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Abstract 

Owing to the unique combination of electrical conductivity and tissue-like mechanical properties, 

conducting polymer hydrogels have emerged as a promising candidate for bioelectronic interfacing 20 

with biological systems. However, despite the recent advances, the development of hydrogels with 

both excellent electrical and mechanical properties in physiological environments remains a 

lingering challenge. Here, we report a bi-continuous conducting polymer hydrogel (BC-CPH) that 

simultaneously achieves high electrical conductivity (over 11 S cm-1), stretchability (over 400%) 

and fracture toughness (over 3,300 J m-2) in physiological environments, and is readily applicable 25 

to advanced fabrication methods including 3D printing. Enabled by the BC-CPH, we further 

demonstrate multi-material 3D printing of monolithic all-hydrogel bioelectronic interfaces for 

long-term electrophysiological recording and stimulation of various organs. This study may offer 

promising materials and a platform for future bioelectronic interfacing. 
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Main Text 

Electrically conductive hydrogels have emerged as promising alternatives to conventional metallic 

electrodes in bioelectronics owing to their unique combination of similarity to biological tissues 

(high water contents, softness) and electrical conductivity1. In particular, conducting polymer 

hydrogels – electrically conductive hydrogels based on conducting polymers – exhibit a set of 5 

advantages over other conductive hydrogels based on concentrated ionic salt2,3, metal (e.g., Ag, 

Au, Pt)4,5 or carbon nanomaterials (e.g., carbon nanotubes, graphene) 6, including favorable 

electrical properties, stability in physiological environments, biocompatibility, and fully-organic 

characteristics1,7,8. 

Despite the recent advances in mechanically robust tough hydrogels mimicking biological 10 

tissues9-13, the development of mechanically robust conducting polymer hydrogels has faced 

lingering challenges. Existing tough conducting polymer hydrogels, often prepared by mixing or 

polymerizing conducting polymers within tough hydrogel matrices, only give low electrical 

conductivity below 0.3 S cm-1 (Fig. S1) due to low connectivity between electrical phases in the 

hydrogels14-16. However, attempts to achieve high electrical conductivity by increasing the 15 

conducting polymer contents (e.g., pure conducting polymer hydrogels) substantially compromise 

mechanical properties of hydrogels17-19 (Fig. S1), limiting their utility in bioelectronic applications 

that necessitate favorable mechanical and electrical properties simultaneously. 

Here we report a bi-continuous conducting polymer hydrogel (BC-CPH) to overcome this 

challenge. Based on the bi-continuous electrical phase (PEDOT:PSS) and mechanical phase 20 

(hydrophilic polyurethane) (Fig. 1a and Fig. S2), the BC-CPH simultaneously achieves high 

electrical conductivity (over 11 S cm-1), stretchability (over 400%), fracture toughness (over 3,300 

J m-2), water contents (~ 80%), and tissue-like softness (Young’s modulus below 1 MPa) in 

physiological environments (Figs. S1 and S3).  

 The mechanical phase is dominant in hydrogels with low PEDOT:PSS concentrations 25 

resulting in a low connectivity between electrical phases (Fig. S4a) and low electrical conductivity 

(Fig. 1b). Conversely, the electrical phase becomes dominant in hydrogels with high PEDOT:PSS 

concentrations resulting in a low connectivity between mechanical phases (Fig. S4c) and low 

stretchability (Fig. 1c and Fig. S5). We find that an optimal range of PEDOT:PSS concentration 

(20-30 w/w%) provides bi-continuous presence of both mechanical and electrical phases in the 30 

BC-CPH (Fig. 1i and Fig. S4b), simultaneously achieving high electrical conductivity (Fig. 1b) 

and stretchability (Fig. 1c and Fig. S6). The BC-CPH exhibits fully recoverable elastic 

deformation over 200% strain (Fig. 1e to h) maintaining its bi-continuous phases (Fig. 1i to l) 

without plastic deformation20. 

 Notably, the BC-CPH with the optimal range of PEDOT:PSS concentrations also exhibits 35 

a much higher fracture toughness over 3,000 J m-2 than mechanical or electrical phase-dominated 

hydrogels (Fig. 1d and Fig. S7). This marked enhancement in fracture toughness of the BC-CPH 

may originate from a similar mechanism to other tough hydrogels9,10,21, where the less stretchable 

PEDOT:PSS phase acts as a mechanical dissipater and the highly stretchable hydrophilic 

polyurethane phase maintains the integrity and elasticity of the BC-CPH (Fig. 1d). 40 

 The BC-CPH can provide favorable electrical and electrochemical properties including 

high electrical conductivity (over 11 S cm-1) even after over 5,000 cycles of 100% tensile strain 

(Fig. 2a and b), low impedance (Fig. S8), high charge storage capacity over 20 times higher than 

a Pt electrode (Fig. 2d and e), and high charge injection capacity over 3 times higher than a Pt 
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electrode (Fig. 2f and g). The BC-CPH maintains favorable electrical and mechanical properties 

over 10,000 charging and discharging cycles (Fig. 2e), over 1M biphasic charge injections (Fig. 

2G), and over 180 days of storage in physiological environments (Fig. S9). Notably, the BC-CPH 

exhibits strain-insensitive electrical resistance under moderate strain up to 50% (Fig. 2c), 

potentially due to dynamic aggregation of the electrical phase in the deformed state22,23 (Fig. S10). 5 

The design of BC-CPH allows its simple and facile fabrication from a viscous ink, which 

is readily applicable to various fabrication methods. The viscosity of the BC-CPH ink can be easily 

tuned by controlling the amount of solvent (70% ethanol) in the ink (Fig. 3a) without affecting the 

electrical or mechanical properties of the resultant BC-CPH (Fig. 3b and c). The low-viscosity 

BC-CPH ink can be used in various manufacturing methods including spin-coating18 (Fig. 3d) and 10 

electrospinning24 (Fig. 3e). The high-viscosity BC-CPH ink exhibits favorable rheological 

properties as a moldable and printable material, allowing fabrication of BC-CPH microstructures 

by micro-molding based on soft lithography (Fig. 3f) 25 as well as by 3D printing15,26,27  (Fig. 3g). 

 Taking advantage of the BC-CPH’s ready-applicability to multi-material 3D printing, we 

demonstrate printing-based fabrication of hydrogel bioelectronic interfaces (Fig. 4A). In 15 

combination with printable bioadhesive (Figs. S11a and S12) and insulating (Figs. S11b and S13) 

hydrogel inks, the BC-CPH enables multi-material printing-based fabrication of hydrogel 

bioelectronic interfaces with tissue-like softness and water contents28,29 (Fig. 4b) in less than 10 

min (Fig. S14 and movie S1). The printed bioelectronic interfaces take the form of monolithic 

hydrogels (electrodes by the BC-CPH, encapsulation by the insulating hydrogel, and bio-20 

integration by the bioadhesive hydrogel) with high flexibility in physiological environments (Fig. 

4c and Fig. S15). 

Owing to the high stretchability of the BC-CPH and other constituent hydrogels (Figs. S6 

and S16), the hydrogel bioelectronic interfaces can withstand over 150% strain without failure 

(Fig. 4d). The bioadhesive in the hydrogel bioelectronic interfaces further provides rapid, robust, 25 

and sutureless integration to the target tissues30-32 (Fig. 4e, Fig. S17, and movie S2). The hydrogel 

bioelectronic interfaces maintain stable single-electrode impedance around 5 kΩ over 10,000 

cycles of 20% tensile strains (Fig. 4f, Figs. S18 and S19) and over 56 days of storage in 

physiological environments (Fig. 4g and Fig. S19). Taking advantage of the BC-CPH’s strain-

insensitive electrical resistance at moderate deformation (Fig. 2c), the hydrogel bioelectronic 30 

interfaces also exhibit stable impedance up to 40% tensile strain (Fig. 4h and Fig. S19c), which 

can be highly favorable for bioelectronic interfaces in dynamic physiological environments6,27. 

 We conduct electrophysiological recording of rat hearts (Fig. 5a to f) and stimulation of 

rat sciatic nerves (Fig. 5g to n) and spinal cords (Fig. S20) by the hydrogel bioelectronic interfaces 

to demonstrate their long-term in vivo bioelectronic interfacing capability. Multi-material 3D 35 

printing allows a flexible choice of designs and fast manufacturing of the hydrogel bioelectronic 

interfaces for various target organs (Fig. S21). Favorable electrical properties of the BC-CPH 

electrodes in the hydrogel bioelectronic interfaces provide successful in vivo electrophysiological 

recording of rat hearts (epicardial signals, Fig. 5d) and stimulation of sciatic nerves (hindlimb 

movements, Fig. 5j and l) and rat spinal cords (forelimb movements, Fig. S20d and f) on day 0 40 

post-implantation. 

 Owing to their tissue-like properties and stability in physiological environments, the 

hydrogel bioelectronic interfaces exhibit stable integration to the target tissues (Fig. S22) and 

favorable tissue response during long-term in vivo implantation over 2 months (Fig. 6). 
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Histological analysis by a blinded pathologist indicates that the hydrogel bioelectronic interfaces 

elicit very mild inflammation to the target tissues (Fig. 6a to c) with fibrotic tissues around the 

hydrogel bioelectronic interfaces significantly thinner than those around elastomer-based control 

devices (i.e., devices with polydimethylsiloxane (PDMS)-based encapsulation) and comparable to 

the sham group (Fig. 6d). 5 

We further conduct immunofluorescence analysis for various markers to evaluate tissue 

damage such as neurofilament (NF) and foreign body response including fibroblasts (αSMA), 

macrophages (CD68), collagen (Collagen I), and T cells (CD3) (Figs. 6e to l, S23 to S26). The 

quantitative analysis of fluorescence intensity indicates that the hydrogel bioelectronic interfaces 

elicit comparable expression of all markers to the sham group on day 7, 28, and 56 post-10 

implantations on rat sciatic nerves (Figs. 6i to l, S23 to S24). In contrast, the elastomer-based 

control devices induce significantly lower expression of NF and higher expression of αSMA, 

Collagen I, and CD68 compared to the sham group on day 28 post-implantation, indicating 

potential damage of neural tissues and higher foreign body response (Fig. 6i to l). 

Enabled by the favorable in vivo biocompatibility and stability, the hydrogel bioelectronic 15 

interfaces can provide stable long-term electrophysiological recording and stimulation of rat hearts 

(Fig. 5e), sciatic nerves (Fig. 5k and m), and spinal cords (Fig. S20e and g). Notably, the efficacy 

of electrophysiological recording and stimulation by the hydrogel bioelectronic interfaces 

increases in the longer term compared to the efficacy on day 0 (i.e., right after implantation), 

demonstrated by significantly higher signal-to-noise ratio (SNR) of the measured epicardial signals 20 

for heart recording for all six electrode channels (Fig. 5f) and by significantly higher hindlimb 

joint angle movement for sciatic nerve stimulation (Figs. 5n and S27) and forelimb movement 

distance for spinal cord stimulation (Fig. S20h) for the same injected current. This enhancement 

in long-term electrophysiological efficacy might be facilitated by the tissue-like properties, 

atraumatic bioadhesive integration, and resultant favorable tissue interaction of the hydrogel 25 

bioelectronic interfaces31,33. 

By addressing the lingering challenges in conductive hydrogels, the BC-CPH provides a 

promising material for tissue-like bioelectronics. Enabled by the unique set of advantages of the 

BC-CPH, we 3D print monolithic all-hydrogel bioelectronic interfaces capable of long-term high-

efficacy electrophysiological stimulation and recording of diverse tissues and organs in rat models. 30 

This work may offer a versatile tool and platform toward a vision of hydrogel bioelectronics1 and 

better electrical interfacing between machines and biological systems.  
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Fig. 1. Design and implementation of the BC-CPH. a, Schematic illustrations of a bi-continuous 

conducting polymer hydrogel (BC-CPH) consisting of an electrical phase based on PEDOT:PSS 

and a mechanical phase based on hydrophilic polyurethane (PU). b to d, Schematic illustrations 

for mechanisms (left) and plots (right) for electrical conductivity (b), ultimate strain (c), and 5 

fracture toughness (d) vs. PEDOT:PSS concentration in the BC-CPH. e to h, Images of the fully-

swollen BC-CPH with 25 w/w% PEDOT:PSS at engineering strain of 0% (e), 100% (f), 200% (g), 

and 0% after full elastic recovery (h). i to l, Corresponding AFM phase images of the BC-CPH 

with 25 w/w% PEDOT:PSS at engineering strain of 0% (i), 100% (j), 200% (k), and 0% after full 

elastic recovery (l). Error bars indicate SD; N = 4.  10 
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Fig. 2. Electrical properties and stability of the BC-CPH. a, Images of the BC-CPH under cyclic 

tensile deformation of 100% engineering strain. b, Electrical conductivity vs. tensile cycle of the 

BC-CPH. c, Plots for electrical resistance normalized to the resistance of non-deformed state (R/R0, 

left axis) and electrical conductivity (right axis) vs. engineering strain of the BC-CPH. Stretch is 5 

engineering strain plus unity. d, Current density vs. potential plots for a Pt electrode and the BC-

CPH at 1st, 5,000th, and 10,000th cycle. e, Charge storage capacity (CSC) vs. cyclic voltammetry 

(CV) cycle for a Pt electrode and the BC-CPH. f, Biphasic input pulses (top) and the corresponding 

current density vs. time plots (bottom) for a Pt electrode and the BC-CPH at 1st and 1Mth cycle. g, 

Charge injection capacity (CIC) vs. charge injection cycle for a Pt electrode and the BC-CPH. All 10 

tests were done in PBS. Error bars indicate SD; N = 4.  
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Fig. 3. Applicability to diverse fabrication methods. a, Viscosity vs. shear rate plots for the BC-

CPH inks with high and low viscosity. Inset figures show the high viscosity (inside blue circle) 

and low viscosity (inside red circle) BC-CPH inks. b and c, Electrical conductivity (b) and ultimate 

strain (c) of the BC-CPH prepared from high and low viscosity inks. d, Image of the spin-coated 5 

low viscosity BC-CPH ink. Top-right inset SEM image is the cross-sectional view of the spin-

coated BC-CPH on a silicon wafer. e, SEM image of the electrospun low viscosity BC-CPH ink. 

f, SEM image of the micro-molded high viscosity BC-CPH ink from a SU-8 soft lithography mold. 

g, Image of the 3D-printed high viscosity BC-CPH ink. Error bars indicate SD; N = 4. Statistical 

significance is determined by two-sided Student t-test; ns, not significant.  10 
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Fig. 4. Hydrogel bioelectronic interface. a, Schematic illustration (left) and image (right) of 

multi-material 3D printing-based fabrication of the entire hydrogel bioelectronic interface. b, 

Young’s moduli vs. water contents for the hydrogel bioelectronic interface (BC-CPH, insulating 

and bioadhesive hydrogels), conventional electrode and encapsulation materials, and biological 5 

tissues 29. c, Image of a 3D-printed monolithic hydrogel bioelectronic interface on a fingertip. d, 

Images of the highly stretchable hydrogel bioelectronic interface before (top) and after (bottom) 

deformation. e, Image of sutureless robust bioadhesive integration of the hydrogel bioelectronic 

interface on a rat sciatic nerve. f to h, Impedance of one electrode channel in the hydrogel 

bioelectronic interface at 1 kHz under varying tensile cycle (f), storage time in a phosphate-10 

buffered saline (PBS) bath at 37 °C (g), and tensile strain (h). Error bars indicate SD; N = 3. 

Statistical significance is determined by one-way ANOVA followed by Bonferroni’s multiple 

comparison test; ns, not significant. 
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Fig. 5. In vivo electrophysiological recording and stimulation. a and g, Schematic illustrations 

for rat heart recording (a) sciatic nerve stimulation (g) by the hydrogel bioelectronic interface. b 

and h, Images of the printed hydrogel bioelectronic interface for heart (b) and sciatic nerve (h) in 

the overall view (left) and the magnified view of electrodes (right). Different materials are marked 5 

with color overlays in the magnified view. c and i, Images of the implanted hydrogel bioelectronic 

interface on rat heart (c) and sciatic nerve (i). d and e, Epicardial recordings by different channels 

in the hydrogel bioelectronic interface on day 0 (d) and day 28 (e) post-implantation. f, 

Comparison of the signal-to-noise ratio (SNR) for epicardial recordings on day 0 and day 28 post-

implantation. j and k, Images of rat hindlimb before (left) and after (middle) electrophysiological 10 

stimulation of the sciatic nerve by the hydrogel bioelectronic interface with corresponding EMG 

recordings (right) on day 0 (j) and day 56 (k) post-implantation. The red-shaded regions in the 

EMG recordings indicate the stimulation pulses. l and m, Rat hindlimb movement angles upon 

sciatic nerve stimulations by the hydrogel bioelectronic interface at varying stimulation currents 

on day 0 (l) and day 56 (m) post-implantation. n, Comparison of the rat hindlimb movement angles 15 

on day 0 and day 56 post-implantation with stimulation current of 0.5 mA. In box plots, center 

lines represent mean, box limits delineate standard error (SE), and whiskers reflect 5th and 95th 

percentile; N = 6-8. Statistical significance is determined by two-sided Student t-test; * P < 0.05. 
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Fig. 6. In vivo biocompatibility. a to c, Representative histological images of rat sciatic nerve 

(a), spinal cord (b), and heart (c) stained with hematoxylin and eosin (H&E) on day 28 post-

implantation of the hydrogel bioelectronic interface. * indicates the implanted hydrogel 

bioelectronic interface. d, Sciatic nerve epineurium thickness measured from histological images 5 

on day 7, day 28, and day 56 post-implantation of the hydrogel bioelectronic interface, PDMS 

interface, and sham group (no device implantation). e to h, Representative immunofluorescence 

images of rat sciatic nerve on day 28 post-implantation of the hydrogel bioelectronic interface, 

PDMS interface, and sham group (no device implantation). Cell nuclei are stained with DAPI 

(blue). Green fluorescence corresponds to the expression of neurofilament (NF, e), fibroblasts 10 

(αSMA, f), collagen (collagen I, g), and macrophages (CD68, h), respectively. i to l, Normalized 

fluorescence intensity plots for the expression of NF (i), αSMA (j), Collagen I (k), and CD68 (l) 

in different groups. In box plots, center lines represent mean, box limits delineate standard error 

(SE), and whiskers reflect 5th and 95th percentile; N = 8 (d); N = 3 (i to l). Statistical significance 

is determined by two-sided Student t-test; ns, not significant; * P < 0.05. 15 
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