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Summary Blurb 

 
There are at least 14 AM subtypes; their frequency, along with other immune cells, are 
highly conserved across individuals suggesting a specific niche exists for each 
leukocyte population. 
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Abstract  

Alveolar macrophages (AMs) reside on the luminal surface of the airways and alveoli, 

ensuring proper gas exchange by ingesting cellular debris and pathogens, and 

regulating inflammatory responses. Therefore, understanding the heterogeneity and 

diverse roles played by AMs, interstitial macrophages (IMs), and recruited monocytes is 

critical for treating airway diseases. We performed single-cell RNA sequencing on 

113,213 bronchoalveolar lavage cells from four healthy and three uninflamed cystic 

fibrosis subjects and identified FOLR2+SELENOP+ and SPP1+PLA2G7+ IMs, monocyte 

subtypes, and dendritic cell 1 (DC1), DC2, migDCs, plasmacytoid DCs, lymphocytes, 

epithelial cells, and four AM superclusters (families) based on the expression of IFI27 

and APOC2 genes. These 4 AM families have at least eight distinct functional members 

(subclusters) named after their differentially expressed gene(s): IGF1, CCL18, CXCL5, 

Cholesterol, Chemokine, Metallothionein, Interferon and small-cluster AMs. 

Interestingly, the Chemokine cluster further divides with each subcluster selectively 

expressing a unique combination of chemokines. One of the most striking observations, 

besides the heterogeneity, is the conservation of AM family members in relatively equal 

ratio across all AM superclusters and individuals. Transcriptional data and TotalSeq 

technology were used to investigate cell surface markers that distinguish resident AMs 

from recruited monocytes. Lastly, other AM datasets were projected onto our dataset. 

Similar AM superclusters and functional subclusters were observed, along with changes 

in AM subclusters in individuals infected with COVID-19. Overall, functional 

specializations of the AM subclusters suggest that there are highly regulated AM niches 

with defined programming states, highlighting a clear division of labor.  
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Graphical Abstract  
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Introduction  

Alveolar macrophages (AMs) are the primary phagocytes within the airspace of the 

lungs. In response to inflammatory stimuli, AMs secrete cytokines and chemokines to 

initiate the immune response. Subsequently, AMs and recruited monocytes contribute to 

the resolution of the inflammatory response to prevent excess damage (Fujii et al., 

2021; Hetzel et al., 2021; Janssen et al., 2011; Mould et al., 2017). In addition, they play 

a major role in maintaining lipid homeostasis in the lung, which is essential for adequate 

gas exchange and alveolar epithelial integrity. 

AMs may hold keys to understanding, preventing, and curing several diseases. They 

derive from prenatal monocytes, self-renew, and have shown remarkable plasticity by 

altering their transcriptome in response to the environmental changes (Aegerter et al., 

2020; Arafa et al., 2022; Jakubzick et al., 2013; Janssen et al., 2011; Misharin et al., 

2017; Mould et al., 2019; Yona et al., 2013). Their transcriptional profile is altered in 

various inflammatory lung diseases, including asthma (Fricker and Gibson, 2017; Hetzel 

et al., 2021), chronic obstructive pulmonary disease (O'Beirne et al., 2020), cystic 

fibrosis (CF) (McFarland and Rosenberg), and cancer (Bonfield, 2015; Bruscia and 

Bonfield, 2016; Deriy et al., 2009; Hey et al., 2021; Li et al., 2021; María Casanova-

Acebes, 2021). Therefore, enhancing our current understanding of the normal cellular 

composition and functional diversity of AM subtypes will help characterize disease-

related transcriptional changes more precisely and assess targeting specifically a given 

AM subtype to restore immune balance. 

Single-cell RNA sequencing (scRNA-seq) technology is critical for accomplishing these 

goals. AMs have traditionally been thought to be a uniform population of cells that can 

be activated by different disease states (Mould et al., 2019). However, recent scRNA-

seq studies have revealed a rich diversity in AMs in bronchoalveolar lavage fluid (BALF) 

from healthy subjects, with multiple subpopulations that have yet to be characterized in 

other diseases (Mould et al., 2021).  

Our study was designed to investigate the immune cell populations of BALF and 

potential differences in individuals with mild CF compared to healthy controls (HC). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.01.30.478325doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.30.478325
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

7

Interestingly, unbiased analysis of our scRNA-seq dataset identified four AM 

superclusters based on the expression of interferon alpha inducible protein 27 (IFI27) 

and apolipoprotein C2 (APOC2) genes, which has not been previously described. Each 

supercluster contains four shared subclusters named after their differentially expressed 

genes (DEGs): IGF1.AMs, CCL18.AMs, CXCL5.AMs, and Cholesterol.AMs. Beyond the 

four AM superclusters, we found four additional clusters, which can categorize into the 

AM superclusters: CK.AMs, MT.AMs, IFN.AMs, Cyc.AMs. The most striking AM 

subcluster was the CK.AMs (Chemokine cluster), which further divides into four 

subclusters with each selectively expressing a distinct combination of chemokines. 

Hence, there appears to be a division of labor in leukocyte recruitment. Moreover, the 

Chemokine subclusters suggest that there are distinct transcription factors (based on 

our regulon analysis) that regulate their differentiation and programming. This pattern is 

analogous to what is found in T cell biology, where distinct transcription factors regulate 

the cell differentiation pathway to produce a defined combination of cytokines known as 

Th1, Th2, Th17, etc. Overall, our dataset opens many new areas for further 

investigation, including addressing how resident macrophage and monocyte subtypes 

are altered during disease and what factors regulate their programming.  
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Results 

BAL cell populations are conserved across healthy and mild CF subjects 

To assess the cellular composition in the non-diseased airspace versus that with CF, 

four HCs and three subjects with mild CF underwent BAL (donors, Table 1). All three 

CF subjects had two copies of the F508del CFTR mutation. Study subjects were closely 

age-matched. CF subjects were selected for this study based on well-preserved lung 

function and general good health. To investigate the impact of aberrant CFTR function 

on the immune cell composition of the lung, we enrolled CF subjects without significant 

lung inflammation and who were not on CFTR modulator treatment. Two subjects had 

been on CFTR modulator treatment previously but stopped more than 12 months prior 

to enrollment due to side effects, while the third subject declined treatment with a CFTR 

modulator due to overall good health. The CF subjects in this study were on a stable 

medication regimen and had no exacerbations within the past 24 months.  

BALF samples were spun, washed, and immediately loaded onto the 10X platform for 

scRNA-seq. Sequenced cells were processed, normalized, and integrated using the 

Seurat package (details in Methods). Uniform manifold approximation and projection 

(UMAP) of all seven samples illustrates a similar cluster distribution across all subjects 

(Figure 1A). Using a curated gene list, we identified twelve major cell types (Complete 

list of genes: Table S1 and Figure 1B-1D) (Brown et al., 2019; Cai et al., 2020; Collin 

and Bigley, 2018; Collin et al., 2013; Gautier et al., 2012; Gibbings et al., 2015; 

Gibbings et al., 2017; Jin et al., 2019; Leach et al., 2020; Mould et al., 2021; Schupp et 

al., 2020; Villani et al., 2017). As anticipated, the most abundant cell type is the alveolar 

macrophage, followed by monocytes, cycling myeloid cells, dendritic cell (DC) 2, FOLR2 

and SPP1 interstitial macrophages, lymphocytes, epithelial cells, migratory DCs, DC1, 

plasmacytoid DCs, and cycling lymphoid cells (Figure 1C-1D).  Next, MetaNeighbor 

analysis was used to confirm the classification and replicability of the identified clusters 

within our dataset and with two other recently published datasets, Mould et al., and 

Schupp et al. (Crow et al., 2018; Mould et al., 2021; Schupp et al., 2020). Within our 

dataset, samples derived from HC and CF subjects demonstrated a strong correlation 
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across all cell types (Figure 1E). Similarly, our HC sample macrophages, monocytes, 

and epithelial cells strongly correlates with healthy cell types from Mould et al., as do 

our CF sample cell types with CF sputum cell types (Figure 1F-1G). All in all, curated 

genes and robust alignment of our cells with previous studies support the identification 

of twelve cell types in healthy and CF BALF. 

Four AM superclusters and shared subclusters co-exist in the airspace of the 

lungs 

To define AM heterogeneity, we isolated and re-clustered the AM population. Unbiased 

clustering defined 8 AM clusters. Some clusters were previously described (Gardai et 

al.), such as the Metallothionein, Chemokine, IFN-reacting, and Cycling AM clusters. 

(Figure 2A-2D). In addition, we identified 4 novel AM superclusters based on the 

differential expression of two genes: IFI27 and APOC2 (Figure 2B-2E): IFI27+APOC+ 

AMs.S1, IFI27+APOC- AMs.S2, IFI27-APOC+ AMs.S3, and IFI27-APOC- AMs.S4. 

Besides IFI27 and APOC2, the four AM superclusters share the same top DEGs IFI6, 

CTSC, RPS4X, RBP4, FBP1, and GSN, which suggest anti-microbial and metabolic 

function (i.e., common macrophage phenotypes) (Figure 2D).  

Hierarchically, each AM supercluster contains 4 shared subclusters. The subclusters 

were named after their top DEG(s): IGF1, CCL18, CXCL5, and Cholesterol (based on 

the expression of cholesterol-biosynthesis-related genes) (Figure 3A-3C). AM 

Supercluster 4 (AMs.S4) contained two additional subclusters, GF and SNHG.  Cells in 

the GF subcluster express the epithelial growth factor AREG and TGFb superfamily 

ligands, including, GDF15. This is consistent with observations made in mice, where 

Areg-secreting AMs contribute to tissue restoration after injury (Minutti et al., 2019; Xu 

et al., 2016). Whereas cells in SNHG expressed genes encoding small nucleolar RNA 

host genes (SNHGs) and genes encoding nuclear transcriptional regulators and 

transcription factors. The last subcluster referred to as the small-subcluster within the 

supercluster, noting a small ‘s’ after AMs (For example, AMs.s# to differentiate them 

from their parental superclusters, AMs.S#) had hereditary DEGs, similar to their 
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corresponding superclusters. This small-subcluster was the supercluster minus all other 

subclusters (Figure 3D).  

In addition to the AM superclusters, four other AM clusters can be defined based on 

their expression of Metallothioneins (MT.AMs), Chemokines (CK.AMs), IFN-related 

genes (IFN.AMs), and Cycling genes (CK.AMs) (Figure 2B). The chemokine cluster can 

be further divided into 4 subpopulations, which we denote as CK.AMs.c1-4. The top 6 

DEGs and curated genes illustrate the unique chemokine expression pattern within 

each subcluster (Figure 4D). CK.AMs highly express CCL18, CCL23, and chemokine 

receptor CXCR4 in CK.AMs.c1; CCL3, CCL4, CXCL8, and CCL20 in CK.AMs.c2; 

CXCL9, CXCL10 and CXCL11 (IFN-gamma inducible chemokines) in CK.AMs.c3, and 

CXCL3 in CK.AM.c4 (Figure 4B-4D). The expression of unique combinations of 

chemokines in each CK.AMs suggest that different subtypes of AMs are programmed to 

chemoattract distinct leukocytes into the airspace, depending on the inflammatory 

stimuli they encounter. Another scRNA-seq study described chemokine-expressing 

macrophages in human lung tumors: CXCL5-, CXCL12- and CXCL9/CXCL10/CXCL11-

expressing macrophage subsets (Zilionis et al., 2019).  Although these macrophages 

were not AMs, different macrophage subtypes secrete distinct combinations of 

chemokines. 

Next, given the number of AM subtypes identified, we performed Gene Ontology (GO) 

enrichment analysis to infer functionality based on their DEGs (Figure 4E). Predictably, 

the Chemokine AM subclusters contained GO terms regarding cell interaction and 

response to stimuli, together with other enriched GO terms consistent with the top 

DEGs in each AM subtype. For instance, the top GO terms for Metallothionein AMs 

pertain to cellular responses to metal ions (Figure 4E and Figure S1). Likewise, the top 

4 enriched terms for Cholesterol AMs contained "cholesterol biosynthetic process" and 

"regulation of cholesterol biosynthetic process" (Figure S1). 

Lastly, to understand the transcription factors and co-factors driving each AM subtype, 

we performed single-cell level regulon analysis using the SCENIC (Single-Cell 

rEgulatory Network Inference and Clustering) package in R and its Python 
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implementation pySCENIC (Aibar et al., 2017). Co-expressed genes were used to 

identify and score regulons enriched in each cluster. For instance, the proinflammatory 

regulator of the cytokine-induced apoptotic pathway, BACH2, is the top regulon 

identified for CK.AMs.c2, while the IRF7 regulon is enriched in IFN-reacting AMs (Figure 

4F and Figure S1). This analysis offers yet another vantage point for understanding the 

distinct AM subtypes and corroborates their defined DEGs and GO terms. 

Like AM Chemokine clusters, monocytes also display unique chemokine-

expressing clusters 

We performed unbiased clustering for monocytes, which outlined 8 distinct populations 

(Figure 5A-5C). The largest cluster is denoted as conventional monocytes (Conv.Mono) 

that express classical myeloid cell markers shared with the other seven clusters (Figure 

5D). An additional six populations are defined as functional monocytes based on the 

expression of specific genes, including FCN1.Mono, CCL2.Mono, CXCL5.Mono, 

CXCL9.Mono, CCL13.Mono, and VEGFA.Mono (Figure 5D). To note, we also identified 

an intermediate monocyte cluster (Int.Mono) with distinct DEGs that encompasses cells 

transitioning from Conv.Mono to other functional monocyte phenotypes. Thus, 

monocytes appear to display a division of labor in orchestrating and recruiting 

leukocytes into the airspace, similar to what is observed for chemokine-expressing AMs.  

IL10 is selectively secreted by two IM clusters  

Other than AMs and monocytes, we observed several unexpected cell type clusters in 

the BALF, including IMs and DCs. The IMs in our dataset form two distinct clusters with 

distinct gene expression signatures, which we refer to as FOLR2.IMs and SPP1.IMs 

(Figure 1D and Figure 5D-5E). Genes such as LGMN, MARCKS (Figure 5E), TMEM37, 

and MERTK (data not shown) are specifically expressed by IMs, serving as potential 

markers to distinguish this population from other macrophage/monocyte cell types. It is 

worth mentioning that these two IM clusters are the main producer of IL10, suggesting 

their immunoregulatory role in the airspace. 
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Next, we performed gene ontology and regulon analysis on the monocyte and IM 

clusters (Figure S2). The most notable GO term was for FCN1.Mono, whose genes 

were enriched for bacterial defense mechanisms suggesting the importance of this 

monocyte subtype during pulmonary bacterial infections (Figure S2A). The GO analysis 

also illustrated the exogenous antigen presentation function in FOLR2.IMs and the 

inflammatory response genes in SPP1.IMs (Figure S2A). 

Pseudotime analysis suggests monocytes differentiate into AMs and IMs 

ScRNA-seq captures all cell types at a given time point, producing a series of 

expression profiles across cells as they transition from one state to another. To define 

the transitional processes of macrophage development, we performed pseudotime 

analysis using all the monocytes, AMs, and IMs in our dataset (Cao et al., 2019; Qiu et 

al., 2017a; Qiu et al., 2017b; Trapnell et al., 2014). The trajectory analysis revealed 

starting points of origin in the monocyte cluster (purple region and white open dots, 

Figure 6A), revealing two directions of differentiation: one toward IMs and the other 

toward cycling AMs and AMs.S4 (Figure 6A-6B).  AMs.S4 appears to have its own 

starting branch point leading to all other AM clusters (Figure 6A-6B). This suggests that 

AMs.S4 may contribute to all other AM subtypes in the airspace, being the largest 

supercluster that does not express IFI27or APOC2.  

To pinpoint the genes that change as a function of pseudotime trajectory, DEG analysis 

was applied. As monocytes differentiate into clusters of AMs and IMs, different genes 

are up-regulated sequentially, likely as a cause or consequence of changes in their cell 

state over time (Figure 6C). Genes for cell proliferation and myeloid cell function were 

among the top DEGs (Figure 6C). For example, ISG15 is highly expressed during the 

later progression of pseudotime and is mainly up-regulated in IFN-reacting AMs. 

Whereas another among the top 10 DEGs, MT2A, change along pseudotime and 

associate with Metallothionein AMs. Interestingly, AM superclusters AMs.S1 and 

AMs.S2 seem to evolve much later than their counterparts AMs.S3 and AMs.S4, even 

though they share 4 subclusters and most gene expression, except IFI27 and APOC2 

(Figure 6C).   
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Although scRNA-seq has revolutionized our knowledge of macrophage heterogeneity, 

there are instances where investigators need to isolate bulk populations to perform 

either functional or morphological analyses. Therefore, flow cytometric antibodies that 

can be used to sort and enrich bulk AMs from recruited monocytes are needed. Using 

flow cytometry, we demonstrate that, in addition to high side-scatter for AMs and low 

side-scatter for monocytes, investigators can use antibodies against CD43 (SPN) and 

CD169 to define AMs and CD93, CD36, and CD14 to identify monocytes (Figure 6D) 

(Bharat et al., 2016; Desch et al., 2015; Gibbings and Jakubzick, 2018; Yu et al., 2015; 

Yu and Tighe, 2018). ScRNA-seq and TotalSeq (for single-cell level protein expression 

assessment) also support the use of CD169 and CD43 for AMs compared to CD93, 

CD36, and CD14 for monocytes (Figure 6E and Figure S3). Thus, several forms of 

technology validate that the higher expression of CD43 and CD169 in BAL cells define 

AMs over recruited monocytes.  

Bivariate expression of IFI27 and APOC2 also exist in other AM subtypes 

Although our unbiased AM analysis in Figure 2B resulted in 8 clusters, four AM 

superclusters, and four other clusters (i.e., Chemokine, Metallothionein, Interferon, and 

Cycling AMs), we questioned whether the four other non-supercluster AMs express all 

four combinations of IFI27 and APOC2 (Figure 7A). Indeed, we observed a quadrant 

distribution of IFI27 and APOC2 for Chemokine, Metallothionein, and Interferon AMs 

(Figure 7B). This suggests that non-supercluster AMs clusters are a part of the four AM 

superclusters. And the reason this was not observed in the analysis in Figure 2B is 

because of the overpowering expression of other functional genes in the non-

supercluster AMs. Based on this observation, we hypothesize that discrete 

compartments in the lung dictate the expression of IFI27 and APOC2, and within these 

compartments, a family of AMs containing all the AM subtypes, exist to ensure proper 

physiological functions (Figure 7C).  

Subsequently, we examined whether AM superclusters occur in aggregated HC or CF, 

and in each individual sample. Unbiased analysis of each sample, or combined 

samples, demonstrates the formation of four unique AM superclusters (Figure S4). 
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Thus, the robust recurrence of AM superclusters in each sample further validates our 

discovery and analysis. 

AM Superclusters are conserved across different cohorts of publicly available 

datasets 

Lastly, we examined other AM datasets to ensure that our findings are not unique to our 

dataset. Six distinct datasets were selected based on the tissue, processing 

procedures, health status and cell numbers (Figure 8A) (Mould et al., 2021)(Schupp, 

2020 #865) (Dominguez Conde et al., 2022; Liao et al., 2020) (Vieira Braga et al., 2019) 

(Mayr et al., 2021). Within the samples, only AMs were selected and re-clustered for 

UMAP visualization. Alignment of the top DEGs from AM clusters was performed 

(Figure 8B). All datasets contained the known AM subtypes that expressed chemokine, 

metallothionein, interferon and cycling genes. However, the superclusters defining IFI27 

and APOC2 expression were only observed in the datasets of Liao et al., and Conde et 

al., (Dominguez Conde et al., 2022; Liao et al., 2020). After accounting for sample size 

and sequencing depth, we hypothesize that the difference between the presence of AM 

superclusters from datasets that have it versus not might be based on processing 

procedures. Those that form superclusters are freshly loaded samples that did not lose 

APOC2 expression. It appears that the freezing and thawing BAL or lung samples will 

result in the loss of APOC2 mRNA expression and why superclusters will not form. 

Finally, using the Seurat "MapQuery" function, the datasets from other investigators 

were projected onto our UMAP visualization used in Figures 2-4 (Figure 8C-D, Figure 

S6). The overall distribution was assessed. As anticipated, due to the expression of 

APOC2, same tissue sample, and processing procedure, Liao et al., dataset displayed 

the best overlay (Liao et al., 2020). Interestingly, compared to healthy BAL, Liao et al., 

COVID-19 infected BAL demonstrated significantly more CK.AMs and IFN.AMs (Liao et 

al., 2020), suggesting the role of AMs in the development of uncontrolled inflammation, 

cytokine storm, and an imbalanced hyperactive immune system during SARS-CoV-2 

infection. 
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Discussion 

AMs have multiple functional roles, including clearing surfactant components, cellular 

debris, inhaled particulates, and pathogens. Therefore, it is not surprising that in the 

airspace, there would be multiple AMs and monocyte subtypes with different 

specializations. ScRNA-seq technology has revolutionized our understanding of AMs, 

and we are only beginning to appreciate the depth and complexity of airway 

macrophages and monocytes in healthy and diseased lungs. Here, we used scRNA-seq 

to show that AMs form 4 superclusters based on the expression of two genes, IFI27 and 

APOC2, whether integrated or independent. IFI27 is a protein-coding gene regulated by 

interferon and estradiol (Rasmussen et al., 1993). It has been reported that IFI27 

protein plays diverse roles in anti-tumor immunity, including suppressing the 

transcription of PD-L1 and promoting epithelial-mesenchymal transition (Deng et al., 

2020; Li et al., 2015). In the lung, IFI27 has also been suggested as a biomarker to 

differentiate influenza and bacterial infections (Tang et al., 2017). APOC2 encodes a 

lipid-binding protein belonging to the apolipoprotein gene family, functioning as a co-

factor to activate lipoprotein lipase for the hydrolyzation of triglycerides. The unique 

expression pattern of IFI27 and APOC2 generates four AM superclusters. Each 

supercluster contains subclusters defined by characteristic DEGs, including those for 

cytokines and chemokines. In addition to AM superclusters, we observed four other AM 

clusters. Of particular interest is the Chemokine AM cluster, which divides further into 

four subclusters. Each of these chemokine clusters expressed a combination of 

chemokines that selectively chemoattract different leukocytes into the environment. 

Strikingly, there appears to be a defined niche for each AM subtype given the tightly 

regulated frequency of each AM subtype across all samples.   

Why do the superclusters and subclusters exist? Given the limited literature on the 

functionality of IFI27 and APOC2, it is hard to speculate on the contribution of these two 

genes. In addition to the hypothesis that each AM supercluster exists in a discrete 

compartment of the lung, AM superclusters might regulate their environment in a tissue-

specific niche and functionally specific manner. It would be scientifically and clinically 
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interesting to know which CK.AM subclusters regulate the leukocyte environment in the 

airspace during and after infection with respiratory viruses like SARS-CoV-2.   

 Chemokines are chemoattractant cytokines, and this type of cytokine profiling 

resembles what has been observed for decades in T cell biology. Each T cell type, such 

as Th1 and Th2, selectively produces a characteristic set of cytokines.  It is known that 

the differentiation of T cells is driven by distinct master regulators, transcription factors 

such as T-bet and Gata-3.  Likewise, each AM profiled in this study outlined a distinct 

set of transcription factors observed in our regulon analysis.  Therefore, an important 

future goal would be to investigate which transcription factors regulate the individual 

Chemokine AM subtypes and beyond. Overall, the findings presented here open the 

door to identify new therapeutic targets for inflammatory lung disease while significantly 

enhancing our understanding of the complexity that exists with airspace macrophages. 

Other immune cell types that are not normally thought to reside in airway space were 

captured in our BALF analysis:  distinct DC types, monocytes and IMs. IMs are mainly 

investigated in mouse lungs, and multiple subtypes of IMs have been reported (Bedoret 

et al., 2009; Chakarov et al., 2019; Gibbings et al., 2017; Schyns et al., 2019; Ural et al., 

2020). Among those subtypes, the well-described FOLR2 positive IMs also exists in the 

human BAL cell population, suggesting homology across species. Another IM 

population denoted as SPP1.IMs due to the high expression of SPP1 (Leach et al., 

2020). This IM subtype seems to be consistent with previously reported SPP1/MERTK-

expressing macrophages in idiopathic pulmonary fibrosis (Morse et al., 2019). We also 

report several common markers for both human IM populations, LGMN and MARCKS, 

observed in a previous study (Reyfman et al., 2019). 

This study was originally designed to investigate the cellular and transcriptional 

differences in cells extracted from BALF between a cohort of CF subjects with normal 

lung function and minimal lung inflammation compared to healthy controls in order to 

investigate the impact of aberrant CFTR function. Many lines of evidence point to 

impaired innate immune cell function in the CF lung (Bessich et al., 2013; Chen et al., 

2018; Di et al., 2006; Gardai et al.; Hazlett et al., 2020; Murphy et al., 2010; Paemka et 
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al., 2017; Ruytinx et al., 2018), however, we observed some minor differences between 

CF and HC BALF cells (Figure S5), and it is unclear whether these differences are true 

across all CF patients. What is striking is that even though all three CF subjects had two 

copies of the F508del CFTR mutation, when the CF lung is in a healthy-like state, the 

macrophage, monocyte, IM, and DC heterogeneity is highly conserved, and its niche 

appropriately filled. All in all, the CF subjects in our study had preserved lung function 

and limited inflammation by design. Future studies could include subjects with more 

significant lung disease to determine the impact of inflammatory milieu on CF immune 

cell gene expression. Additionally, comparisons of CF subjects with and without lung 

disease could help identify factors in airspace immune cells that predispose one to 

disease progression. Overall, several fundamental questions require further 

investigation, including the AM cluster location, function, transcription factor(s) that 

regulate their programming state, and whether similar macrophage superclusters exist 

in other organs or species.  
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Materials and Methods 

Human Subjects 

Four healthy control (HC) subjects and three subjects with CF underwent research 

bronchoscopy as previously described (Aridgides et al., 2019; Hogan et al., 2016). 

Briefly, after local anesthesia to the posterior pharynx and intravenous conscious 

sedation, a flexible fiberoptic bronchoscope was inserted transorally and passed 

through the vocal cords into the trachea. The bronchoscope was sequentially wedged 

into tertiary bronchi in the right upper lobe (RUL), right middle lobe (RML), and right 

lower lobe (RLL), saline was instilled, and BALF was collected. An aliquot of 10 mL of 

BALF from the RML was used for the studies outlined here.  

Sample Processing 

Sample processing and library construction were performed immediately after lavage. 

1X phosphate-buffered saline (PBS) containing 0.5 mM EDTA and 0.1% bovine serum 

albumin (BSA) was added to the BALF. Samples were filtered through 100-micron cell 

strainers and centrifugated at 300 x g for five minutes at 4 °C, and supernatants were 

discarded. TotalSeq antibodies were added at concentrations recommended by the 

manufacturer and stained for 30 min on ice (Stoeckius et al., 2017), details in online 

supplement. After staining, chilled Hank's balanced salt solution (HBSS) supplemented 

with 0.5% BSA was used to wash the sample. Samples were again filtered through 100-

micron cell strainers and spun as above. Supernatants were aspirated, and pellets were 

resuspended with HBSS plus 0.5% BSA at an approximate concentration of 7.5 × 105 

cells/mL. Cell quality and viability were assessed with a Cellometer K2 (Nexcelom 

Bioscience, Lawrence, MA). All samples had viability >80%. Single cells were then 

processed using the Chromium Next GEM Single Cell 3' Platform (10X Genomics, 

Pleasanton, CA). Approximately 30,000 cells were loaded on each channel with an 

average recovery rate of 24,000 cells. Libraries were sequenced on NextSeq 500/550 

(Illumina, San Diego, CA) with an average sequencing depth of 50,000 reads/cell.  
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Data Preparation 

Raw sequencing reads were demultiplexed, mapped to the GRCh38 human reference 

genome, and gene-expression matrices were generated using CellRanger v6.1 (10X 

Genomics, Pleasanton, CA). The following analyses were conducted in R 4.1 (Team, 

2014) and Python 3.6. Seurat package v4.0 was used for downstream data analyses 

(Hao et al., 2021), and figures were produced using the package ggplot2. Following a 

standard workflow, the gene-expression matrix was filtered to discard cells with less 

than 200 genes, as well as genes that were expressed in less than 3 cells. Samples 

then underwent quality control to remove cells with either too many or too few 

expressed genes (average around 2000 and 7000) and cells with too many mtRNA 

(average around 10%), resulting in a total of 113,213 cells. Then, "SCTransform" was 

applied with the "glmGamPoi" method to normalize gene expression data (Ahlmann-

Eltze and Huber, 2021; Stuart et al., 2019), and a CLR transformation was applied to 

normalize protein data within each cell. After individual preparation, all the samples 

were introduced into a combined Seurat object via “FindIntegrationAnchors” and 

“IntegrateData” functions (Stuart et al., 2019). Then scaled values of variable genes 

were then subject to principal component analysis (PCA) for linear dimension reduction. 

A shared nearest neighbor network was created based on Euclidean distances between 

cells in multidimensional PC space (the first 50 PC were used) and a fixed number of 

neighbors per cell (30 neighbors). This was used to generate a two-dimensional 

Uniform Manifold Approximation and Projection (UMAP) for visualization as a 

harmonized atlas to dissect the cell populations in BALF of healthy and CF donors.  

TotalSeq Antibodies 

TotalSeq antibodies were added at concentrations recommended by the manufacturer 

and stained for 30 min on ice (Stoeckius et al., 2017). CD88 (B1046), CD1c (B0160), 

CD1a (B0402), CD64 (B0162), CD14 (B0081), CD93 (B0446), CD197 (B0148), XCR1 

(B0208), CD163 (B0358), CD36 (B0407), CD206 (B0205) HLA-DR (B0159), CD169 

(B0206) TotalSeq B (BioLegend, San Diego, CA).  TotalSeq antibodies were added to 

the last four samples (HC3, HC4, CF2, CF3).  
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Differentially Expressed Genes 

Differentially expressed genes (DEGs) were calculated with "FindAllMarkers" function of 

Seurat in R 4.1 to study the different expression profiles in different cell types and up-

regulated genes in HC or CF cohort (Hao et al., 2021; Team, 2014). The "data" matrices 

of "SCT" assay were used, and the minimal log fold change was set to 0.25. Only genes 

that were detected in more than 25% of cells in either of the two populations were used 

to compute the DEGs with the Wilcoxon rank-sum test. Markers were identified as 

genes exhibiting significant upregulation when compared against all other clusters and 

defined by having a Bonferroni adjusted p-value�<�0.05. The DEGs are ranked by the 

adjusted p--value to select the top DEGs for downstream analysis. 

Cell Type Identification 

To identify cell types, "FindClusters" function with the Leiden algorithm with the various 

resolution from 0.5 to 2.0 in the Seurat package were used for clustering (Hao et al., 

2021). "FindAllMarkers" function was then applied. The top DEGs of individual clusters 

were examined for well-studied marker genes across literatures and the clusters were 

then annotated for the most likely identity. For re-clustered AMs and Mono subtypes, 

"FindClusters" was performed with different resolution until the right resolution is 

reached so that each cluster has unique gene expression pattern. 

Cross-sample Cell Type Replicability  

To compare cross-sample and cross-dataset transcriptomes, we performed 

MetaNeighbor (Crow et al., 2018) analysis between individual samples from our dataset 

and publicly available datasets addressing similar questions, Mould et al. and Schupp et 

al. (Mould et al., 2021; Schupp et al., 2020). Datasets were downloaded from UCSC 

Cell Browser (Kent et al., 2002) (https://cells.ucsc.edu/?ds=healthy-bal; 

https://cells.ucsc.edu/?ds=human-sputum) and gene expression omnibus (GEO; 

GSE151928; GSE145360). SummarizedExperiment objects were constructed using 

combined "data" matrices of SCT assays and the "variableGenes" function of 
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MetaNeighbor package was used to identify the highly variable genes as input of 

similarity assessment (Crow et al., 2018). The cell–cell similarities were represented by 

the mean area under the receiver operator characteristic curve (AUROC) scores, 

keeping the original cell type from every dataset. The correlation matrices were then 

passed to ComplexHeatmap package and clustered with "spearman" method (Gu et al., 

2016). Heatmap splits were applied to highlight the focus of the study. 

Gene Ontology Analysis 

The gene set functional analysis was conducted with TopGO (Marini and Binder, 2019) 

(Fisher’s exact test) to get a general overview of the more represented functional 

categories with the DEGs in each cluster. Background genes of gene enrichment 

assays were defined as all the detected genes in datasets and the biological process 

was selected as the target of ontology analysis. The DEGs of different cell types were 

used as the enrichment input. Top 5 gene ontology (GO) terms ranked by P value 

(Rantakari et al.) for every cell type was selected and compared with other cell types. 

Overlaps of those GO terms were removed from the final visualization. 

Regulon Analysis 

All the cell types were downsampled to maximal 1000 cells. TF activity was analyzed 

using SCENIC package of R 4.1 and pySCENIC of Python 3.8 for the cell types with 

downsampled count matrices as the input (Aibar et al., 2017; Huynh-Thu et al., 2010; 

Van de Sande et al., 2020). The regulons and TF activity (area under the curve) for 

each cell were calculated with motif collection version v9 as well as hg38__refseq 

r80__10kb_up_and_down_tss.mc9nr.featherdatabases from the cisTarget 

(https://resources.aertslab.org/cistarget/). The transcription factor regulons prediction 

was performed using the pySCENIC default parameters (Aibar et al., 2017; Huynh-Thu 

et al., 2010; Van de Sande et al., 2020). The resulting AUC scores per each cell and 

adjacency matrices were used for downstream quantification of regulon specificity 

score. Top 5 transcription factor ranked by specificity score for every cell type was 

selected and compared with other cell types. Overlaps of those transcription factors 

were removed from the final visualization. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.01.30.478325doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.30.478325
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

22

Pseudotime Analysis 

The package Monocle3 was performed to analyze single-cell trajectories (Cao et al., 

2019; Qiu et al., 2017a; Qiu et al., 2017b; Trapnell et al., 2014). Pseudotime values 

were determined for all myeloid cells except DCs, which have a different ontogeny. All 

the cell types were downsampled to maximal 1000 cells. Then Monocle3 was used to 

learn the sequence of gene expression changes each cell must go through as part of a 

dynamic biological process and then arrange each cell in the trajectory (Cao et al., 

2019; Qiu et al., 2017a; Qiu et al., 2017b; Trapnell et al., 2014). Two nodes of 

monocytes population were set as the start allowing the visualization of the 

differentiation process of monocytes to macrophages. To investigate the dynamic gene 

expression between monocytes and macrophages, DEGs over the pseudotime were 

calculated by the "graph_test" function. By ranking the P value, top 100 pseudotime 

DEGs were identified. By further downsampling the cell types to maximal 100 cells, the 

expression levels of the top 100 pseudotime DEGs were then visualized and the top 10 

were labeled.  

Cross-sample Reference Mapping 

Publicly available AM/monocyte datasets were downloaded from UCSC Cell Browser 

(Kent et al., 2002) (https://cells.ucsc.edu/?ds=covid19-balf; 

https://cells.ucsc.edu/?ds=healthy-bal; https://cells.ucsc.edu/?ds=pan-immune+myeloid; 

https://cells.ucsc.edu/?ds=teichmann-asthma+lung-atlas+lung-atlas-others; 

https://cells.ucsc.edu/?ds=human-sputum), gene expression omnibus (GEO; 

GSE151928; GSE145360) and GitHub (https://github.com/theislab/2020_Mayr). To 

investigate the newly identified AM/monocyte subtypes in publicly available datasets, 

"FindTransferAnchors" and "TransferData" functions in the Seurat package were used 

to infer the cell types in the aforementioned query datasets (PMID: 31178118). The 

query cells were classified into different AM/monocyte subtypes based on their 

expression profile similarity with our dataset. Prediction scores were also returned to 

evaluate the reference prediction. Moreover, "MapQuery" function was applied to 
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project the query datasets onto the our/reference UMAP structure for a more 

straightforward visualization (PMID: 31178118). 

Flow Cytometry 

BAL cells were stained with the following monoclonal Abs: anti human CD45 BUV805 

clone Hl30, anti-human CD14 V500, clone M�P9, anti-human HLA-DR APC-Cy7, clone 

L243, anti-human CD206 PerCp-Cy5.5, clone 15-2, anti-human CD36 APC, clone 

AC106, anti-human CD169 FITC and anti-human CD93 PE-Cy7. The viability dye DAPI 

(#D9542, Sigma, Milwaukee, WI) was added immediately before each sample 

acquisition on a BD Symphony A3 analyzer (BD Biosciences, San Diego, CA). Data 

were analyzed using FlowJo (Tree Star, Ashland, OR). Antigen-specific antibodies and 

isotype controls were obtained from BioLegend (San Diego, CA), eBioscience 

(Ebioscience, AUT) and BD Biosciences (San Diego, CA). 

Data Availability 

The sequencing raw data and processed data used in this paper are available in Gene 

Expression Omnibus, accession code GSE193782. The processed data is also 

available for online visualization at https://ams-supercluster.cells.ucsc.edu (visualization 

for Figure 2-4 can be viewed with the "AMs Subset UMAP" layout). 

Study Approval 

All subjects provided written informed consent, and this study was approved by the 

Institutional Review Board of Dartmouth-Hitchcock Medical Center (protocol #22781). 
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Figure Legends 

Figure 1 - 12 BAL cell types identified in healthy control (HC) and CF samples. 

(A) ScRNA-seq data shows integrated UMAP with HC and CF, along with individual 

sample distribution.  (B) UMAP demonstrating the twelve major cell types: alveolar 

macrophages (AMs), myeloid and lymphoid cycling cells (Cyc.Mye and Cyc.Lym), 

FOLR2 and SPP1 interstitial macrophages, monocytes (Mono), Dendritic cell 1 (DC1), 

Dendritic cell 2 (DC2), Migratory DC (Mig.DC), plasmacytoid DCs (pDCs), lymphocytes 

(Lym), and epithelial cells (Epi).  (C) Percentage bar graph outlines the distribution of 

individual cell types for each subject.  (D) Dot plot shows the expression of curated 

genes in each individual cell type.  (E) Correlation heat map of cell types against all 

samples in in-house dataset (Li). The lower quadrant highlights the corresponding cell 

types. (F)  Correlation heat map of HC cell types in in-house and Mould dataset. The 

lower quadrant highlights the corresponding cell types.  (G) Correlation heat map of HC 

and CF cell types in in-house and Schupp dataset. The lower quadrant highlights the 

corresponding cell types. 

Figure 2 - Unbiased analysis of scRNA-seq data illustrates four AM superclusters 

based on IFI27 and APOC2 expression.   

(A) UMAP of re-clustered AMs shows sample source distribution.  (B) UMAP shows 

distinct AM clusters: AM Supercluster 1 (AMs.S1), AMs.S2, AMs.S3 AMs.S4, 

Metallothionein (MT.AMs), Chemokine (CK.AMs), Interferon (IFN.AMs) and Cycling AM 

(Cyc.AMs) clusters.  (C) Percentage bar graph outlines the distribution of individual AM 

clusters for each subject.  (D) Dot plot shows the expression of the top 6 DEGs in 

individual AM clusters, duplicates removed. For example, AMs.S4's top 6 DEGs are 

already present in the first three AM superclusters; therefore, AMs.S4 is seen on the Y 

axis but not the X axis.  (E-F) Feature plot shows the expression of IFI27 and APOC2, 

which define the four AM superclusters. 

Figure 3 - AM superclusters contain 4 shared subclusters and a small-

supercluster. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.01.30.478325doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.30.478325
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

27

(A) UMAP illustrates the shared AM subclusters.  (B)  Percentage bar graph outlines the 

distribution of individual AM subclusters for each subject.  (C) Featured plots show four 

representative genes for each shared AM subcluster. (D) Dot plot illustrates the 

expression of the top 6 DEGs in each individual AM subcluster, duplicates removed. 

Figure 4 - Chemokine AM subclusters express unique combinations of 

chemokines. 

(A) UMAP illustrates distinct chemokine-expressing AM subclusters: CK.AMs.c1, 

CK.AMs.c2, CK.AMs.c3, and CK.AMs.c4. (B) Percentage bar graph outlines the 

distribution of individual chemokine-expressing AM subclusters for each subject.  (C)  

Featured plots show four representative gene expression for individual chemokine-

expressing AM subcluster.  (D) Dot plot illustrates the expression of the top 6 DEGs 

(duplicates removed) and curated chemokine genes in individual chemokine-expressing 

AM subcluster.  (E) Heat map shows the top 5 gene ontology terms (biological process) 

for each AM subtype. Top 1 term is labeled.  (F) Heat map shows the top 5 regulons for 

each AM subtype. Top 1 regulon is labeled. 

Figure 5 - BAL monocytes and IMs contain heterogeneous clusters. 

(A)  UMAP of monocytes shows sample source distribution.  (B)  UMAP shows 8 distinct 

monocyte clusters: conventional monocyte cluster (Conv.Mono) and intermediate 

monocyte cluster (Int.Mono) and others.  (C) Percentage bar graph outlines the 

distribution of individual monocyte clusters for each subject.  (D) Dot plot shows the 

expression of the top 6 DEGs in individual monocytes clusters, duplicates removed.  (E)  

Featured plots show the expression of different DEGs of 2 IM clusters. 

Figure 6 - Pseudotime analysis of monocytes and macrophages in BALF. 

(A) Pseudotime plot shows the evolvement of monocytes to macrophages with the root 

as white dots and the principal points as solid black dots.  (B) UMAP shows distinct 

monocyte and macrophage clusters included for Pseudotime analysis.  (C) Heat map 

shows the top 100 pseudotime DEGs across the monocyte-to-macrophage branch. Top 

10 DEGs are labelled. (D) Flow cytometry plot illustrates the high expression of CD43 
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and CD169 on AMs and CD93, CD36 and CD14 on monocytes.  (E) Featured plots 

show representative gene expression and TotalSeq detection in AMs and monocytes. 

Figure 7 - Quadrant distribution of AM subtypes for the bivariate expression of 

AM subtypes for the of IFI27 and APOC2 and summary of proposed AM subtype 

classification.  

(A) AM subtype model supported by direct data. (B) Density plot showing the 

expression of IFI27 and APOC2 for Chemokine, Metallothionein, Interferon, and Cycling 

AMs. (C) Alternative AM subtype model proposed in the results section and discussion.  

Figure 8 - AM superclusters are present in other publicly available datasets.  

(A) AM summary table of publicly available datasets that were compared to our dataset. 

(B) Featured plots show the expression of 7 selected AM cluster markers (IFI27, 

APOC2, CCL4, CXCL10, CXCL3, MT1G, ISG15) in represented datasets. Only AMs 

were selected and re-clustered for UMAP visualization; (C) Schematic representation 

where reference mapping with Seurat package allows for the projection of publicly 

available datasets onto our AM supercluster-annotated dataset from Figures 2; (D) The 

reference mapping projection of the represented dataset; (E) Percentage bar graph 

outlines the distribution of individual AM clusters for each health status in different 

datasets. 
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Figure S1 - Complete gene ontology and regulon analysis heat map for AM 

subtypes.  

(A) Heat map showing the top 5 gene ontology terms (biological process, duplicates 

removed) for each AM subtype. (B) Heat map showing the top 5 regulons (duplicates 

removed) for each AM subtype. 

Figure S2 - Complete gene ontology and regulon analysis heat map for monocyte 

subtypes.  

(A) Heat map showing the top 5 gene ontology terms (biological process, duplicates 

removed) for each monocyte subtype. (B) Heat map showing the top 5 regulons 

(duplicates removed) for each monocyte subtype. 

Figure S3 - Comparison of selected RNA expression and protein detection for 

AMs and monocytes. 

(A) Radar plots illustrate the higher expression/detection levels of SPN mRNA and 

CD169 protein in AMs compared to monocytes, but not for SIGLEC1 mRNA, the mRNA 

coding for CD169 protein. (B) Radar plots illustrate the higher mRNA expression and 

protein detection levels of CD14, CD36, CD93 in monocytes compared to AMs. 

Figure S4 - Four AM superclusters also exist in individual subject. 

(A) AMs from the integrated HC or CF samples cluster unbiasedly into four 

superclusters confirmed by the expression pattern of IFI27 and APOC2. (B) AMs from 

the individual HC and CF samples cluster unbiasedly into four superclusters confirmed 

by the expression pattern of IFI27 and APOC2. 

Figure S5 - Gene expression analysis between HC and CF samples. 

(A) Volcano plot demonstrates the DEGs in either HC or CF samples. Genes with a P 

value smaller than 0.05 and log2 fold change larger than 25% are shown. Top 15 DEGs 

are labeled.   (B) Dot Chart shows the top 3 DEGs in either HC or CF samples for the 

twelve major cell types.  (C) Dot Chart shows the top 3 DEGs in either HC or CF 
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samples for individual AM subtypes.  (D) Dot Chart shows the top 3 DEGs in either HC 

or CF samples for individual monocyte subtypes. 

Figure S6 - AM subtypes and monocyte subtypes also exist in other publicly 

available datasets.  

(A) The reference mapping projection of represented datasets to the AMs in our 

dataset. (B) The reference mapping projection of represented datasets to the 

monocytes in our dataset. (C) Monocyte summary table with details of compared 

publicly available datasets present in this figure. (D) Percentage bar graph outlines the 

distribution of individual monocyte clusters for each health status in different datasets. 

(E) Heat map showing the prediction scores of AMs in Liao's study mapping to the AM 

subtypes in our dataset. (F) Heat map showing the prediction scores of monocytes in 

Mould's study mapping to the monocyte subtypes in our dataset. 
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Table 1 - Demographic characteristics for recruited subjects. 

Table S1 - Curated markers for major cell types. 

Table S2 - DEGs of major cell types demonstrated in Figure 1. 

Table S3 - DEGs of AM supercluster cell types demonstrated in Figure 2. 

Table S4 - DEGs of AM cell types demonstrated in Figure 3 and Figure 4. 

Table S5 - DEGs of monocyte and IM cell types demonstrated in Figure 5. 

Table S6 - DEGs of all cells between CF and HC demonstrated in Figure S5A. 

Table S7 - DEGs of major cell types between CF and HC demonstrated in Figure 

S5B. 

Table S8 - DEGs of AM cell types between CF and HC demonstrated in Figure 

S5C. 

Table S9 - DEGs of monocyte cell types between CF and HC demonstrated in 

Figure S5D. 
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