 

Number of 

MUs 

(automatic) 

Number of 

MUs 

(common) 

RoA 

(mean ± SD, 

%) 

PNR 

(automatic, 

dB) 

S1 

array1 
50 40 39 99 ± 3 40.5 ± 7.4  

S1 

array2 
36 27 27 98 ± 4 41.1 ± 6.7 

S2 39 27 27 100 ± 1 42.0 ± 5.3 

S3 36 30 30 99 ± 4 44.9 ± 8.5 

MU: motor unit; RoA: rate of agreement; SD: standard deviation; PNR: pulse to noise ratio  500 
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METHODS 501 

Manufacturing process 502 

The thin-film electrode array structure was built using microfabrication processes. 503 

The electrode array was built over a silicon wafer used as a platform for the production. The 504 

structure was built layer by layer with layers of metal for tracks sandwiched between three 505 

layers of polyimide. Metals were patterned using a photolithography process. 506 

First, a platinum etch mask was deposited and lift-off structured on a 4 inches silicon 507 

wafer. In the next step, a 5 µm polyimide layer (PI 2611, HD Microsystems) was spun on the 508 

wafer and cured at 350°C. The lower platinum electrode contacts and tracks were then 509 

sputtered and lift-off structured. Another 10 µm polyimide layer was deposited, followed by 510 

the upper platinum electrode tracks and contacts, which were sputtered and lift-off structured, 511 

followed by a final 5 µm polyimide layer for insulation. To reach the contacts on the lower 512 

side, the silicon wafer was etched from the backside using reactive ion etching. In a second 513 

reactive ion etching step, the lower electrode contacts were opened using the previously 514 

deposited platinum layer as etch mask. An aluminum etch mask was then deposited on the 515 

top side and used for reactive ion etching of the polyimide to open the contacts on the upper 516 

side. After removal of the aluminum mask, the microfabrication process was completed, and 517 

the separated double-sided electrode arrays were removed from the wafer using tweezers. 518 

The electrode contacts were coated with microrough platinum using electroplating from an 519 

aqueous solution of hexachloroplatinic acid (Poppendieck et al., 2014). This reduced the 520 

electrode impedance by about one order of magnitude so that the resulting values of 521 

impedance spectroscopy were ~10 kΩ at 1 kHz. A plug (Harwin M50-4902045 connector) 522 

was soldered to the adapter as the interface with external hardware. Each electrode array was 523 
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inserted into a hypodermic needle with the bevel smoothed with a laser (PICCO LASER, 524 

O.R. Lasertechnologie, DE). 525 

Subjects 526 

Three healthy men (age range: 29 - 39 years) participated in the experiment, which 527 

was approved by the Ethical Committee of the University Medical Center of Göttingen and 528 

conducted according to the Declaration of Helsinki (2008). 529 

Experimental procedure 530 

The subject was seated in the chair of a Biodex System 3 (Biodex Medical Systems 531 

Inc., NY, USA) with the right leg and foot stably fixated. He was asked to perform two brief 532 

maximal voluntary contractions with 5 minutes interval in between to recover from fatigue. 533 

The peak of the two was considered as the maximal voluntary contraction (MVC). Electrode 534 

array placement followed 5 extra minutes of rest. The skin was cleaned with alcohol and the 535 

thin-film electrode array(s) were inserted into the middle of the proximal half of the tibialis 536 

anterior muscle, perpendicular to the skin with the tip of the needle to a depth of 2.5 cm 537 

below the fat layer as estimated by ultrasound (Telemed Ltd. Vilnius, Lithuania). The two 538 

electrode arrays in S1 were about 3 and 1 cm distant in the longitudinal and perpendicular 539 

direction of the muscle, respectively. 540 

Intramuscular EMG signals were recorded with a multichannel amplifier (EMG-541 

USB2, OT-Bioelettronica, Torino, Italy) with a gain of 200-500, and band-pass filtered (8th 542 

order Bessel filter, high-pass cut-off frequency 10-100; low-pass cut-off frequency 4400 Hz), 543 

before being sampled at 10 kHz, using a 12-bit A/D converter. The EMG signals were 544 

acquired in a unipolar derivation with reference and ground electrodes at the ankle. 545 
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The subject was then asked to perform a brief contraction at 20 and 30% MVC during 546 

which the experimenters judged the signal quality. Following these trials, S1 was asked to 547 

perform a steady contraction at 20% MVC, whereas S2 and S3 were given 30% MVC as the 548 

target force level. Subjects were asked to perform a steady contraction lasting at least 1 min. 549 

The subject was provided with real-time force feedback displayed on a screen. The target 550 

force level was represented as straight line on the computer screen and the force exerted by 551 

the subject as a running dot. The subject was instructed to keep the position of the dot as 552 

close as possible to the straight line. He was allowed to complete the 1 min contraction at 553 

once or in multiple contractions with rest at will in between. 554 

Signal quality assessment 555 

EMG signals were bandpass-filtered in the bandwidth 100-4400 Hz (third-order 556 

Butterworth, zero-lag filter) so that the frequency content was the same for all signals. We 557 

quantified the baseline noise as the average across 160 channels (4 electrode arrays x 40 558 

channels / array) of the root-mean-square of a 4 s segment of data recorded at rest. 559 

Signal decomposition 560 

The recorded signals were independently manually and automatically decomposed 561 

into the constituent MU action potential trains by two expert investigators (SM and AH, 562 

respectively). In both cases, signals were high pass filtered at 250 Hz prior decomposition. In 563 

case of manual decomposition, intramuscular EMG signals from each thin-film array were 564 

decomposed using the decomposition software EMGLAB (McGill et al., 2005), that relies on 565 

spike sorting to detect MU action potentials. Each channel was decomposed independently 566 

and the series of discharges of a single MU were manually edited for resolving missed 567 

discharges and superimpositions. This process was conducted for each MU identified from 568 

the same channel until the residual signal, obtained by subtracting all averaged MU action 569 
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potentials from the raw signal, was comparable in power with the raw signal baseline noise, 570 

indicating that all MU activity had been accounted for. As the same MU could be detected in 571 

adjacent channels, the decomposition results from all channels were then merged by 572 

automatically identifying the MUs detected at more than one electrode. Discharge patterns 573 

with more than 75% discharges closer than 1 ms were considered to belong to the same MU 574 

identified on different channels. Differences in the discharge patterns of the same MU 575 

extracted from different channels were examined and resolved by the investigator in charge, 576 

so that at the final stage of the manual decomposition, each MU was represented by a unique 577 

firing pattern. 578 

A second investigator (AH), automatically decomposed the 20 s signals using the 579 

convolution kernel compensation algorithm (CKC) (Holobar and Zazula, 2007). To briefly 580 

summarize the algorithm working principle, assuming absence of noise, we can express the 581 

intramuscular EMG signal xc(k) recorded at channel 𝑐 as the sum of trains of action potentials 582 

(one train for each active MU): 583 

𝑥𝑐(𝑘) = ∑ ∑ ℎ𝑐𝑖(𝑙) ∑ 𝛿(𝑘 − 𝜙𝑖𝑟 − 𝑙)𝑟 ,𝐿−1
𝑙=0

𝑀
𝑖=1  𝑘 = 0, . . . , 𝑓𝑆𝑇 (eq. 1) 584 

where 𝑓𝑆 is the sampling frequency, 𝑇 the signal duration, ℎ𝑐𝑖(𝑙) is the action potential of the 585 

𝑖-th MU as recorded at the 𝑐-th channel, ∑ 𝛿(𝑘 − 𝜙𝑖𝑟)𝑟  the spike train of the 𝑖-th MU with 586 

spikes at times 𝜙𝑖𝑟, 𝐿 the duration of the action potentials, and 𝑀 the number of active MUs. 587 

Equation 1 can be re-written in matrix form as follows: 588 

𝑥(𝑘) = ∑ 𝐻(𝑙)𝑠(𝑘 − 𝑙)

𝐿−1

𝑙=0

 with 𝑠𝑖(𝑘) = ∑ 𝛿(𝑘 − 𝜙𝑖𝑟).𝑟  (eq. 2) 

 589 

Once the mixing matrix 𝐻 is identified, the source pulse trains can be extracted by 590 

multiplying the EMG signals (𝑥) by the inverse of 𝐻 (unmixing matrix). The reliability of the 591 
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automatic decomposition was assessed by the pulse-to-noise ratio, which is a signal-based 592 

metric that has been validated to assess the decomposition accuracy of BSS-based 593 

decomposition algorithms (Holobar et al., 2014). 594 

Assessment of the decomposition accuracy 595 

For each electrode array (3 subjects, 4 arrays), we report the number of MUs identified by the 596 

manual and automatic decomposition, and those commonly identified by both approaches. 597 

We first inspected the results of the manual decomposition. We calculated the RoA (Holobar 598 

et al., 2010) between each pair of MU firing patterns identified from the same 40 channel 599 

array, to ensure that they were unique. The RoA was defined as the ratio between the number 600 

of discharges that were present in both firing patterns (common) and the sum of the number 601 

of common discharges and the number of discharges present in only one of the two firing 602 

patterns. A tolerance of 10 sample (< 1 ms) was used when identifying common discharges. 603 

Each MU firing pattern was accurately estimated from the comparison between the 604 

firing patterns of that MU in multiple channels. To assess the robustness of the estimation, we 605 

calculated the multichannel MU action potentials by spike triggered averaging (Farina et al., 606 

2002), i.e., by averaging the EMG of each channel using the discharges obtained from 607 

decomposition as a trigger. For each MU, we then counted the number of channels where the 608 

peak-to-peak amplitude of the action potential was greater than 10 times the average RMS of 609 

the baseline noise across the 40 channels. The higher the number of channels exceeding the 610 

threshold, the higher the likelihood that the firing pattern was accurately estimated (Mambrito 611 

and De Luca, 1984). 612 

The RoA was also used to check whether there were MUs in common between array 613 

1 and array 2 of S1. As a further check, we performed cross-spike triggered averaging by 614 

averaging the EMG of each channel of array1 (array2) using the discharges obtained from 615 
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decomposition of the EMG from array2 (array1) as a trigger. A temporal support of 20 ms 616 

(centered about the MU firing) was used in the spike triggered averaging procedure to 617 

account for the propagation delay between the position of the electrode arrays, which were 618 

about 3 cm apart. For MUs in common between the two arrays, the cross-averaging 619 

procedure will yield an action potential with higher amplitude than the baseline noise. 620 

We then compared the MU firing patterns extracted by the two decomposition 621 

procedures (manual and automatic). Here RoA was defined as the ratio between the matched 622 

discharges resulting from the comparison of the two procedures and the sum of matched and 623 

unmatched discharges. Discharge patterns with more than 75% discharges closer than 0.5 ms 624 

were considered to belong to the same MU identified by the manual and automatic procedure 625 

(common MU). 626 

MU population coherence 627 

The discriminated spike trains were used to compute spectral coherence between groups of 628 

MUs, with numerosity ranging from 1 to half of the maximum number of extracted MUs. The 629 

allocation of MUs into groups was repeated 25 times for each group size (i.e., 1, 2, 3, … MU 630 

spike trains) and the average coherence across the 25 repetitions was calculated. For each 631 

MU, spike trains were represented with binary vectors of 0 and 1, with 1 indicating the 632 

occurrence of a discharge. Within each MU group, the spike trains were summed to provide a 633 

cumulative spike train. Coherence analysis was performed on 0.5 s non-overlapping Hanning 634 

windows of the cumulative spike trains with a length of the Fast Fourier Transform equal to 635 

the sampling rate. To define the significance threshold for coherence peaks, the confidence 636 

level CL was calculated as (Rosenberg et al. 1989): 637 

𝐶𝐿 = 1 − (1 − 𝛼)
1

𝑁−1  (eq. 3) 638 

 639 
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where N and α represent the number of segments used in the coherence calculation (data 640 

length/number of windows) and the confidence level (95%), respectively. 641 

Connectivity among motoneurons 642 

Connectivity among MNs was estimated by the cross-histogram of the discharge of 643 

pairs of MUs (1 ms resolution). To consider the opposing views on the distribution of 644 

recurrent inhibition between early- and late-recruited MUs within the homonymous MN pool 645 

(Granit et al., 1957; Haase et al., 1975; Hultborn et al., 1988), we investigated separately 646 

higher and lower threshold MUs. MUs were ordered by firing rate based on the fact that at a 647 

given force, earlier recruited MUs discharge faster than later recruited ones (De Luca and 648 

Erim, 1994). As control conditions, we generated 4 types of firing patterns with the same 649 

number of discharges as the detected MUs in the same time interval and i) uniformly 650 

distributed discharge times, ii) equal inter-spike intervals, iii) discharged times obtained from 651 

the experimental ones by applying a time shift of 0 to 70 ms to the whole MU action potential 652 

train (different for the different MUs, but the same for all action potentials of the same MU), 653 

and iv) discharged times obtained from the experimental ones by adding or subtracting a time 654 

in the range of 0 to 10% of the average inter-spike interval for each MU (different time shifts 655 

for each individual action potential). 656 
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