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 Abstract 

 When  performing  a  task  in  a  changing  world,  sometimes  we  switch  between  rules  already 

 learned;  at  other  times  we  must  learn  rules  anew.  Often  we  must  do  both,  switching  between 

 known  rules  while  also  constantly  re-estimating  them.  Here,  we  show  these  two  processes,  rule 

 switching  and  rule  learning,  rely  on  distinct  but  intertwined  computations,  namely  fast  inference 

 and  slower  incremental  learning.  To  this  end,  we  studied  how  monkeys  switched  between  three 

 rules.  Each  rule  was  compositional,  requiring  the  animal  to  discriminate  one  of  two  features  of  a 

 stimulus  and  then  respond  with  an  associated  eye  movement  along  one  of  two  different  response 

 axes.  By  modeling  behavior  we  found  the  animals  learned  the  axis  of  response  using  fast 

 inference  (rule  switching)  while  continuously  re-estimating  the  stimulus-response  associations 

 within  an  axis  (rule  learning).  Our  results  shed  light  on  the  computational  interactions  between 

 rule switching and rule learning, and make testable neural predictions for these interactions. 

 Introduction 

 A  crucial  component  of  intelligence  is  learning  from  the  environment,  allowing  one  to  modify 

 their  behavior  in  light  of  experience.  Although  a  long  tradition  of  research  in  areas  like  Pavlovian 

 and  instrumental  conditioning  has  focused  on  elucidating  general  learning  mechanisms  – 

 especially  error-driven  incremental  learning  rules,  associated  with  dopamine  and  the  basal 

 ganglia  1–10  –  it  has  also  become  increasingly  clear  that  the  brain’s  dynamics  for  learning  can 

 themselves  be  adapted  11,12  .  For  instance,  these  general-purpose  incremental  learning  mechanisms 

 can  allow  animals  to  gradually  learn  a  new  stimulus-response  discrimination  rule  by  trial  and 

 error.  But  this  type  of  gradual  adjustment  seems  unlikely  to  account  for  other  more 

 task-specialized  learning  effects:  for  instance,  if  two  different  stimulus-response  rules  are 
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 repeatedly  reinforced  in  alternation,  animals  can  come  to  switch  between  them  more  rapidly  13,14  . 

 Such  rule  switching  has  many  formal  similarities  with  de  novo  rule  learning:  here  also,  response 

 behavior  is  modified  in  light  of  feedback,  often  progressively  over  several  trials.  However  these 

 more  task-specialized  dynamics  are  often  modeled  by  a  distinct  computational  mechanism  -  e.g., 

 Bayesian  inference,  where  animals  accumulate  evidence  about  which  candidate  rule  currently 

 applies  15–18  .  Inference  is  associated  with  activity  in  the  prefrontal  cortex  19–30  ,  suggesting  also 

 distinct neural mechanisms from  de novo  rule learning. 

 This  type  of  inference  process  presupposes  that  the  animal  has  previously  learned  about  the 

 structure  of  the  task:  which  rules  can  apply,  how  often  they  switch,  etc.,  and  so  it  has  typically 

 been  studied  in  well-trained  animals  12,15,31  .  However,  there  has  been  increasing  theoretical  interest 

 –  but  relatively  little  direct  empirical  evidence  –  in  the  mechanisms  by  which  the  brain  learns  the 

 broader  structure  of  the  task  –  thereby,  in  effect  building  task  specialized  inference  mechanisms 

 for  rapid  rule  switching.  For  Bayesian  inference  models,  this  problem  corresponds  to  learning  the 

 generative  model  of  the  task,  e.g.  inferring  a  mixture  model  over  latent  contexts  or  states  (rules 

 or  task  conditions,  which  are  “latent”  since  they  are  not  overtly  signaled)  and  their  properties 

 (e.g.,  stimulus-response-reward  contingencies)  15,16,32–36  .  A  more  mechanistic  account  of  rule 

 switching,  but  not  mutually  exclusive,  suggests  it  may  be  implemented  by  the  dynamics  of  a 

 recurrent  neural  network  (RNN),  in  which  case  higher-level  learning  (here  called 

 “metalearning”) corresponds to tuning the weights of this network  11,36–40  . 

 Perhaps  most  intriguingly,  these  accounts  often  posit  that  a  full  theory  of  rule  learning  and  rule 

 switching  ultimately  involves  an  interaction  between  both  major  classes  of  learning  mechanisms, 

 inferential  and  incremental.  Thus,  in  Bayesian  inference  models,  it  is  often  hypothesized  that  an 

 inferential  stage  (e.g.  prefrontal)  decides  which  latent  state  is  in  effect,  while  the  properties  of 

 each  state  are  learned,  conditional  on  this,  by  downstream  (e.g.  striatal)  error-driven  inferential 

 learning  16,36  .  Somewhat  similarly,  metalearning  of  RNN  dynamics  for  rule  switching  has  been 

 proposed  to  be  itself  driven  by  incremental  error-driven  updates  7,11,38  .  However,  apart  from  a  few 

 interesting  examples  in  human  rule  learning  16,32,41–44  ,  this  type  of  interaction  has  mostly  been 

 posited  theoretically,  while  the  two  learning  mechanisms  have  mostly  been  studied  in  regimes 

 where they operate more or less in isolation  12,15,31,45–49  . 
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 To  study  rule  switching  and  rule  learning,  we  trained  non-human  primates  to  switch  between 

 three  different  category-response  tasks.  Depending  on  the  rule  in  effect,  the  animals  needed  to 

 attend  to  and  categorize  either  the  color  or  the  shape  of  a  stimulus,  and  then  respond  with  a 

 saccade  along  one  of  two  different  response  axes.  We  observe  a  combination  of  both  fast  and 

 slow  learning  during  the  task:  monkeys  rapidly  switched  into  the  correct  response  axis, 

 consistent  with  inferential  learning  of  the  response  state,  while,  within  a  state,  the  animals  slowly 

 learned  category-response  mappings,  consistent  with  incremental  (re)learning.  To  quantify  the 

 learning  mechanisms  underlying  the  animals’  behavior,  we  tested  whether  inference  or 

 incremental  classes  of  models,  separately,  could  explain  the  behavior.  Both  classes  of  models 

 produced  learning-like  effects  -  i.e.,  dynamic,  experience-driven  changes  in  behavior.  However, 

 neither  model  could,  by  itself,  explain  the  combination  of  both  fast  and  slow  learning.  Instead, 

 we  found  that  key  features  of  behavior  were  well  explained  by  a  hybrid  rule-switching  and 

 rule-learning  model,  which  inferred  which  response  axis  was  active  while  continually  performing 

 slower,  incremental  relearning  of  the  consequent  stimulus-response  mappings  within  an  axis. 

 These  results  support  the  hypothesis  that  there  are  multiple,  interacting,  mechanisms  that  guide 

 behavior in a contextually-appropriate manner. 

 Results 

 Task design and performance 

 Two  rhesus  macaques  were  trained  to  perform  a  rule-based  category-response  task.  On  each  trial, 

 the  monkeys  were  presented  with  a  stimulus  that  was  composed  of  a  color  and  shape  (Fig.  1a). 

 Each  stimulus  dimension  was  drawn  from  a  subset  of  values  along  a  continuous  space.  The 

 animals’  task  was  to  categorize  the  stimulus  according  to  either  its  color  (red  or  green)  or  its 

 shape  (‘bunny’  or  ‘tee’,  Fig.  1b).  Depending  on  the  category  of  the  stimulus,  and  the  current  rule, 

 the  animals  made  one  of  four  different  responses  (an  upper  left,  upper  right,  lower  left,  or  lower 

 right saccade). 

 Animals  were  trained  on  three  different  category-response  rules  (Fig.  1c).  Rule  1  required  the 

 animal  to  categorize  the  shape  of  the  stimulus,  making  a  saccade  to  the  upper-left  location  when 
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 the  shape  was  categorized  as  a  ‘bunny’  and  a  saccade  to  the  lower-right  location  when  the  shape 

 was  categorized  as  a  ‘tee’.  These  two  locations  –  upper-left  and  lower-right  –  formed  an  ‘axis’  of 

 response  (  Axis  1  ).  Rule  2  was  similar  but  required  the  animal  to  categorize  the  color  of  the 

 stimulus  and  then  respond  on  the  opposite  axis  (  Axis  2;  red=upper-right,  green=lower-left). 

 Finally,  Rule  3  required  categorizing  the  color  of  the  stimulus  and  responding  on  Axis  1 

 (red=lower-right,  green=upper-left).  Note  that  these  rules  are  compositional  in  nature,  with 

 overlapping  dimensions  (Fig.  1d).  Rule  1  required  categorizing  the  shape  of  the  stimulus,  while 

 Rules  2  and  3  required  categorizing  the  color  of  the  stimulus.  Similarly,  Rules  1  and  3  required 

 responding  on  the  same  axis  (  Axis  1  ),  while  Rule  2  required  a  different  set  of  responses  (  Axis  2  ). 

 In  addition,  the  overlap  in  response  axis  for  Rules  1  and  3  meant  certain  stimuli  had  congruent 

 responses  for  both  rules  (e.g.,  red-tee  and  green-bunny  stimuli)  while  other  stimuli  had 

 incongruent  responses  between  rules  (e.g.,  red-bunny  and  green-tee).  For  all  rules,  when  the 

 animal  made  a  correct  response,  it  received  a  reward  (an  incorrect  response  led  to  a  short 

 ‘time-out’). 

 Animals  had  to  perform  the  same  rule  during  a  block  of  trials.  Critically,  the  animals  were  not 

 explicitly  cued  as  to  which  rule  was  in  effect  for  that  block.  Instead,  they  had  to  use  information 

 about  the  stimulus,  their  response,  and  reward  feedback,  to  infer  which  rule  was  in  effect.  After 

 the  animals  discovered  the  rule  and  were  performing  it  at  a  high  level  (defined  as  >70%  on  the 

 past  100  trials,  see  Methods)  the  rule  would  switch.  Although  unpredictable,  the  moment  of 

 switching  rules  was  cued  to  the  animal  (with  a  flashing  screen).  Importantly,  this  switch-cue  did 

 not  indicate  which  rule  was  now  in  effect  (just  the  switch  itself).  To  facilitate  learning  and 

 performance,  the  sequence  of  rules  across  blocks  was  semi-structured  such  that  the  axis  of 

 response  always  changed  following  a  block  switch  (i.e.,  after  a  Rule  2  block  the  animal 

 performed  either  Rule  1  or  Rule  3,  chosen  pseudorandomly,  and  vice  versa,  see  block  timeline 

 example in Fig. 1c). 

 Learning  the  axis  of  response  was  fast:  both  monkeys  switched  into  the  correct  axis  nearly 

 instantaneously.  Indeed,  Monkey  S  almost  always  responded  on  Axis  2  (the  response  axis 

 consistent  with  Rule  2)  immediately  after  each  block  switch  cue  (97%,  CI=[0.90,0.99]  in  Rule  1  ; 

 97%,  CI=[0.92,0.98]  in  Rule  2  ;  97%,  CI=[0.90,0.99]  in  Rule  3  ;  see  Fig.  1e).  Then,  if  this  was 
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 incorrect,  it  switched  to  the  correct  axis  within  5  trials  on  97%,  CI=[0.90,0.99]  of  blocks  of  Rule 

 1,  and  94%  CI=[0.86,0.98]  of  blocks  of  Rule  3.  Monkey  C  instead  tended  to  alternate  the 

 response  axis  on  the  first  trial  following  a  switch  cue  (it  made  a  response  on  the  correct  axis  on 

 the  first  trial  with  a  probability  of  71%,  CI=[0.51,0.85]  in  Rule  1  ;  85%,  CI=[0.72,0.92]  in  Rule  2 

 ;  and  84%,  CI=[0.55,0.87]  in  Rule  3),  implying  an  understanding  of  the  pattern  of  axis  changes 

 with  block  switches  (Fig.  1f).  Both  monkeys  maintained  the  correct  axis  with  very  few  off-axis 

 responses  throughout  the  block  (at  trial  20,  Monkey  S:  1.4%,  CI=[0.0025,0.077]  in  Rule  1  ; 

 2.1%,  CI=[0.0072,0.060]  in  Rule  2  ;  0%,  CI=[0,0.053]  in  Rule  3  ;  Monkey  C:  0%,  CI=[0,0.14]  in 

 Rule 1 ; 4.3%, CI=[0.012,0.15] in Rule 2 ; 3.7%, CI=[0.0066,0.18] in Rule 3). 

 Overall,  both  monkeys  performed  the  task  well  above  chance  (Fig.  1g,h).  When  the  rule  switched 

 to  Rule  2,  the  animals  quickly  switched  their  behavior:  Monkey  S  responded  correctly  on  the 

 first  trial  in  81%,  CI=[0.74,0.87]  of  Rule  2  blocks,  and  reached  91%,  CI=[0.85,0.95]  after  only 

 20  trials  (Monkey  C  being  respectively  at  78%,  CI=[0.65,0.88]  ;  and  85%,  CI=[0.72,0.92]).  In 

 Rule  1  and  Rule  3,  their  performance  also  exceeded  chance  level  quickly.  In  Rule  1,  although  the 

 performance  of  Monkey  S  was  below  chance  on  the  first  trial  (0%,  CI=[0,0.052];  46%, 

 CI=[0.28,0.65]  for  Monkey  C),  reflecting  perseveration  on  the  previous  rule,  performance 

 quickly  climbed  above  chance  (77%  after  50  trials,  CI=[0.66,0.85];  63%,  CI=[0.43,0.79]  for 

 Monkey  C).  A  similar  pattern  was  seen  for  Rule  3  (initial  performance  of  1.5%, 

 CI=[0.0026,0.079]  and  78%,  CI=[0.67,0.86]  after  50  trials  for  Monkey  S;  41%,  CI=[0.25,0.59] 

 and 67%, CI=[0.48,0.81] for Monkey C, respectively). 

 Importantly,  the  monkeys  were  slower  to  switch  to  Rule  1  and  Rule  3  than  to  switch  to  Rule  2. 

 On  the  first  20  trials,  the  difference  in  average  percent  performance  of  Monkey  S  was  Δ=35 

 between  Rule  2  and  Rule  1,  and  Δ=22  between  Rule  2  and  Rule  3  (significant  Fisher  test 

 comparing  Rule  2  to  Rule  1  and  Rule  3,  with  p<10(-4)  in  both  conditions  ;  respectively  Δ=35, 

 Δ=24 and p<10(-4) for Monkey C). 
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 Figure  1:  Task  design  and  performance.  (a)  Schematic  of  a  trial.  (b)  Stimuli  were  drawn  from  a 

 two-dimensional  feature  space,  morphing  both  color  (left)  and  shape  (right).  Stimulus  categories 

 are  indicated  by  vertical  lines  and  labels.  (c)  The  stimulus-response  mapping  for  the  three  rules, 

 and  an  example  of  a  block  timeline.  (d)  Venn  diagram  showing  the  overlap  between  rules.  (e,f) 

 Proportion  of  responses  on  the  incorrect  axis  for  the  first  50  trials  of  each  block  for  (e)  Monkey  S 

 and  (f)  Monkey  C.  Insets:  Trial  number  of  the  first  response  on  the  correct  axis  after  a  block 

 switch,  respectively  for  Monkey  S  and  C.  (g,h)  Average  performance  (sample  mean  and  standard 

 error of the mean) for each rule, for (g) Monkey S and (h) Monkey C. 

 Learning rules  de novo  cannot capture the behavior 

 To  perform  the  task,  the  animals  had  to  learn  which  rule  was  in  effect  during  each  block  of  trials. 

 This  required  determining  both  the  response  axis  and  the  relevant  feature.  The  central  result  from 

 the  monkeys’  behavior  above  was  that  learning  showed  a  mixture  of  fast  switching,  reminiscent 

 of  inference  models,  and  slow  refinement,  as  in  error-driven  incremental  learning.  In  order  to 

 explain  this  behavior,  we  tested  both  inference  and  incremental  classes  of  models,  separately.  As 

 in  previous  work  50–54  ,  all  our  models  shared  common  noisy  perceptual  input  and  action  selection 

 stages  (Fig.  S1,  and  Methods).  A  single  parameter  was  used  to  capture  noisy  perception:  the 

 concentration  of  a  von  Mises  distribution  around  the  true  stimulus  identity,  with  separate  values 

 for  the  color  and  shape  features.  A  single  lapse  term  accounted  for  noise  at  the  choice  stage. 

 While  all  models  shared  the  same  mechanisms  for  perception  and  response,  the  intervening 

 mechanism  for  mapping  stimulus  to  action  value  differed  between  models  (Fig.  S1  and 

 Methods). 

 First,  the  rapid  switching  of  response  axes  cannot  be  explained  by  error-driven  learning  models, 

 like  Q  learning,  which  would  entail  gradually  relearning  the  stimulus-response  mappings  de  novo 

 at  the  start  of  each  block.  Such  models  work  by  learning  the  reward  expected  for  different 

 stimulus-response  combinations,  using  incremental  running  averages  to  smooth  out  trial-to-trial 

 stochasticity  in  reward  realization  –  here,  due  to  perceptual  noise  in  the  stimulus  classification. 

 To  test  the  ability  of  incremental  learning  models  to  capture  the  animals'  behavior,  we  fit  a  Q 

 learning  model  to  their  behavior.  In  particular,  we  fit  a  variant  of  Q  learning  (model  QL,  see  Fig. 
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 S1  and  Methods)  that  was  elaborated  to  improve  its  performance  in  this  task:  for  each  action, 

 model  QL  parameterized  the  mapping  from  stimulus  to  reward  linearly  using  two  basis  functions 

 over  the  feature  space  (one  binary  indicator  each  for  color  and  shape),  and  used  error-driven 

 learning  to  estimate  the  appropriate  weights  on  these  for  each  block.  This  scheme  effectively 

 builds-in  the  two  relevant  feature-classification  rules  (shape  and  color).  Also,  this  variant  of  the 

 model  resets  the  weights  to  fixed  initial  values  to  start  over  afresh  at  each  block  switch.  Yet,  even 

 with  these  built-in  advantages,  the  model  was  unable  to  rapidly  switch  axes,  as  it  needed  to 

 relearn  feature-response  associations  after  each  block  switch  (simulations  under  best-fitting 

 parameters  shown  in  Fig.  2  for  Monkey  S,  Fig.  S2  for  Monkey  C).  Several  tests  show  that  the 

 model  learned  more  slowly  than  the  animals  (Fig.  2a,b).  For  instance,  the  model  fitted  on 

 Monkey  S’s  behavior  responded  on  Axis  2  on  the  first  trial  of  the  block  only  50%  of  the  time  in 

 all  three  rules  (Fig.  2a,  Fisher  test  of  model  simulations  against  data:  p<10(-4)  for  the  three 

 rules).  The  model  thus  failed  to  capture  the  initial  bias  of  Monkey  S  for  Rule  2  discussed  above. 

 Importantly,  the  model  switched  to  the  correct  axis  within  5  trials  on  only  58%  of  blocks  of  Rule 

 1,  and  57%  of  blocks  of  Rule  3  (Fig.  2b,  Fisher  test  against  monkey  behavior:  p<10(-4)).  Finally, 

 the  model  performed  24%  of  off-axis  responses  after  20  trials  in  Rule  1,  21%  in  Rule  2,  and  21% 

 in  Rule  3,  all  much  higher  than  what  was  observed  in  the  monkey’s  behavior  (Fisher  test 

 p<10(-4)). 

 In  addition,  because  of  the  need  to  relearn  feature-response  associations  after  each  block  switch, 

 the  incremental  QL  model  was  unable  to  capture  the  dichotomy  between  the  monkeys’  slower 

 learning  in  Rule  1  and  3  (which  share  Axis  1)  and  the  faster  learning  of  Rule  2  (using  Axis  2).  As 

 noted  above,  the  monkeys  performed  Rule  2  at  near  asymptotic  performance  from  the  beginning 

 of  the  block  but  were  slower  to  learn  which  feature  to  attend  to  on  blocks  of  Rule  1  and  Rule  3 

 (Fig.  1g,h).  In  contrast,  the  incremental  learner  performed  similarly  on  all  three  rules  (Fig.  2c  for 

 Monkey  S,  S2c  for  Monkey  C).  In  particular,  it  performed  correctly  on  the  first  trial  in  only  25% 

 of  Rule  2  blocks  (Fisher  test  against  behavior:  p<10(-4)),  and  reached  only  62%  after  20  trials 

 (p<10(-4)).  As  a  result,  on  the  first  20  trials,  the  difference  in  average  percent  performances  was 

 only  Δ=4.0  between  Rule  2  and  Rule  1,  and  was  only  Δ=0.76  between  Rule  2  and  Rule  3  (similar 

 results  were  seen  when  fitting  the  model  to  Monkey  C,  see  Fig.  S2).  The  same  pattern  of  results 

 was seen when the initial weights were free parameters (see Methods). 
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 Thus  simple  incremental  relearning  of  the  axes  and  features  de  novo  could  not  reproduce  both 

 the  instantaneous  relearning  of  the  correct  axis  after  a  block  switch  and  the  discrepancy  in 

 learning speed for the different rules. 

 Figure  2:  Incremental  learner  (QL)  model  fitted  on  Monkey  S  behavior  (see  Fig.  S2  for  Monkey 

 C).  (a)  Trial  number  of  the  first  response  of  the  model  on  the  correct  axis  after  a  block  switch 

 (compare  to  Fig.  1e,  inset).  (b)  Proportion  of  responses  of  the  model  on  the  incorrect  axis  for  the 

 first  50  trials  of  each  block  (compare  to  Fig.  1e).  (c)  Model  performance  for  each  rule  (averaged 

 over blocks, compare to Fig. 1g). 

 Pure inference of previously learned rules cannot capture the behavior 

 The  results  above  suggest  that  incremental  learning  is  too  slow  to  explain  the  quick  switch 

 between  response  axes  displayed  by  the  monkeys.  The  speed  of  learning  suggests  a  different 

 class  of  models  that  leverage  Bayesian  inference  may  be  able  to  capture  this  aspect  of  the 

 behavior.  A  fully  informed  Bayesian  ideal  observer  model  (IO,  see  Fig.  S1  and  Methods)  uses 

 statistical  inference  to  continually  estimate  which  of  the  three  rules  is  in  effect,  accumulating 

 evidence  (“beliefs”)  over  the  history  of  previous  stimuli,  actions,  and  rewards.  It  can  then  choose 

 the  optimal  action  for  any  given  stimulus,  by  averaging  the  associated  actions’  values  under  each 

 rule,  weighted  by  the  estimated  likelihood  that  each  rule  is  in  effect.  Like  incremental  learning, 

 the  IO  model  learns  and  changes  behavior  depending  on  experience.  However,  unlike 

 incremental  models,  these  models  leverage  perfect  knowledge  of  the  rules  to  learn  rapidly, 
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 limited  only  by  stochasticity  in  the  evidence  (here,  noisy  stimulus  perception).  Since  perceptual 

 noise  is  the  limiting  factor  and  is  shared  across  rules,  the  IO  model  makes  two  characteristic 

 predictions:  the  speed  of  learning  should  be  shared  across  rules  using  the  same  features,  and  the 

 speed  of  initial  (re)learning  after  a  block  switch  should  be  coupled  to  the  asymptotic  level  of 

 performance. 

 As  expected,  the  IO  model  reproduced  the  animals’  ability  to  rapidly  infer  the  correct  axis  (Fig. 

 S3),  as  the  beliefs  over  rules  were  reset  to  fixed  (fitted)  values  after  a  block  switch.  Fitted  to 

 Monkey  S  behavior,  the  model  initially  responded  on  Axis  2  almost  always  immediately  after 

 each  block  switch  cue  (96%  in  all  rules,  Fisher  test  against  monkey’s  behavior  p>0.4).  Then,  if 

 this  was  incorrect,  the  model  typically  switched  to  the  correct  axis  within  5  trials  on  89%  of 

 blocks  of  Rule  1,  and  95%  of  blocks  of  Rule  3  (Fisher  test  against  monkey  behavior:  p>0.2  in 

 both  rules).  The  model  maintained  the  correct  axis  with  very  few  off-axis  responses  throughout 

 the  block  (after  trial  20,  1.3%  in  Rule  1  ;  1.1%  in  Rule  2  ;  1.2%  in  Rule  3,  Fisher  test  against 

 monkey’s behavior: p>0.6 in all rules). 

 However,  the  IO  model  could  not  capture  the  discrepancy  of  learning  speed  for  the  different 

 rules.  To  understand  why,  we  looked  at  performance  as  a  function  of  stimulus  difficulty.  The 

 monkey’s  performance  depended  on  how  difficult  it  was  to  categorize  the  stimulus  (i.e.,  the 

 morph  level;  Fig.  3a-c  for  Monkey  S,  Fig.  S4a-c  for  Monkey  C).  For  example,  in  color  blocks 

 (Rule  2  and  3),  the  monkeys  performed  better  for  a  ‘prototype’  red  stimulus  than  for  a  ‘morphed’ 

 orange  stimulus  (Fig.  3a-c).  Indeed,  on  “early  trials”  (first  50  trials)  of  Rule  2,  Monkey  S 

 correctly  responded  to  96%  (CI=[0.95,0.97])  of  prototype  stimuli,  and  only  to  91%, 

 CI=[0.90,0.92]  of  ‘morphed’  stimuli  (p<10(-4);  similar  results  for  Monkey  C  in  Fig.  S4).  Rule  3 

 had  a  similar  ordering:  Monkey  S  correctly  responded  to  80%  (CI=[0.77,0.82])  of  prototype 

 stimuli,  and  only  62%,  CI=[0.60,0.64]  of  ‘morphed’  stimuli  (p<10(-4)).  A  similar  trend  was  seen 

 during  “later  trials”  in  Rule  3  (trials  50  to  200;  89%,  CI=[0.88,0.90]  and  74%,  CI=[0.73,0.75], 

 respectively for prototype and morphed stimuli, p<10(-4)). 

 Importantly,  there  was  a  discrepancy  between  the  performance  of  ‘morphed’  stimuli  in  Rule  2 

 versus  Rule  3,  with  a  difference  in  average  percent  performance  of  Δ=28  for  the  first  50  trials  in 
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 both  rules  (p<10(-4)),  and  still  Δ=17  if  we  considered  Rule  2  against  the  last  trials  of  Rule  3 

 (p<10(-4)).  The  same  discrepancy  was  observed  between  the  performance  of  ‘prototype’  stimuli 

 in  Rule  2  versus  Rule  3,  with  a  difference  in  average  percent  performance  of  Δ=16  for  the  first 

 50  trials  in  both  rules  (p<10(-4)),  and  still  Δ=6.8  if  we  considered  the  last  trials  of  Rule  3 

 (p<10(-4)). 

 The  IO  model  captured  the  performance  ordering  on  morphed  and  prototype  stimuli  for  each  rule 

 separately  (Fig.  3d-i,  similar  results  for  the  model  reproducing  Monkey  C,  Fig.  S4).  However, 

 because  all  errors  were  exclusively  driven  by  perceptual  noise  (and  lapses),  the  model  performed 

 similarly  for  morphed  stimuli  on  Rule  2  and  Rule  3.  Indeed,  because  both  rules  involved 

 categorizing  color,  the  speed  of  learning  was  shared  across  Rule  2  and  Rule  3,  and  initial 

 learning  in  both  rules  on  the  first  50  trials  was  coupled  to  the  asymptotic  performance  in  later 

 trials  of  Rule  3.  The  model  thus  had  to  trade-off  between  behavioral  performance  in  each  rule. 

 So,  while  the  IO  model,  using  best-fit  parameters,  reproduced  the  animals'  lower  asymptotic 

 performance  in  Rule  3  by  increasing  color  noise  (low  concentration),  it  failed  to  capture  the  high 

 performance  on  Rule  2  early  on  (Fig.  3e,f,  Fig.  S4e,f).  The  resulting  difference  in  average 

 percent  performance  for  ‘morphed’  stimuli  was  only  Δ=4.0  for  the  first  50  trials  and  Δ=0.0044  if 

 we  considered  the  last  trials  of  Rule  3  (respectively  Δ=4.2  and  Δ=0.032  for  ‘prototype’). 

 Conversely,  if  we  forced  the  model  to  improve  color  perception  (a  high  concentration  parameter, 

 Fig.  3h,i,  and  Fig  S4h,i),  then  it  was  able  to  account  for  the  monkeys'  performance  on  Rule  2,  but 

 failed  to  match  the  animals'  behavior  on  Rule  3.  The  resulting  difference  in  average  percent 

 performance  was  again  only  Δ=3.4  for  the  first  50  trials,  and  Δ=-0.17  if  we  considered  the  last 

 trials of Rule 3 (respectively Δ=3.2 and Δ=-0.16 for ‘prototype’). 
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 Figure  3:  The  ideal  observer  (IO),  slow  or  fast,  but  not  both.  Fitted  on  Monkey  S  behavior  (see 

 Fig.  S3  for  Monkey  C).  (a-b-c)  Performance  for  Rule  1,  2,  and  3,  as  a  function  of  the  morphed 

 version  of  the  relevant  feature.  (d,e,f)  Performance  for  Rule  1,  2,  and  3,  for  IO  model  with  high 

 color  noise.  This  parameter  regime  corresponds  to  the  case  where  the  model  is  fitted  to  the 

 monkey’s  behavior  (see  Methods).  (j,k,l)  Performance  for  Rule  1,  2,  and  3,  for  IO  model  with 

 low color noise. Here, we fixed KC=6. 
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 The  key  features  of  monkeys’  behavior  are  reproduced  by  a  hybrid  model  composing 

 inference over axes and incremental relearning over features 

 To  summarize,  the  main  characteristics  of  the  animals’  behavior  were  1)  rapid  learning  of  the 

 axis  of  response  after  a  block  switch,  2)  immediately  high  behavioral  performance  of  Rule  2,  the 

 only  rule  on  Axis  2,  and  3)  slower  relearning  of  Rules  1  and  3,  which  were  competing  using 

 different  features  on  Axis  1.  Altogether,  these  results  suggest  that  the  animals  learned  axes  and 

 features  separately,  with  fast  learning  of  the  axes  and  slower  learning  of  the  features.  One  way  to 

 conceive  this  is  as  a  Bayesian  inference  model  (similar  to  IO),  but  relaxing  the  assumption  that 

 the  animal  had  perfect  knowledge  of  the  underlying  rules  (i.e.,  all  of  the  stimulus-action-reward 

 contingencies).  We  propose  that  the  animals  maintained  two  latent  states  (e.g.,  one  corresponding 

 to  each  axis  of  response)  instead  of  the  three  rules  we  designed.  The  stimulus-action-reward 

 mappings  would  be  stable  for  Axis  2,  but  subject  to  continual  re-estimation  between  Rules  1  and 

 3  for  Axis  1.  To  test  this  hypothesis,  we  implemented  a  hybrid  model  that  inferred  the  axis  of 

 response  while  incrementally  learning  which  features  to  attend  for  that  response  axis  (Hybrid  Q 

 Learner,  “HQL”  in  the  Methods,  Fig.  S1).  In  the  model,  the  current  axis  of  response  was  inferred 

 through  Bayesian  evidence  accumulation  (as  in  the  IO  model)  .  Below  that,  at  the  feature  level, 

 the  HQL  model  used  incremental  learning  to  learn  a  set  of  feature-response  weights  for  each  axis 

 of response. 

 Intuitively,  this  model  could  explain  all  three  core  behavioral  observations.  First,  inference 

 allows  for  rapid  switching  between  axes.  Second,  because  the  weights  for  Axis  2  did  not  change, 

 the  model  was  able  to  immediately  perform  well  on  Rule  2.  Third,  because  Rules  1  and  3  shared 

 an  axis  of  response,  and,  thus,  a  single  set  of  feature-response  association  weights,  this 

 necessitated  relearning  associations  for  each  block,  reflected  in  the  animal’s  slower  learning. 

 Consistent  with  this  intuition,  the  HQL  model  provided  an  accurate  account  of  the  animals' 

 behavior. 

 First,  unlike  the  QL  model,  the  HQL  model  reproduced  the  fast  switch  to  the  correct  axis  (Fig. 

 4a,b  and  Fig.  S5a,b  and  Fig.  S6a-c,g-i).  Fitted  to  Monkey  S  behavior,  the  model  initially 

 responded  on  Axis  2  almost  always  immediately  after  each  block  switch  cue  (91%  in  Rule  1, 

 89%  in  Rule  2  and  Rule  3,  Fisher  test  against  monkey’s  behavior  p>0.05).  Then,  if  this  was 
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 incorrect,  the  model  typically  switched  to  the  correct  axis  within  5  trials  on  91%  of  blocks  of 

 Rule  1  and  Rule  3  (Fisher  test  against  behavior:  p>0.2  in  both  rules).  Similar  to  the  animals,  the 

 model  maintained  the  correct  axis  with  very  few  off-axis  responses  throughout  the  block  (on  trial 

 20,  1.4%  in  Rule  1  ;  1.3%,  in  Rule  2  ;  1.5%  in  Rule  3,  Fisher  test  against  monkey’s  behavior: 

 p>0.7 in all rules). 

 Second,  contrary  to  the  IO  model,  the  HQL  model  could  capture  the  animal’s  fast  performance 

 on  Rule  2  and  slower  performance  on  Rules  1  and  3  (Fig.  4c  and  Fig.  S5c).  As  detailed  above, 

 animals  were  significantly  better  on  Rule  2  than  Rules  1  and  3  on  the  first  20  trials.  The  model 

 captured  this  difference:  fitted  on  Monkey  S’s  behavior,  the  difference  in  average  percent 

 performance  on  the  first  20  trials  was  Δ=31  between  Rule  2  and  Rule  1,  and  Δ=29  between  Rule 

 2  and  Rule  3  (a  Fisher  test  against  monkey’s  behavior  gave  p>0.05  for  the  first  trial,  p>0.1  for 

 trial 20). 

 Third,  the  HQL  model  captured  the  trade-off  between  the  animals’  initial  and  asymptotic 

 behavioral  performance  in  Rule  2  and  Rule  3,  for  both  ‘morphed’  and  ‘prototype’  stimuli  (Fig. 

 4d-f  and  S5d-f).  Similar  to  the  animals,  the  resulting  difference  in  average  percent  performance 

 for  ‘morphed’  stimuli  was  Δ=26  for  the  first  50  trials  and  Δ=16  if  we  considered  the  last  trials  of 

 Rule  3  (respectively  Δ=19  and  Δ=9.9  for  ‘prototype’).  The  model  was  able  to  match  the  animals’ 

 performance  because  the  weights  for  Axis  2  did  not  change  from  one  Rule  2  block  to  another 

 (Fig.  S6e,k),  and  the  estimated  perceptual  accuracy  of  color  was  high  (high  concentration  of  the 

 VonMises  distribution)  to  account  for  the  high  performance  of  both  morphed  and  prototype 

 stimuli  (Fig.  4e  and  Fig.  S5e).  To  account  for  the  slow  re-learning  observed  for  Rules  1  and  3, 

 the  best-fitting  learning  rate  for  feature-response  associations  was  relatively  low  (Fig.  4d,f  and 

 Fig. S5d,f, Fig. S6d,f,j,l, Fig. S11). 

 14 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2022.01.29.478330doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.29.478330


 Figure  4:  The  hybrid  learner  (HQL)  accounts  both  for  fast  switching  to  the  correct  axis,  and 

 slow  relearning  of  Rule  1  and  Rule  3.  Model  fit  on  Monkey  S,  see  Fig.  S5  for  Monkey  C.  (a) 

 Trial  number  for  the  first  response  on  the  correct  axis  after  a  block  switch,  for  the  model 

 (compare  to  Fig.  1e  inset).  (b)  Proportion  of  responses  on  the  incorrect  axis  for  the  first  50  trials 

 of  each  block,  for  the  model  (compare  to  Fig.  1e).  (c)  Performance  of  the  model  for  the  three 

 rules  (compare  to  Fig.  1g).  (d,e,f)  Performance  for  Rule  1,  Rule  2  and  Rule  3,  as  a  function  of  the 

 morphed version of the relevant feature. 

 The  effect  of  stimulus  congruency  (and  incongruency)  provides  further  evidence  for  the 

 hybrid model 

 To  further  understand  how  the  HQL  model  outperforms  the  QL  and  IO  models,  we  examined  the 

 animal’s  behavioral  performance  as  a  function  of  the  relevant  and  irrelevant  stimulus  features. 

 The  orthogonal  nature  of  the  features  and  rules  meant  that  stimuli  could  fall  into  two  general 

 groups.  Congruent  stimuli  had  features  that  required  the  same  response  for  both  Rule  1  and  Rule 

 3  (e.g.,  a  green  bunny,  Fig.  1)  while  incongruent  stimuli  had  features  that  required  opposite 
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 responses  between  the  two  rules  (e.g.,  a  red  bunny).  Consistent  with  previous  work  55–59  ,  the 

 animals  performed  better  on  congruent  stimuli  than  incongruent  stimuli  (Fig.  5a  for  Monkey  S, 

 Fig.  S7a  for  Monkey  C).  This  effect  was  strongest  during  learning,  but  persisted  throughout  the 

 block  (Fig.  S8a,e):  during  early  trials  of  Rules  1  and  3,  the  monkeys’  performance  was 

 significantly  higher  for  congruent  stimuli  than  for  incongruent  stimuli  (gray  vs.  red  squares  in 

 Fig.  5b;  94%,  CI=[0.93,0.95]  versus  57%,  CI=[0.55,0.58]  respectively  ;  with  Δ=37  ;  Fisher  test 

 p<10(-4);  see  Fig.  S7b  for  Monkey  C).  Similarly,  the  animals  were  slower  to  respond  to 

 incongruent  stimuli  (Fig.  S9,  Δ=25ms  between  incongruent  and  congruent,  t-test  p<10(-4)).  In 

 contrast,  the  congruency  of  stimuli  had  no  effect  during  Rule  2  –  behavior  depended  only  on  the 

 stimulus  color,  suggesting  the  monkeys  ignored  the  shape  of  the  stimulus  during  Rule  2,  even 

 when  the  morph  level  of  the  color  was  more  difficult  (gray  vs.  red  squares  in  Fig  5c; 

 performance  was  92%,  CI=[0.90,0.93],  and  93%,  CI=[0.92,0.93]  for  congruent  and  incongruent 

 stimuli, respectively; with Δ=-0.73; Fisher test p=0.40 ; see Fig. S7c for Monkey C). 

 This  incongruency  effect  provided  further  evidence  for  the  HQL  model.  First,  pure  incremental 

 learning  by  the  QL  model  did  not  capture  this  result,  but  instead  predicted  an  opposite  effect. 

 This  is  because  incongruent  trials  were  four  times  more  likely  than  congruent  trials  (see 

 Methods).  As  the  QL  model  encodes  the  statistics  of  the  task  through  error-driven  updating  of 

 action  values,  the  proportion  of  congruent/incongruent  trials  led  to  an  anti-incongruency  effect  – 

 the  QL  model  fit  to  Monkey  S  predicted  worse  performance  on  congruent  than  incongruent  trials 

 (Fig.  5d,e  ;  45%  and  62%,  respectively;  Δ=-16  ;  Fisher  test  p<10(-4)  ;  see  Fig.  S7d,e  for  Monkey 

 C).  Furthermore,  for  the  same  reason,  the  QL  model  produced  a  difference  in  performance  during 

 Rule  2  (Fig.  5f  ;  54%  for  congruent  versus  64%  for  incongruent  ;  Δ=-10  ;  Fisher  test  p<10(-4); 

 see Fig. S7f for Monkey C, see also Fig. S8b,f for this effect throughout the block). 

 Second,  the  IO  model  also  did  not  capture  the  incongruency  effect.  In  principle,  incongruency 

 effects  can  be  seen  in  this  type  of  model  when  perceptual  noise  is  large,  because  incongruent 

 stimuli  are  more  ambiguous  when  the  correct  rule  is  not  yet  known.  But  for  the  same  reason  this 

 model  could  not  explain  slow  learning  of  Rule  3,  given  the  level  of  perceptual  noise  implied  by 

 asymptotic  performance  (Fig.  3f),  it  was  able  to  rapidly  determine  which  rule  was  in  effect  and 

 execute  it  accurately,  even  for  incongruent  trials.  Learning  quickly  reached  a  low  asymptotic 
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 performance,  for  both  congruent  and  incongruent  trials  (Fig.  5g,h  ;  75%  and  72%  respectively  ; 

 Δ=3.8 only ;  Fig. S7g,h for Monkey C). 

 In  contrast  to  the  QL  and  IO  models,  the  hybrid  HQL  model  captured  the  incongruency  effect. 

 As  the  weights  for  congruent  stimuli  were  the  same  for  both  Rules  1  and  3,  the  animals’ 

 performance  was  immediately  high  on  those  stimuli,  while  the  associations  for  incongruent 

 stimuli  had  to  be  relearned  on  each  block  (Fig.  S10).  The  model  fitted  to  Monkey  S  behavior 

 reproduced  the  greater  performance  on  congruent  than  incongruent  stimuli  (Fig.  5g,h  ;  92%  and 

 61%,  respectively;  Δ=31  ;  see  Fig.  S7g,h  for  Monkey  C).  As  with  the  monkey’s  behavior,  this 

 effect  persisted  throughout  the  block  (Fig.  S8d,h).  Finally,  the  HQL  model  captured  the  absence 

 of  incongruency  effect  in  Rule  2  (Fig.  5i,  green  versus  red  squares  ;  92%  and  93%,  respectively; 

 Δ=-1.0  ;  see  Fig.  S7i  for  Monkey  C),  as  there  was  no  need  to  update  the  Axes  2  weights  between 

 blocks. 

 As  a  result,  only  a  hybrid  model  performing  simultaneously  both  rule  switching  of  axis  and 

 rule-learning of features could account for the incongruency effect observed in the behavior. 
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 Figure  5:  Comparison  of  incongruency  effects  in  Monkey  S  and  behavioral  models  (QL,  IO,  and 

 HQL  models).  (a)  Performance  as  a  function  of  trial  number  for  Rule  1  and  Rule  3  (combined), 

 for  congruent  and  incongruent  trials.  (b)  Performance  for  Rule  1  and  3  (combined,  first  50  trials), 

 as  a  function  of  the  morph  level  for  both  color  (relevant)  and  shape  (irrelevant)  features.  Grey 

 boxes  highlight  congruent  stimuli,  red  boxes  highlight  incongruent  stimuli.  (c)  Performance  for 

 Rule  2,  as  a  function  of  the  morph  level  for  both  color  (relevant)  and  shape  (irrelevant)  features. 

 Note  the  lack  of  an  incongruency  effect.  (d,e,f)  Same  as  a-c  but  for  the  QL  model.  (g,h,i)  Same 

 as a-c for the IO model. (j,k,l) Same as a-c but for the HQL model. 

 Discussion 

 In  the  present  study,  we  investigated  rule  learning  in  two  monkeys  trained  to  switch  between 

 three  category-response  tasks.  Critically,  the  animals  were  only  informed  of  when  the  rule 

 switched  but  had  to  learn  which  new  rule  was  in  effect.  We  compared  two  classes  of  models  that 

 were  able  to  perform  the  task:  incremental  learning  and  inferential  rule  switching.  Our  results 

 suggested  that  neither  model  fit  the  animals’  performance  well.  Incremental  learning  was  too 

 slow  to  capture  the  monkeys’  rapid  learning  of  the  response  axis  after  a  block  switch.  It  was  also 

 unable  to  explain  the  immediately  high  behavioral  performance  on  Rule  2,  which  was  the  only 

 rule  requiring  responses  along  the  second  axis.  Inference  learning  was  unable  to  reproduce  the 

 difference  in  performance  for  two  rules  that  required  attending  to  the  same  feature  of  the 

 stimulus,  but  responding  on  different  axes  (Rule  2  and  Rule  3).  Finally,  neither  of  these  two 

 classes  of  models  considered  separately  could  explain  the  monkeys’  difficulty  for  incongruent 

 stimuli  across  rules  that  required  a  response  on  the  same  axes  (Rule  1  and  Rule  3).  Instead,  we 

 found  that  a  hybrid  model  that  inferred  axes  quickly  and  relearned  features  slowly,  was  able  to 

 capture  the  monkeys’  behavior.  This  suggests  the  animals  were  learning  the  current  axis  of 

 response  using  fast  inference  while  re-estimating  continuously  the  stimulus-response  mappings 

 within an axis. 

 The  superior  explanatory  power  of  the  hybrid  model  suggests  that  the  task  induces  animals  to 

 perpetually  exercise  both  rule  switching  and  rule  learning  –  even  in  a  well-trained  regime  in 

 which  they  could,  in  principle,  have  discovered  perfect  rule  knowledge.  The  model  suggests  that 
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 they  instead  must  perpetually  relearn  Rules  1  and  3,  because  they  appear  to  be  working  with  only 

 two  latent  states  (corresponding  to  the  two  axes  of  response)  instead  of  the  three  rules  we 

 designed.  These  two  latent  states  effectively  encode  Rule  2  (alone  on  its  response  axis)  on  one 

 hand,  and  a  combination  of  Rule  1  and  Rule  3  (sharing  a  response  axis)  on  the  other  hand. 

 Within  the  second  latent  state,  the  monkeys  continuously  updated  their  knowledge  of  the  rules’ 

 contingencies  (different  stimulus  features  to  action  mappings).  Why  animals  fail  to  discover  the 

 correct  rule  structure  (which  would  clearly  support  better  performance  in  Rule  1  and  3  blocks) 

 remains  a  question,  but  presumably  reflects  the  brain’s  mechanisms  for  discovering,  splitting,  or 

 differentiating  different  latent  states  on  the  basis  of  their  differing  stimulus-action-response 

 contingencies.  Clearly,  the  overlap  between  Rules  1  and  3  (sharing  an  axis  of  response)  makes 

 them  harder  to  differentiate  than  either  from  Rule  2:  for  this,  the  axis  is  the  most  discriminatory 

 feature  (being  discrete  and  also  under  the  monkey’s  own  explicit  control)  whereas  the 

 stimulus-reward  mappings  are  noisier.  Also,  perhaps  a  two-latent  state  regime  was 

 resource-rational  in  this  task,  considering  additional  limitations  relating  to  the  cost  of  control 

 (stability-flexibility  trade-off)  or  working  memory  during  training  for  multitasking  [70,72,73]. 

 Although  more  difficult,  perhaps  training  the  monkeys  on  the  four  possible  rules  permissible  by 

 the  experimental  design  (and  thus  adding  Rule  4,  sharing  the  axis  of  Rule  2  but  using  the  feature 

 shape,  cf.  missing  rule  in  Fig.  1d)  would  have  forced  encoding  latent  states  from  implicit 

 information,  including  stimuli  features,  not  restricted  by  the  dimensionality  of  motor  responses. 

 Finally,  with  a  different  training  protocol,  the  monkeys  may  have  eventually  encoded  Rule  1  and 

 Rule  3  as  separate  latent  states  (e.g.,  longer  training,  or  with  a  higher  ratio  of  incongruent  versus 

 congruent trials, or with less morphed and more prototyped stimuli). 

 Finally,  our  characterization  of  the  computational  contributions  of  rule  switching  and  rule 

 learning,  and  the  ability  to  observe  both  interacting  in  a  single  task,  leads  to  a  number  of  testable 

 predictions  about  their  neural  interactions.  First,  our  results  predict  that  there  should  be  two 

 latent  states  represented  in  the  brain.  This  makes  the  prediction  that  the  neural  representation  for 

 the  two  rules  competing  on  one  axis  (Rules  1  and  3)  should  be  more  similar  to  one  another  than 

 to  the  neural  representation  of  the  rule  alone  on  the  other  axis  (Rule  2).  This  would  not  be  the 

 case  if  the  neural  activity  was  instead  representing  three  latent  causes.  Furthermore,  future  neural 

 work  may  be  able  to  discriminate  between  cortical  and  sub-cortical  networks  for  rule  switching 
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 and  rule  learning.  Our  hybrid  model  suggests  there  may  be  a  functional  dissociation  for  rule 

 switching  and  rule  learning,  that  may  be  represented  in  distinct  networks.  One  hypothesis  is  that 

 prefrontal  cortex  may  carry  information  about  the  animal’s  trial  beliefs  (i.e.  over  the  two  latent 

 states)  in  a  similar  manner  as  perceptual  decision  making  when  accumulating  evidence  from 

 noisy  stimuli  60–63  .  Basal  ganglia  may,  in  turn,  be  engaged  in  the  learning  of  rule-specific 

 associations.  Alternatively,  despite  their  functional  dissociation,  future  work  may  find  both  rule 

 switching  and  rule  learning  are  represented  in  the  same  brain  regions  (e.g.,  prefrontal  cortex). 

 Finally,  inference  and  incremental  learning  may  be  distribution  functions,  requiring  the 

 cooperation of multiple brain regions. 
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 Supplementary figures 

 Figure S1:  the 3 models. 

 Figure  S2:  Incremental  learner  (QL)  model  fitted  on  Monkey  C  behavior  (see  Fig.  2  for  Monkey 

 S).  (a)  Trial  number  of  the  first  response  of  the  model  on  the  correct  axis  after  a  block  switch 

 (compare  to  Fig.  1f,  inset).  (b)  Proportion  of  responses  of  the  model  on  the  incorrect  axis  for  the 

 first  50  trials  of  each  block  (compare  to  Fig.  1f).  (c)  Model  performance  for  each  rule  (averaged 

 over  blocks,  compare  to  Fig.  1h).  Statistics  of  QL  model  fitted  on  Monkey  C:  First,  the  model 

 made  a  response  on  the  correct  axis  on  the  first  trial  with  a  probability  of  only  50%  in  Rule  1, 

 Rule  2  and  Rule  3.  The  model  performed  28%  of  off-axis  responses  after  20  trials  in  Rule  1,  and 

 25%  in  Rule  2  and  Rule  3.  Second,  the  model  performed  correctly  on  the  first  trial  in  only  25% 

 of  Rule  2  blocks,  and  reached  only  51%  after  20  trials.  As  a  result,  on  the  first  20  trials,  the 

 difference  in  average  percent  performances  was  only  Δ=3.3  between  Rule  2  and  Rule  1,  and  was 

 only Δ=-0.39 between Rule 2 and Rule 3. 
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 Figure  S3:  Proportion  of  responses  on  the  incorrect  axis  for  the  first  50  trials  of  each  block  for 

 (a)  IO  model  fitted  on  Monkey  S  and  (b)  IO  model  fitted  on  Monkey  C.  Insets:  Trial  number  of 

 the  first  response  on  the  correct  axis  after  a  block  switch.  Compare  to  Fig.  1e-h.  Statistics  of  IO 

 model  fitted  on  Monkey  C:  The  model  made  a  response  on  the  correct  axis  on  the  first  trial  with 

 a  probability  of  63%  in  Rule  1,  38%  in  Rule  2  and  60%  in  Rule  3.  The  model  maintained  the 

 correct  axis  with  very  few  off-axis  responses  throughout  the  block  (after  trial  20,  1.3%  in  Rule  1 

 ; 6.8%, in Rule 2 ; 1.3% in Rule 3, Fisher test against monkey behavior: p>0.5 in all rules). 
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 Figure  S4:  The  ideal  observer  (IO),  slow  or  fast,  but  not  both.  Fitted  on  Monkey  C  behavior 

 (see  Fig.  3  for  Monkey  C).  (a-b-c)  Performance  for  Rule  1,  2,  and  3,  as  a  function  of  the  morphed 

 version  of  the  relevant  feature.  (d,e,f)  Performance  for  Rule  1,  2,  and  3,  for  IO  model  with  high 

 color  noise.  This  parameter  regime  corresponds  to  the  case  where  the  model  is  fitted  to  the 

 monkey’s  behavior  (see  Methods).  (j,k,l)  Performance  for  Rule  1,  2,  and  3,  for  IO  model  with 

 low  color  noise.  Here,  we  fixed  KC=6.  Statistics  on  Monkey  C:  There  was  a  discrepancy 

 between  the  performance  of  ‘morphed’  stimuli  in  Rule  2  versus  Rule  3,  with  a  difference  in 
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 average  percent  performances  of  Δ=33  for  the  first  50  trials  in  both  rules  (p<10(-4)),  and  still 

 Δ=24  if  we  considered  Rule  2  against  the  last  trials  of  Rule  3  (p<10(-4)).  The  same  discrepancy 

 was  observed  between  the  performance  of  ‘prototype’  stimuli  in  Rule  2  versus  Rule  3,  with  a 

 difference  in  average  percent  performances  of  Δ=27  for  the  first  50  trials  in  both  rules 

 (p<10(-4)),  and  still  Δ=21  if  we  considered  the  last  trials  of  Rule  3  (p<10(-4)).  Statistics  of  IO 

 model  fitted  on  Monkey  C:  While  the  IO  model,  using  best-fit  parameters,  reproduced  poor 

 asymptotic  performance  in  Rule  3  by  increasing  color  noise  (low  concentration),  it  then  failed  to 

 capture  the  high  performance  on  Rule  2  early  on.  The  resulting  difference  in  performance  for 

 ‘morphed’  stimuli  was  only  Δ=4.8  for  the  first  50  trials  and  Δ=-7.2  if  we  considered  the  last  trials 

 of Rule 3 (respectively Δ=5.1 and Δ=-8.6 for ‘prototype’). 

 Figure  S5:  The  hybrid  learner  (HQL)  accounts  both  for  fast  switching  to  the  correct  axis,  and 

 slow  relearning  of  Rule  1  and  Rule  3.  Model  fit  on  Monkey  C,  see  Fig.  4  for  Monkey  S.  (a)  Trial 

 number  for  the  first  response  on  the  correct  axis  after  a  block  switch,  for  the  model  (compare  to 
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 Fig.  1f  inset).  (b)  Proportion  of  responses  on  the  incorrect  axis  for  the  first  50  trials  of  each 

 block,  for  the  model  (compare  to  Fig.  1f).  (c)  Performance  of  the  model  for  the  three  rules 

 (compare  to  Fig.  1h).  (d,e,f)  Performance  for  Rule  1,  Rule  2  and  Rule  3,  as  a  function  of  the 

 morphed  version  of  the  relevant  feature.  Statistics  of  HQL  model  fitted  on  Monkey  C:  First,  The 

 model  made  a  response  on  the  correct  axis  on  the  first  trial  with  a  probability  of  50%  in  Rule  1, 

 54%  in  Rule  2  and  47%  in  Rule  3.  The  model  maintained  the  correct  axis  with  very  few  off-axis 

 responses  throughout  the  block  (after  trial  20,  1.5%  in  Rule  1  ;  1.7%,  in  Rule  2  ;  1.5%  in  Rule  3, 

 Fisher  test  against  monkey’s  behavior:  p>0.5  in  all  rules).  Second,  the  HQL  model  could  capture 

 the  animal’s  fast  performance  on  Rule  2  and  slower  performance  on  Rules  1  and  3:  the  difference 

 in  average  percent  performances  on  the  first  20  trials  was  Δ=28  both  between  Rule  2  and  Rule  1 

 and  between  Rule  2  and  Rule  3.  Third,  not  only  the  HQL  model  captured  the  performance 

 ordering  on  morphed  and  prototype  stimuli  for  each  rule  separately,  but  the  model  was  able  to 

 trade-off  between  initial  and  asymptotic  behavioral  performance  in  Rule  2  and  Rule  3,  for  both 

 ‘morphed’  and  ‘prototype’  stimuli.  The  resulting  difference  in  performance  for  ‘morphed’ 

 stimuli  was  Δ=29  for  the  first  50  trials  and  Δ=24  if  we  considered  the  last  trials  of  Rule  3 

 (respectively Δ=29 and Δ=22 for ‘prototype’). 
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 Figure S6:  The hybrid learner fitted on Monkey S: belief over axes and feature weights values. 
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 Figure  S7:  Comparison  of  incongruency  effects  in  Monkey  C  and  behavioral  models  (QL,  IO 

 and  HQL  models).  (a)  Performance  as  a  function  of  trial  number  for  Rule  1  and  Rule  3 

 (combined),  for  congruent  and  incongruent  trials.  (b)  Performance  for  Rule  1  and  3  (combined, 

 first  50  trials),  as  a  function  of  the  morph  level  for  both  color  (relevant)  and  shape  (irrelevant) 

 features.  Grey  boxes  highlight  congruent  stimuli,  red  boxes  highlight  incongruent  stimuli.  (c) 

 Performance  for  Rule  2,  as  a  function  of  the  morph  level  for  both  color  (relevant)  and  shape 

 (irrelevant)  features.  Note  the  lack  of  an  incongruency  effect.  (d,e,f)  Same  as  a-c  but  for  the  QL 

 model.  (g,h,i)  Same  as  a-c  for  the  IO  model.  (j,k,l)  Same  as  a-c  but  for  the  HQL  model.  Statistics 

 on  Monkey  C:  During  early  trials  of  Rules  1  and  3,  the  monkeys’  performance  was  significantly 

 higher  for  congruent  trials  than  for  incongruent  trials  (gray  vs.  red  squares  ;  93%,  CI=[0.91,0.95] 

 versus  49%,  CI=[0.47,0.51]  respectively  ;  with  Δ=44  ;  Fisher  test  p<10(-4)).  There  was  no 

 difference  in  performance  between  congruent  and  incongruent  stimuli  during  Rule  2  (grey  vs.  red 

 squares  ;  performance  was  94%,  CI=[0.91,0.95],  and  91%,  CI=[0.89,0.92],  respectively;  with 

 Δ=2.7  ;  Fisher  test  p=0.07).  Statistics  of  QL  model  fitted  on  Monkey  C:  The  model  performed 

 worse  on  congruent  than  incongruent  trials  in  Rule  1  and  Rule  3  (41%  and  52%,  respectively; 

 Δ=-10  ;  Fisher  test  p<10(-4)),  against  our  behavioral  observations.  Furthermore,  the  model 

 produced  a  difference  in  performance  during  Rule  2  (48%  for  congruent  versus  54%  for 

 incongruent  ;  Δ=-6.1  ;  Fisher  test  p<10(-4)).  Statistics  of  IO  model  fitted  on  Monkey  C:  Learning 

 quickly  reached  a  low  asymptotic  performance  in  Rule  1  and  Rule  3,  for  both  congruent  and 

 incongruent  trials  (69%  and  67%  respectively  ;  Δ=2.5  only).  Statistics  of  HQL  model  fitted  on 

 Monkey  C:  The  model  reproduced  the  greater  performance  on  congruent  than  incongruent 

 stimuli  in  Rule  1  and  Rule  3  (94%  and  53%,  respectively;  Δ=41).  It  also  captured  the  absence  of 

 incongruency effect in Rule 2 (green versus red squares ; 91% and 91%, respectively; Δ=0.081). 
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 Figure  S8:  Incongruency  effect  for  Monkey  S  (a),  Monkey  C  (e)  and  models  (respectively  fitted 

 on  Monkey  S:  b-d  ;  and  on  Monkey  C:  f-h),  for  trials  50  to  200.  Each  plot  represent  the 

 performance  for  Rule  1  and  Rule  3  (combined),  as  a  function  of  morphs  for  both  relevant  and 

 irrelevant features. Grey corners for congruent stimuli, red corners for incongruent stimuli. 

 Figure  S9:  Reaction  times  for  Rule  2  blocks,  the  first  50  trials  of  Rule  1/3  blocks,  and  the  trials 

 50  to  200  of  Rule  1/3  blocks  as  a  function  of  the  relevant  and  irrelevant  features  of  the  morphed 

 stimulus  presented.  Top  row:  Monkey  S,  bottom  row:  Monkey  C.  Statistics  on  Monkey  C: 

 Δ(ms)=14 between incongruent and congruent, t-test p<10(-4)). 
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 Figure S10:  Choice probabilities for the models fitted on Monkey S. 
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 Figure S11:  Models parameters. 
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Methods

1 Experimental design

Two rhesus macaques were faced with a compositional category-response task. In each trial, the
monkeys made a saccade a ∈ Actions with Actions = {Upper−Left, Upper−Right, Lower−
Left, Lower − Right} (Fig. 1a) in response to a two-dimensional stimulus combining a color C
and a shape S (Fig. 1b). They received a deterministic reward r ∈ {0, 1}. The correct response
depended on the rule in effect in blocks of 50-300 trials for Monkey S, and 40-435 trials for
Monkey C. Each stimulus dimension was divided into two categories defined by two prototypes
(red or green, bunny or tee). Creating a morph continuum between the prototypes allowed us to
manipulate stimulus difficulty for each dimension independently, and we varied the morph levels
across trials. Switches between blocks of trials were cued but the correct rule in each block was
hidden. Three rules were used R = {R1, R2, R3} (Fig. 1c,d). Each rule required to attend to
only one feature of the stimulus, and to respond only on one axis (A = {Axis1, Axis2}). Rule 1
(R1) required a response on a diagonal, Axis 1, to the shape of the stimulus. Rule 2 (R2) required a
response on the other diagonal, Axis 2, to the color of the stimulus. Rule 3 (R3) required a response
on Axis 1 to the color of the stimulus. Rule 2 and Rule 3 used the same feature of the stimulus,
different from Rule 1. Importantly, Rule 1 and Rule 3 shared the same axis of response (Axis 1),
different from Rule 2 (Axis 2). Rule 1 and Rule 3 blocks were randomly selected and interleaved by
a Rule 2 block, such that the axis of response always changed following a block switch. Congruent
trials used stimuli predicting the same correct response across Rule 1 and Rule 3 (e.g. a green
bunny). Incongruent trials used stimuli predicting the opposite correct responses across Rule 1 and
Rule 3 (e.g. a red bunny). There were four times more incongruent trials than congruent trials in
the experiment.

A performance criterion of 70% on the last 100 trials (on ”morphed” and ”prototype” sepa-
rately) was chosen to trigger a block switch from a Rule 1 or Rule 3 block to a Rule 2 block. Rule
1 and Rule 3 blocks were on average 199 trials long for Monkey S and 222 trials long for Monkey
C. As the monkeys were performing very well in Rule 2 blocks, these were shorter (on average,
56 trials long for Monkey S and 52 trials long for Monkey C). The behavioral data for Monkey S
corresponds to 20 days, with an average of 14 blocks per day. The behavioral data for Monkey C
corresponds to 15 days for Monkey C, with an average of 6.5 blocks per day.

2 Modeling noisy perception of color and shape, independently

All the models studied below model stimulus perception in the same way (Fig. S1). The color
and shape of each stimulus presented to the animals are either the prototype features sTc ∈
{red, green} and sTs ∈ {bunny, tee}, or a morphed version of them. The presented stimulus

39

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2022.01.29.478330doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.29.478330


is noted sM = (sMc, sMs). We hypothesize that the monkeys perceive a noisy version of it, noted
sK = (sKc, sKs). We model it by drawing two samples from two Von Mises distributions, centered
around each feature (color and shape), parameterized by the concentrations κc and κs respectively.
The models estimate each initial feature presented by computing its posterior distribution, given
the perceived stimulus, i.e. by Von Mises distributions centered on sKc and sKs, with same con-
centrations κc and κs.

∀i ∈ {c, s}

Pr(sKi
| sMi

) = V(sMi
, κi) (1)

and so :
Pr(sMi

| sKi
) = V onMises(sKi

, κi) (2)

with, Io being the modified Bessel function of order zero:

V onMises(µ, κ) =
exp(κ cos(x− µ))

2πIo(κ)
(3)

3 Modeling action-selection

All the models studied below use the same action-selection stage. Given the perceived stimulus at
each trial sK = (sKc, sKs), an action is chosen so as to maximize the expected reward E(r | sK)
by computing maxa Pr(r = 1 | sK, a) which corresponds to maximizing the probability of getting
a reward, given the perceived stimulus. We use the notation Q(sK, a) = E(r(a) | sK) as in [1; 2]
and refer to these values as Q values. Two fixed parameters implement an epsilon-greedy softmax
action-selection rule: the lapse rate ϵ (for random exploration) and the inverse temperature β (for
directed exploration depending on the actions’ relative expected values [2]).

The action-selection rule is:

∀a ∈ Actions

Pr(a | sK) =
ϵ

4
+ (1− ϵ) · softmax[Q(sK, a)] (4)

The lapse rate ϵ is directly estimated from the data, by computing the proportion of trials where
the incorrect axis of response is chosen, asymptotically. It is evaluated to 0.02 for both Monkey S
and Monkey C. The inverse temperature of the softmax β is also fixed (β = 10), and allows the
algorithm to be differentiable (cf. use of Stan below).

40

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2022.01.29.478330doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.29.478330


4 Fit with Stan

All our models shared common noisy perceptual input and action selection stages (Fig. S1, and
Methods). The models however differed in the intervening mechanism for dynamically mapping
stimulus to action value (see also Fig. S1). Because of noise perception at each trial (Eq. 1),
and because the cumulative distribution function of a Von Mises is not analytic, the models are
fitted with Monte Carlo Markov chains (MCMC) using Stan [3]. Each day of recording is fitted
separately, and the mean and standard deviation reported in Fig. S11 are between days. Fitting
scripts are available on github at [link]. We validated convergence (all R-hat< 1.05) and efficiency
diagnostics (all effective sample size > 100) of the models’ fits .

Models’ plots correspond to an average of 1000 simulations of each day of the dataset (with
the same order of stimuli presentation). Statistics reported in the article were done with Fisher’s
exact test (except a t-test for reaction times, Fig. S9).

5 Incremental learner: QL model

This model corresponds to Fig. 2 (Monkey S) and S2 (Monkey C). It also appears in Fig. 5, S7,
S8, S10.

In this model the agent is relearning each rule after a block as a mapping between stimuli and
actions, by computing a stimulus-action value function as a linear combination of binary feature-
response functions ϕ(sK, a) with feature-response weights w. This implements incremental learn-
ing while allowing for some generalization across actions. The weights are updated through gra-
dient descent (see [4], chapter 9). The weights are reset from one block to the other, and the initial
values for each reset are set to the null. Fitting them does not change the results (see paragraph 5.4
below).

5.1 Computation of the feature-response matrix

Given a morph perception at trial t, sK = (sKc, sKs), a feature-response matrix is defined as:

ϕ(sK) =



xC 0 0 0

xS 0 0 0

0 xC 0 0

0 xS 0 0

0 0 xC 0

0 0 xS 0

0 0 0 xC

0 0 0 xS


(5)
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where xC ∈ {−1, 1} depends on whether the perceived morph for color sKc is classified as green
or red (Eqs. 1 and 2), and xS ∈ {−1, 1} whether the perceived morph for shape sKs is classified
as tee or bunny (Eqs. 1 and 2). In order for the algorithm to remain differentiable, we approximate
{−1, 1} with a sum of sigmoids (see scripts at [link]). Each column of the matrix ϕ(sK) is written
ϕ(sK, a) below and corresponds to an action a ∈ Actions.

5.2 Linear computation of Q values and action selection

In order to compute Q values, the feature-response functions ϕ(sK, a) are weighted by the feature-
response weight vector w = (w1, .., w8) (see [4], equation (9.8)):
∀a ∈ Actions

Q(sK, a) = w · ϕ(sK, a) (6)

Action selection is done through the epsilon-greedy softmax rule (Eq. 4).
Thus asymptotic learning of Rule 1 would require w = [0, 1, 0,−1, 0, 0, 0, 0]. Learning Rule 2

would require w = [0, 0, 0, 0,−1, 0, 1, 0]. Learning Rule 3 would require w = [−1, 0, 1, 0, 0, 0, 0, 0].

5.3 Weight vector update

Once an action at is chosen and a reward rt is received at trial t, the weights are updated through
gradient descent with learning rate α (see [4], equation (9.7)).

w← w + α(rt −Q(sK, at))ϕ(sK, at) (7)

5.4 Parameter values

β and ϵ are fixed to respectively 10 and 0.02. See Fig. S11 for parameter values. As predicted
from the behavior, noise perception is higher for shape than for color (κC > κS). The initial weight
vector w0 is set to the null at the beginning of each block day. Fitting these weights instead gives
the same results (as then w0 has a mean=[-0.070,0.031,0.093,-0.054,-0.081,-0.022,0.062,-0.0048]
for Monkey S and w0 has a mean=[-0.099,0.070,0.069,-0.089,-0.053,-0.011,0.030,-0.0098] for
Monkey C).

6 Optimal Bayesian inference over rules: IO model

This model corresponds to Fig. 3, and S3 ; also appears in Fig. 5, and S4, S7, S8, S10.
In this model, we assume a perfect knowledge of combination mappings between prototype

stimuli and actions as rules. Learning is discovering which rule is in effect by Bayesian inference.
This is done through learning, over the trials, the probability for each rule to be in effect in a
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block (or belief ) from the history of stimuli, actions and rewards. At each trial, this belief is
linearly combined to the likelihood of a positive reward given the stimulus to compute a value for
each action. This likelihood encapsulates knowledge of the three experimental rules. An action is
chosen as per described above in Eq. 4. The beliefs over rules are then updated through Bayes rule
using the likelihood of the reward received, given the chosen action and the stimulus perception.
Once the rule is discovered, potential errors thus only depends on possible the miscategorization
of the stimulus features (Eqs. 1 and 2), or eventually on exploration (Eq. 4).

6.1 Belief over rules

The posterior probability of rule R ∈ R to be in effect in the block is called the belief over the
rule b(R) = Pr(R | sK, a, r), given the perceived stimulus sK, the action a and the reward r. The
beliefs b(R) at the beginning of each block are initialized to b0 = [b1, 1 − b1 − b3, b3] where b1

and b3 are fitted, to test for a systematic initial bias towards one rule.

6.2 Computation of values

The beliefs are used to compute the Q values for the trial:

∀a ∈ Actions

Pr(r = 1 | sK, a) =
∑
R∈R

Pr(r = 1, R | sK, a)

=
∑
R∈R

Pr(r = 1 | sK, a, R) · b(R)
(8)

with (marginalization over the possible morph stimuli presented):

∀R ∈ R

Pr(r | sK, a, R) =
∑
sM

Pr(r, sM | sK, a, R)

=
∑
sM

Pr(r | sM, a, R)Pr(sM | sK)
(9)

Noting pC = p(sMc = red | sKc) ; and pS = p(sMs = bunny | sKs), gives:

Q(sK, a = Upper − Left) = pS · b(R1) + (1− pC) · b(R3) (10)

Q(sK, a = Upper −Right) = (1− pS) · b(R1) + pC · b(R3) (11)

Q(sK, a = Lower − Left) = (1− pC) · b(R2) (12)
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Q(sK, a = Lower −Right) = pC · b(R2) (13)

6.3 Belief update

From making an action at ∈ Actions, the agent receives a reward rt ∈ {0, 1}, and the beliefs over
rules are updated:

∀R ∈ R
b(R)← Pr(rt | sK, at, R) · b(R) (14)

with Pr(rt | sK, at, R) the likelihood of observing reward rt for the chosen action at.
Note that because of the symmetry of the task, Pr(¬rt | sK, at, R) = 1− Pr(rt | sK, at, R).

6.4 Parameter values

β and ϵ are respectively fixed to 10 and 0.02. See Fig. S11 for parameter values. As predicted
from the behavior, there is an initial bias for Rule 2 for the model fitted on Monkey S behavior
(b2 > b3 > b1). Also, noise perception is higher for shape than for color for both monkeys
(κC > κS). In the version of the model with low perceptual color noise (Fig. 3 and S3), all the
parameters remain the same, except that we fix κC = 6 for all simulated days.

7 Hybrid incremental learner: HQL model

The hybrid incremental learner combines inference over axes with incremental learning, using a
Q-learning with function approximation to relearn the likelihood of rewards given stimuli per axis
of response. This model corresponds to Fig. 4 and S5 ; also appears in Fig. 5, S6, S7, S8, S10.

7.1 Belief over axes

The posterior probability of an axis A ∈ A to be the correct axis of response in a block is called
the belief over axis b(A) = Pr(A | sK, a, r), given the perceived stimulus sK, the action a and the
reward r. The beliefs over axes are initialized at the beginning of each block to b0 = (bax, 1−bax).

44

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2022.01.29.478330doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.29.478330


7.2 Computation of the feature-response matrix

As for the incremental learner above, given a morph perception at trial t, sK = (sKc, sKs), a
feature-response matrix is defined as:

ϕ(sK) =



xC 0 0 0

xS 0 0 0

0 xC 0 0

0 xS 0 0

0 0 xC 0

0 0 xS 0

0 0 0 xC

0 0 0 xS


(15)

where xC ∈ {−1, 1} depends on whether the perceived morph for color sKc is classified as green
or red (Eqs. 1 and 2), and xS ∈ {−1, 1} whether the perceived morph for shape sKs is classified
as tee or bunny (Eqs. 1 and 2). Each column of the matrix ϕ(sK) is written ϕ(sK, a) below and
corresponds to an action a ∈ Actions.

7.3 Computation of values

The beliefs are used to compute the Q values for the trial:

∀a ∈ Actions

Q(sK, a) = Pr(r = 1 | sK, a) =
∑
A∈A

Pr(r = 1, A | sK, a)

=
∑
A∈A

Pr(r = 1 | sK, a, A) · b(A)
(16)

Contrary to the ideal observer, here the likelihood of reward per action Pr(r = 1 | sK, a, A) is
learned through function approximation.

Pr(r = 1 | sK, a, A) = sigmoid(w · ϕ(sK, a)) (17)

Action selection is done through the epsilon-greedy softmax rule (Eq. 4).

7.4 Weight vector update

Once an action at is chosen and a reward rt is received at trial t, the weights are updated through
gradient descent with learning rate α (see [4], equation (9.7)).
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pt = Pr(r = 1 | sK, at, At)) (18)

w← w + α(rt − pt)ϕ(sK, at)pt(1− pt) (19)

As learning improved steadily in this model contrary to the asymptotic behavior of monkeys,
we implemented a weight decay to asymptotic values w0:

w← (1− η) ·w + η ·w0 (20)

Note that resetting the weights at the beginning of each block and adding a weight decay (or
a learning rate decay) provide similar fits to the dataset. Also, this decay can be included in the
previous two models without any change of our results and conclusions.

7.5 Belief update

From making an action at ∈ Actions, the agent receives a reward rt ∈ {0, 1}, and the beliefs over
axes are updated:

∀A ∈ A
b(A)← Pr(rt | sK, at, A) · b(A) (21)

with Pr(rt | sK, at, A) the likelihood of observing reward rt for the chosen action at.

7.6 Parameter values

β and ϵ are fixed to respectively 10 and 0.02. As predicted from the behavior, noise perception is
higher for shape than for color for both monkeys (κC > κS). Also, the model fitted on Monkey S
behavior has an initial bias for Axis2 (bax < 0.5). For fitting the model on Monkey C behavior,
we fix bax = 0.5. Finally, the fitted values of w0 correspond to an encoding of an average between
Rule 1 and Rule 3 on Axis1, and an encoding of Rule 2 on Axis2, for both monkeys.
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