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Abstract  19 

Mono-methylation of histone H4 lysine 20 (H4K20me1) is catalyzed by Set8/KMT5A and 20 

regulates numerous aspects of genome organization and function. Loss-of-function mutations in 21 

Drosophila melanogaster Set8 or mammalian KMT5A prevent H4K20me1 and disrupt 22 

development. Set8/KMT5A also has non-histone substrates, making it difficult to determine 23 

which developmental functions of Set8/KMT5A are attributable to H4K20me1 and which to 24 

other substrates or to non-catalytic roles. Here, we show that human KMT5A can functionally 25 

substitute for Set8 during Drosophila development and that the catalytic SET domains of the two 26 

enzymes are fully interchangeable. We also uncovered a role in eye development for the N-27 

terminal domain of Set8 that cannot be complemented by human KMT5A. Whereas Set8null 28 

mutants are inviable, we found that an R634G mutation in the SET domain predicted to ablate 29 

catalytic activity resulted in viable adults, suggesting important non-catalytic functions of Set8. 30 

Similarly, flies that were engineered to express only unmodifiable H4 histones (H4K20A) can also 31 

complete development, but they are phenotypically distinct from H4K20R, Set8null, and Set8R634G 32 

animals. Taken together, our results demonstrate functional conservation of KMT5A and Set8 33 

enzymes, as well as distinct roles for Set8 and H4K20me1 in Drosophila development.  34 
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Introduction 35 

The formation of chromatin from DNA and histones regulates genome function and is critical for 36 

development of multicellular organisms. The post-translational modification (PTM) of histone 37 

N-terminal tails modulates the organization of chromatin and thereby helps regulate replication, 38 

repair, and transcription of the genome.69 Consequently, dysregulation of histone PTMs is 39 

thought to disrupt animal development. However, our understanding of how particular histone 40 

PTMs influence specific developmental processes is incomplete. For instance, methylation of 41 

histone H4 lysine 20 (H4K20me) has been implicated in the control of transcription,2,9,14,17,38–42 

40,43,44,46,78,90,97,99,105 DNA replication and repair,9,12,14,26,32,34,42,79,100 chromosome condensation 43 

during mitosis,9,14,16,40 and heterochromatin assembly,9,14,61,79,84 but the requirement for these 44 

putative H4K20me functions has not been directly interrogated during animal development.49 45 

In most animal genomes, H4K20 mono-methylation (H4K20me1) is catalyzed by a 46 

conserved enzyme variably termed KMT5A/Set8/SETD8/PR-Set7 that contains a catalytic SET 47 

domain.27,61  Subsequent di- and tri-methylation of H4K20 is carried out by SET domain-48 

containing Suv4-20 enzymes, of which there are two in mammals and one in 49 

Drosophila.9,71,74,92,98 Developmental roles for H4K20me are typically investigated by mutations 50 

that eliminate or alter the activity of these enzymes. Although most of this work has been done 51 

using knockdown methods in cell culture,2,8,16,17,33,34,36,37,62,64,67,70,80,81,85,86,89,97 a small number of 52 

studies were conducted using mutant animals.7,27,40,44,63,72,75 For instance, loss of the H4K20me2 53 

methyltransferase Suv4-20h1 in mice causes early developmental defects, resulting in either 54 

embryonic or perinatal lethality.75 In contrast, animals that lack the H4K20me3 55 

methyltransferase Suv4-20h2 develop normally.75 Drosophila Suv4-20 null mutations display no 56 

overt developmental defects, suggesting no essential requirement for H4K20me2 and 57 
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H4K20me3 in flies.71 In contrast, loss of H4K20 mono-methyltransferases causes severe 58 

developmental phenotypes: Fly Set8 (FlyBase annotation PR-Set7; CG3307) and mouse KMT5A 59 

null mutants are inviable and exhibit a developmental arrest that is accompanied by reduction of 60 

H4K20me and a variety of defects including smaller larval tissues in flies and increased 61 

apoptosis in mouse embryos.34,40,63,72 Mutant cells also have defects in cell cycle progression and 62 

accumulate DNA damage.9,14,95 These cellular and developmental defects have been attributed to 63 

loss of downstream functions that require H4K20 methylation. Consistent with this 64 

interpretation, a KMT5A R265G mutation predicted to abolish catalytic activity does not support 65 

embryonic development,63 suggesting that KMT5A catalytic activity is required for proper 66 

mouse development.  67 

Each of these analyses is confounded by observations that Set8-family enzymes have 68 

protein substrates in addition to H4K20.23,34,76,83 Moreover, many of these other substrates, such 69 

as p53 and PCNA (Proliferating Cell Nuclear Antigen), regulate critical aspects of genome 70 

function.23,76,83,93 Finally, recent work from our group using engineered Drosophila histone 71 

mutant genotypes demonstrated that H4K20 is dispensable for DNA replication and organismal 72 

viability.49 Thus, the contributions of H4K20me to animal development are not fully determined. 73 

Here, we compare phenotypes caused by mutation of Set8 and H4K20 in Drosophila. The 74 

data show that the essential function played by Set8 in fly development is either non-catalytic or 75 

is largely independent of its histone H4K20 methylation activity. We also demonstrate that 76 

human KMT5A can functionally substitute for loss of Set8 in Drosophila, indicating that flies 77 

can provide critical information about evolutionarily conserved functions of H4K20 mono-78 

methyltransferases during development. 79 

 80 
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Results 81 

Set8 is the appropriate designation for the Drosophila H4K20 mono-methyltransferase 82 

The Drosophila melanogaster genome encodes fourteen SET [Su(var)3-9, Enhancer-of-zeste, 83 

Trithorax] domain lysine methyltransferases (FlyBase)24,35,56,57,74,77 (Figure 1). A related family 84 

of proteins, called PRDMs, is characterized by the presence of a PR domain [PRDF1 (positive 85 

regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger 86 

gene 1)] along with a variable number of Cys2-His2 (C2H2) zinc fingers.88 The PR domain is an 87 

evolutionarily recent subtype of the SET domain, although not all PRDMs encode active 88 

methyltransferases.88 There are four PRDM proteins (Blimp-1, Hamlet, CG43347, Prdm13) in 89 

insect genomes whereas this family has expanded to nineteen proteins in humans.29,48,88 90 

In Drosophila, the protein encoded by PR-Set7/CG3307 is orthologous to the human 91 

H4K20 methyltransferase SETD8/KMT5A and it neither contains a PR domain nor any 92 

predicted zinc finger motifs15,27,61 (Figure 1). In contrast, human PRDM7 (PR/SET Domain 7) is 93 

an H3K4 methyltransferase that is most closely related to the KRAB and Zn finger domain 94 

protein, PRDM910 (Figure 1). Moreover, human SETD7/Set7/Set9 is yet another human H3K4 95 

methyltransferase91 distinct from Drosophila PR-Set7/CG3307 (Figure 1). To avoid further 96 

confusion, we propose to officially rename CG3307 as Set8 and refer to this protein as Set8 97 

throughout the manuscript. 98 

Human KMT5A rescues loss of Set8 in Drosophila  99 

KMT5A and Set8 are essential for the development of mice and flies, respectively, and mutating 100 

these enzymes results in defects in cell cycle progression, DNA damage response, and chromatin 101 

compaction in both organisms.40,63,70 The SET domains of Set8 and human KMT5A are 57% 102 

identical (Supplemental figure 1). Therefore, we hypothesized that KMT5A and Set8 perform the 103 
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same biological functions in Drosophila and mammals and that human KMT5A would rescue 104 

loss of Set8 in Drosophila. To test this hypothesis, we engineered a KMT5A open reading frame 105 

that was codon-optimized for translation in Drosophila and expressed in the context of the native 106 

Set8 gene (a 4774 bp genomic fragment including 1325 bp upstream of the ORF and 2021 bp 107 

downstream of the ORF including both native 5’ and 3’ UTRs). Using this engineered KMT5A 108 

allele, we generated transgenes located on the same chromosome as the Set820 null allele40 109 

(Figure 2A). Whereas Set820/20 mutants die as early pupae, animals expressing KMT5A in a 110 

Set820/20 background pupate normally and complete development at similar frequencies as wild 111 

type animals or Set820/20 animals rescued with a control Set8 transgene (Figure 2B, C). Although 112 

Set820/20 animals rescued by KMT5A are viable and fertile, we observed a rough eye phenotype 113 

in 58% of adult flies (Figure 2E). The Drosophila compound eye is a highly organized tissue 114 

containing ~800 photoreception structures termed ommatidia, each composed of eight 115 

photoreceptor neurons and a set of accessory cells. Many processes contribute to proper 116 

formation of the adult eye, including cell cycle progression, cell death, and ultimately cell 117 

differentiation. Disruption of any one of these processes can contribute to ommatidial 118 

irregularities that manifest as a visible “roughness” of the adult eye.6,94 Even subtle defects in 119 

gene functions required for eye development can result in rough eyes, and thus we conclude that 120 

KMT5A fully rescues most, but not all, Set8 functions in Drosophila.  121 

The N-terminus of Set8 is dispensable for Drosophila viability but plays a role in eye 122 

development 123 

Although the SET domains of Set8 and KMT5A are 57% identical, the full-length proteins are 124 

only 21% identical (Supplemental figure 1). The N-terminal region (554aa) of Set8 is predicted 125 

to be largely unstructured and is not well-conserved with KMT5A (Figure 2A). A multiple 126 
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protein alignment of 301 BLAST hits with greater than 50% identity to the full-length Set8 127 

protein revealed that this N-terminal region of Set8 is unique to flies (order Diptera), whereas the 128 

SET domain is highly conserved across all represented organisms (Figure 2D). To test whether 129 

the N-terminal region of Set8 functions in Drosophila development we engineered a transgene 130 

encoding a Set8 protein lacking the first 339 amino acids (Set8ΔN), which would produce a 131 

protein the size of KMT5A (Figure 2A). The Set8ΔN transgene rescued Set820/20 lethality resulting 132 

in fully viable and fertile adults with a highly penetrant (82%) rough eye phenotype (Figure 2B, 133 

C, E). Although we were unable to assess the protein accumulation of Set8ΔN because the epitope 134 

recognized by the Set8 antibody is within the N-terminal region, these results indicate that the N-135 

terminal 339 amino acids are dispensable for normal development except in the eye. To test 136 

whether the eye function could be provided by KMT5A, we generated a chimeric transgene with 137 

the Set8 N-terminus (1-554) fused to the KMT5A C-terminus (N-Set8::KMT5A-C) and a 138 

reciprocal chimeric transgene with the KMT5A N-terminus (1-214) fused to the Set8 C-terminus 139 

(N-KMT5A::Set8-C). Both transgenes fully rescued viability and fertility of Set820/20 mutants 140 

(Figure 2 B, C). Further, N-KMT5A::Set8-C animals displayed a rough eye phenotype like 141 

KMT5A and Set8ΔN animals (Figure 2E). By contrast, flies expressing the N-Set8::KMT5A-C 142 

chimera were fully viable and fertile with morphologically normal eyes, indicating the human 143 

KMT5A SET domain is functionally equivalent to that from Drosophila Set8 (Figure 2B, C). We 144 

conclude that the N-terminal 339 amino acids of Set8 are dispensable for Drosophila viability 145 

and fertility but have a function in eye development that cannot be provided by the first 214 146 

amino acids of human KMT5A.  147 

 148 
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A SET domain mutation predicted to block methyltransferase activity does not result in a 149 

Set8 null phenotype 150 

Many of the established roles for the KMT5A/Set8 lysine methyltransferase have been attributed 151 

to its catalytic activity, primarily by using cell culture-based 152 

assays.2,8,16,17,33,34,36,37,62,64,67,70,80,81,85,86,89,97 To determine whether methyltransferase activity is 153 

required for Set8 function during Drosophila development, we engineered point mutations in the 154 

SET domain that are predicted to ablate catalytic activity27,61 (Figure 3A). SET domains are 155 

highly conserved and contain evolutionarily invariant residues within the catalytic core (Figure 156 

3B). As shown in Figure 3C, two of these residues (R634 and H638) make critical contacts with 157 

the methyl donor, S-adenosyl methionine (SAM). Mutation of the homologous Arg residue in the 158 

human enzyme (R265) to Gly blocks methyltransferase activity in vitro using nucleosomal 159 

substrates, and this substitution has been used in numerous studies of Set8/KMT5A proteins to 160 

create catalytically inactive enzymes.1,2,17,26,33,38,61,63,76,80,84,86,96 We therefore engineered a 161 

Set8R634G mutation (hereafter Set8RG) in the context of the rescuing genomic fragment used in the 162 

experiments above. We also engineered an R634G, H638L double mutation (hereafter Set8RGHL). 163 

Using in silico structural models based on the solved human KMT5A structure and molecular 164 

dynamics simulations (Figure 3C), each of these amino acid changes were evaluated for their 165 

impact on SAH binding and H4 peptide binding. While H4 peptide binding was minimally 166 

impacted, the mutations were shown to disrupt SAH binding and thus are predicted to reduce or 167 

eliminate methyltransferase activity of the mutant Set8 proteins (Figure 3C, D). 168 

We inserted Set8RG and Set8RGHL transgenes into the same chromosomal landing site used 169 

for the KMT5A rescue experiments (Figure 2A). We then assessed expression of these 170 

transgenes in a Set820/20 background by immunoblot analysis of third instar larval brain extracts. 171 
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As demonstrated previously, there is no detectable Set8 protein in Set820/20 homozygous null 172 

mutant animals40 (Figure 3E). The Set8(RGHL) mutant protein accumulates to about 10% of 173 

Oregon-R wild-type control (Figure 3E, F), suggesting that binding of the SAM cofactor 174 

stabilizes Set8 protein. Consistent with this result, Set8RGHL animals are phenotypically similar to 175 

Set820/20 null mutants, arresting development as early pupae (Figure 4A, B). Interestingly, 176 

Set8RGHL wandering larvae accumulate melanotic masses that we did not observe in Set8null 177 

animals. This phenotype is associated with immune response and was previously reported to be 178 

variably expressive and penetrant in both Set820 and Set81/Df(3R)red3l animals.55 In contrast, 179 

levels of the Set8(RG) missense protein are comparable to those of wild type Set8 expressed 180 

from a control Set8WT transgene (Figure 3E, F), indicating that the R634G mutation does not 181 

impact protein stability. The Set8RG transgene rescues the early pupal lethality observed in 182 

Set820/20 mutants, but only ~50% of the Set8RG animals eclose as adults compared to the Set8WT 183 

control (Figure 4A, B). A majority of Set8RG mutant flies had rough eyes (86%, Figure 4C), as 184 

was previously shown for flies harboring the Set81 hypomorphic mutation, which is caused by a 185 

P-element insertion in the 5’-UTR.27,40,61 Set8RG also behaves as a hypomorphic allele, as animals 186 

containing two Set8RG transgenes have a less severe phenotype than those containing one (Figure 187 

4B). These data indicate that the Set8RG allele is not null, and thus Set8(RG) protein retains at 188 

least some Set8 function in vivo. 189 

To further characterize the Set8RG mutant, we more closely evaluated the process of 190 

pupariation in our collection of Set8 mutants. Easily recognizable developmental events occur 191 

during the larval to pupal transition in Drosophila, including eversion of the anterior spiracles 192 

and gas bubble translocation from the posterior to anterior end of the pupa. Whereas Set8+/20 193 

heterozygotes and Set81/20 hypomorphs progress normally through these developmental 194 
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milestones, Set820/20 mutants fail to complete both anterior spiracle eversion and gas bubble 195 

translocation, resulting in pupae with increased length compared to control and Set81/20 196 

hypomorphs (Figure 4D). Set8RG animals displayed a slight defect in completion of these 197 

pupariation events compared to Set8WT control animals. Pupariation defects observed in Set8RGHL 198 

animals were like those in Set820/20 mutants. Interestingly, Set8RG mutants also displayed a slight 199 

increase in pupal length compared to Set8WT controls that did not reach the severity observed in 200 

Set820/20 mutants (Figure 4D). These data demonstrate that the SET catalytic domain mutant 201 

Set8RG displays intermediate pupariation defects between wild type and null alleles of Set8, 202 

suggesting that successful completion of the larval to pupal transition may require both catalytic 203 

and non-catalytic functions of Set8. 204 

Mutants of H4K20 and Set8 are phenotypically distinct 205 

Mutation of lysine methyltransferases can result in disruption of multi-protein complexes, 206 

causing pleiotropic phenotypes independent of histone methylation.20,31,45,82,87,107 In addition, 207 

Set8 has non-histone substrates and non-catalytic functions.23,26,34,76,80,83,100,108 Thus, one cannot 208 

conclusively determine functional roles for H4K20me solely by mutating Set8. Another genetic 209 

strategy to address the contribution of H4K20me to various genomic processes is to change 210 

H4K20 to a residue that cannot be modified by Set8. However, this genetic strategy is not 211 

usually employed in metazoan systems because in these organisms the replication-dependent 212 

(RD) histones (H1, H2A, H2B, H3, and H4) are encoded by multiple genes located at different 213 

loci, making genetic manipulation extremely difficult. In contrast, in Drosophila melanogaster 214 

all ~100 replication-dependent histone genes are tandemly arrayed at a single locus that can be 215 

removed with a single genetic deletion. The early developmental arrest caused by homozygosity 216 

of this deletion can be rescued with a single, ectopic transgene encoding 12 tandemly arrayed 217 
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histone wild type gene repeats (HWT; Figure 5A, see Meers et al. 201852 for details on array 218 

construction). This strategy allows us to engineer histone genotypes encoding mutant histone 219 

proteins in which a given residue is changed to one that is not a substrate for its cognate 220 

modifying enzyme.5,41,49–52,65,66 221 

 Using this strategy, we demonstrated previously that H4K20A mutant animals can survive 222 

to adulthood49 (Figure 5C, D). By contrast, 100% of Set820/20 null animals die as larvae or early 223 

pupae40 (Figure 2C). This stark phenotypic difference between H4K20A and Set8 mutants suggests 224 

that certain Set8 phenotypes might not be due to loss of H4K20me, but rather to loss of 225 

methylation of its non-histone substrates or non-catalytic functions. To investigate this disparity 226 

further, we first generated H4K20R mutants52 and compared the resulting phenotypes to those of 227 

H4K20A animals as well as of Set8 mutants. Whereas a fraction of H4K20A mutants can survive to 228 

adulthood, we found that all H4K20R mutants fail to eclose as adults, although some reach the 229 

pharate adult stage (Figure 5C, D). In addition, H4K20R animals pupate much less frequently than 230 

either H4K20A mutants or H4HWT controls. Notably, the H4K20R mutant pupae are much smaller 231 

and shorter than either H4HWT control or H4K20A mutant pupae, indicating a growth defect (Figure 232 

5E, F). Despite this defect, we did not detect a change in cell cycle progression by FACS 233 

analysis of cells from H4K20R wing imaginal discs (Figure 5B). In contrast, H4K20A cells 234 

accumulate in G2 relative to controls, with a concomitant reduction in S phase (Figure 5B). 235 

Notably, Set8 deficient cells arrest in G2/M in both flies and mammalian cell culture.14,40 Taken 236 

together with the overall eclosion frequency differences, these data demonstrate that the H4K20R 237 

mutation is more severe than the H4K20A mutation developmentally, but that each mutation 238 

influences cellular mechanisms in unique ways (See Discussion). 239 
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One complication of these studies is that the fruitfly genome contains a single-copy 240 

replication-independent H4 gene (His4r) on chromosome 3 (i.e., located outside of the RD 241 

histone gene array on chromosome 2). His4r encodes an H4 protein that is identical to the RD 242 

H43. Although this gene is non-essential (Figure 5C, D), we and others have found that His4r can 243 

partially compensate for loss of RD H4.5,19,28,49 Therefore, we used CRISPR-Cas9 to engineer 244 

two His4r alleles (a deletion5, His4rΔ 5 and a K20A mutant, His4rK20A) and we combined them 245 

with the appropriate RD histone mutant genotypes (Figure 5A). As shown in Figures 5C and D, 246 

homozygous loss of His4r in an H4K20A background (H4K20A, His4rΔ/Δ) reduces viability, but does 247 

not eliminate it, indicating that His4r expression is important for the observed viability of H4K20A 248 

mutants but is not required. Expressing one copy of His4rK20A further reduces viability (Figure 249 

5C, D), suggesting a dominant toxicity of the H4K20A protein. In contrast, deleting His4r in an 250 

H4K20R background did not appreciably change the lethal period of H4K20R animals (Figure 5C, 251 

D).  252 

We next compared H4K20 and Set8 mutant phenotypes, focusing on pupariation and eye 253 

development. In contrast to Set820/20 null mutants, which display defects during pupariation, 254 

>80% of the H4K20A and H4K20R animals complete proper anterior spiracle eversion and gas 255 

bubble translocation. Similarly, the viable Set8RG and Set81/20 mutants did not exhibit defects in 256 

anterior spiracle eversion or gas bubble translocation. Both Set8RG and Set81/20 mutants have 257 

rough eyes27 (Figure 4C), indicating that Set8 is required for eye development.  In contrast, none 258 

of the H4K20A mutants had rough eyes when His4r was present, whereas ~21% of H4K20A, 259 

His4rΔ/Δ animals only had mild disorganization of interommatidial bristles (Figure 5G). These 260 

results suggest that the roles of Set8 and H4K20me in eye development are distinct, and further 261 

highlight that the differential effects of Ala and Arg substitutions at H4K20. We conclude that 262 
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H4K20me does not mediate all functions of Set8 because mutating H4K20 and Set8 cause 263 

different developmental phenotypes.  264 

Discussion 265 

We use genetic and genomic approaches in Drosophila to investigate how histone PTMs, and the 266 

enzymes that install them, contribute to animal development. It is particularly informative to 267 

determine where these contributions differ. Our results indicate that only a subset of the essential 268 

functions of the H4K20 mono-methyltransferase, Set8, are mediated by H4K20me. The data also 269 

reveal that, although H4K20me is formally dispensable for completion of development, the lysine 270 

residue nonetheless plays an important role. 271 

Drosophila Set8 and human KMT5A are orthologous 272 

We showed that human KMT5A can substitute for all Set8 functions during Drosophila 273 

development, except in the eye, where we observe a minor disruption in ommatidial organization 274 

that manifests as a rough eye in KMT5A-rescued adults. The eye phenotype likely does not result 275 

from changes in methylation of substrates, as we found that the human KMT5A SET domain can 276 

fully substitute for that of Set8, even in the eye. Rather, full developmental eye function is 277 

instead provided by the non-catalytic amino terminal 339 amino acids of Set8, which is 278 

conserved in other Diptera, but not in humans or other vertebrates and invertebrates. 279 

Nonetheless, we found that the rough eye phenotype was more penetrant in Set8ΔN-rescued 280 

animals than it was in the KMT5A-rescued animals. We designed Set8ΔN to be the same size as 281 

KMT5A and retain the conserved PIP degron and Cdk consensus phosphorylation site96 found in 282 

KMT5A, which therefore might provide some function during eye development. Because 283 

KMT5A can perform nearly all the biological functions of Set8 in Drosophila, studies of Set8 284 
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could be applicable to human biology and disease, particularly because aberrant levels of 285 

KMT5A are implicated in the development of and increased risk in certain breast, brain, and 286 

liver cancers.18,22,54,59,76,83,97,104,106 KMT5A has also been shown to regulate androgen receptor-287 

mediated transcription in prostate cancer.99 288 

Mutation of the SET domain does not abolish in vivo function of Set8 289 

Whether methyltransferase activity is required for all the cellular and developmental roles of 290 

SET domain proteins remains an open question in the field. This question is generally addressed 291 

by testing the in vivo function of “catalytically dead” enzymes. Previous in vitro studies showed 292 

that an R265G mutation eliminates catalytic activity of KMT5A.60 We found that the 293 

corresponding Set8R634G mutation does not cause a null mutant phenotype and supports 294 

development into viable adults. This result suggests that methylation of both H4K20 and non-295 

histone substrates of Set8 is not required for completion of development in Drosophila. 296 

However, we do not know whether Set8RG flies retain some H4K20 methylation. Thus, one 297 

possibility is that an enzyme other than Set8 could methylate H4K20 in Set8 mutant animals, but 298 

the levels of H4K20me attained would not provide full biological function. Another possibility is 299 

that the Set8RG mutant is a catalytic hypomorph in vivo. Consistent with this possibility, the 300 

Set8RG mutant phenotype resembles that of the previously described Set81 hypomorphic mutant 301 

(viable with rough eyes),27,40 and we found that two copies of the Set8RG transgene provide more 302 

function than one copy, indicating that Set8RG is a genetic hypomorph. In addition, our structural 303 

analyses revealed that R634G disrupts interactions within the SAM binding domain but does not 304 

eliminate the possibility that SAM and K20 might still occupy the active site of the enzyme, 305 

albeit less avidly. Notably, other studies have concluded that catalytic activity is not required for 306 
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in vivo function of the H3K4 mono-methyltransferase (Mll3/4, Trr).25,68 Thus, critical non-307 

catalytic roles of histone methyltransferases may be the norm rather than the exception. 308 

Comparative genetic analyses support distinct developmental roles for Set8 and H4K20me 309 

Our analysis of H4K20 mutants is consistent with the idea that Set8 provides essential functions 310 

during metazoan development that do not include H4K20 methylation. Animals entirely lacking 311 

H4K20me (H4K20A, His4r Δ /Δ and H4K20A, His4rK20A/Δ) can develop into adults with no obvious 312 

morphological defects, whereas all animals lacking the H4K20 methyltransferase (Set820/20) die 313 

in early pupal stages. This difference in phenotype supports the hypothesis that Set820/20 314 

inviability is due, at least in part, to loss of non-histone substrate methylation and/or non-315 

catalytic functions of Set8. Nevertheless, H4K20 is clearly quite important, as only a small 316 

fraction of H4K20A mutants complete development and H4K20R mutants are inviable. Moreover, 317 

ectopic expression of H4K20A mutant histones in cultured human cells supports a role for 318 

H4K20me in S phase progression, particularly in late replicating heterochromatin.13 319 

The phenotypic differences we observe between H4K20A and H4K20R mutants are 320 

intriguing, as both substitutions are expected to eliminate H4K20me. The differences may well 321 

be attributable to idiosyncratic structural properties of H4A20- vs. H4R20-containing 322 

nucleosomes, relative to wild type. In particular, the side chains of Alanine and Arginine differ in 323 

both size and charge and thus may differentially impact interaction of the H4 tail with chromatin 324 

binding complexes irrespective of H4K20 methylation. For instance, proteins that bind 325 

unmethylated H4K20 (BRCA1-BARD1) do not recognize H4K20A nucleosomes.58 Given the 326 

proximity of H4K20 to the nucleosome core, these mutations may variably influence chromatin 327 

structure, or affect the modification of other residues on the H4 tail or on other histones within 328 

the nucleosome. Notably, the assumption that a Lys for Arg substitution would be less 329 
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detrimental than a Lys for Ala substitution (because Lys and Arg have a similar side chain 330 

structure and are both positively charged) is not born out by our data. Regardless of the precise 331 

mechanism, our genetic analyses provide important insight into H4K20me function in vivo, and 332 

suggest that future biochemical, proteomic, and ultrastructural studies of these histone mutants 333 

will be informative.  334 

Materials and Methods 335 

Fly stocks and husbandry 336 

Fly stocks were maintained on standard corn medium with molasses provided by Archon Scientific 337 

(Durham). The Set820 stock used in this study was a generous gift from Ruth Steward. The Set81 338 

(#10278) stock was obtained from the Bloomington Stock Center. 339 

Set8, KMT5A, and chimeric transgenes 340 

For the Set8WT transgene a 5493 bp genomic fragment was amplified from a wild type fly extract 341 

using the following primers 5’ acttatacacttcattcct 3’ and 5’ tacccgcctgatgcgaattt 3’. The genomic 342 

fragment was cloned into pDEST w+ attB (Supplemental Figure 2). Set8RG and Set8RGHL were 343 

constructed using site-directed mutagenesis using the Q5 Site-directed Mutagenesis kit on pDEST 344 

w+ attB Set8WT (NEB E0554S). KMT5A, Set8ΔN, N-KMT5A::Set8-C, and N-Set8::KMT5A-C 345 

sequences were synthesized using GENEWIZ gene synthesis (Supplemental Figure 3) and cloned 346 

into pDEST w+ attB digested with AgeI and MluI (Supplemental Figure 2). Transgenes were 347 

sequence-verified and injected into VK33 on chromosome 3L and screened for positive 348 

transformants by BestGene. Recombinant flies were generated by crossing transgenic flies with 349 

flies containing Set820 and screening single F2 male progeny for the presence of both the 350 

appropriate transgene and Set820.  351 
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Western blots 352 

Twenty brains from third instar wandering larvae of each genotype were collected in 1xPBS (137 353 

mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4). 1xPBS was removed, 100 uL of 354 

RIPA buffer (50 mM Tris pH 7.5, 0.1% SDS, 0.5% Sodium Deoxycholate, 1% NP-40, 150 mM 355 

NaCl, 5 mM EDTA)) was added to each sample. Larvae were homogenized in RIPA buffer 356 

using a pestle and incubated on ice for 30 minutes. Samples were then centrifuged for 15 minutes 357 

at top speed at 4C. Supernatant was separated from pellet and protein concentration was assessed 358 

using a Bradford assay. Then 4x Laemmli sample buffer (BioRad 1610747) with 10% β-359 

mercaptoethanol was added to each sample at a 3:1 ratio. Samples were boiled for 10 minutes 360 

and equal protein (~10 ug) was loaded on a 12% SDS-PAGE gel. Proteins were transferred to a 361 

0.45nm nitrocellulose membrane for 60 minutes at 100V. Membranes were blocked with 5% 362 

milk in 1xTBS-Tween (10mM Tris, 150 mM NaCL, 0.1% Tween20) for 60 minutes then blotted 363 

with primary antibodies (Set8: Novus Biologicals 44710002; β-tubulin: Abcam ab6046) in 5% 364 

milk in 1xTBS-Tween overnight. Blots were quickly washed 3x then for 10 minutes 3x. Blots 365 

were incubated with secondary antibody (goat anti-Rabbit) in 5% milk in 1xTBS-Tween for two 366 

hours at room temperature. Blots were again quickly washed 3x then for 10 minutes 3x. Blots 367 

were then incubated with SuperSignal™ West Pico PLUS Chemiluminescent Substrate (Thermo 368 

Scientific 34580) and imaged using a GE Amersham Imager. Quantification was performed 369 

using FIJI. Briefly, the signal of each band on the Set8 blot and β-tubulin blot was quantified 370 

using a box of equal area. Signal from Set20/20 was subtracted from each Set8 value, then divided 371 

by the corresponding β-tubulin signal for each lane. Finally, the value of Oregon-R was set to 1, 372 

so values of all other genotypes are relative to that genotype. 373 

 374 
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Viability assays 375 

To investigate the requirement of Set8 and H4K20me for organismal viability, we enriched 376 

cultures of each genotype for 1st instar larvae by manually separating them from their wild type 377 

siblings and monitored survival to pupal and adult developmental stages. Mean pupation and adult 378 

values and pairwise comparisons for each genotype can be found in Supplemental Figure 4. 379 

Crosses to generate histone mutant genotypes were the same as previously reported.4,52 380 

CRISPR for His4r 381 

The His4rΔ allele utilized in this study was the same generated by Armstrong et al. 2018. Here we 382 

generated a point mutation allele (His4rK20A) using CRISPR-Cas9 mutagenesis. The genomic 383 

region including His4r was amplified using the following primers 5’-gctgcgccgttagataaagc-3' and 384 

5’-agcaatcggagtccatg-3' and TOPO cloned in pENTR. The codon for His4rK20 was changed to Ala 385 

using the Q5 Site-directed Mutagenesis kit (NEB E0554S). The same gRNA constructs in pCFD3 386 

from Armstrong et al. 2018 were co-injected with the K20A-mutated His4r repair construct into 387 

Drosophila embryos expressing Cas9 from the nanos promoter. Positive hits were screened using 388 

a BbsI site created by the Lys to Ala mutagenesis. 389 

Scanning electron microscopy 390 

Flies were deyhydrated in ethanol and images of compound eyes were taken using a Hitachi 391 

TM4000Plus table top SEM microscope at 10kV and 150x magnification. 392 

 393 

 394 

 395 
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FACS 396 

Wing imaginal disc nuclei from third instar wandering larvae of each genotype were sorted into 397 

G1, S, and G2 populations by a FACSAria II or III based on DAPI intensity as previously 398 

described.5,53 399 

Protein sequence analyses 400 

Figure 1A: PRDM and SET domain methyltransferase protein sequences (Supplemental Figure 5) 401 

were compiled and aligned with ClustalOmega using the msa package.11 A distance matrix was 402 

calculated by identity using dist.alignment in the seqinr package. A phylogenetic tree based on the 403 

distance matrix was generated and then plotted using ggtree.101–103 404 

Figure 2C: The full-length Drosophila melanogaster Set8 protein sequence was BLASTed against 405 

the refseq_protein database using the default parameters. The top 1000 hits were compiled and 406 

manually sorted to include only one protein isoform per organism. Proteins with percent identities 407 

to the full-length Drosophila melanogaster Set8 less than 50% were discarded. Human and mouse 408 

KMT5A proteins were retained for downstream analysis despite having percent identities lower 409 

than 50%. The remaining protein sequences (Supplemental Figure 6) were aligned with 410 

ClustalOmega from the msa package.11 Phylogenetic classification of each protein was performed 411 

with the taxize package and merged with the alignment information. Proteins with incomplete 412 

classification information were discarded. A phylogenetic tree was generated using the 413 

classification information and plotted using ggtree.101–103 The alignment of all remaining proteins 414 

was plotted in order of the phylogenetic tree and each position in the alignment was colored based 415 

on whether it matched the residue in the corresponding position of Drosophila melanogaster Set8 416 

(blue), Human KMT5A (pink), both Drosophila melanogaster Set8 and KMT5A (maroon), or 417 
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neither Drosophila melanogaster Set8 and KMT5A (black). Gaps in the alignment are represented 418 

by white space. 419 

Molecular dynamics simulations 420 

Structural models of Drosophila WT and mutant Set8/KMT5A in ternary complexes with SAH 421 

(S-adenosyl-L-homocysteine) and H4 peptide were built using the crystallographic structure of 422 

human KMT5A in ternary complex (PDB ID: 1zkk) [PMID 15933070] as template. These 423 

structural models were then used as starting structures for molecular dynamics simulations. Four 424 

replicate explicit solvent simulations with the same starting conformations but different velocity 425 

distributions were completed for WT and each mutant using the Amber v18 software package.21 426 

LEaP from the Amber software package was used to generate the explicit solvent systems in an 427 

octahedral box with charge neutralization while the GPU version of PMEMD was used to 428 

complete the simulations.30,73 The ff14SB force field was used for parameterization.47 A total of 429 

5,000 steps of minimization were completed, followed by 500 psec heating with an NVT 430 

ensemble, and then density equilibration over 500 psec with an NPT ensemble. The production 431 

run was in the NPT ensemble for a total of 500 nsec. During the production run, Langevin 432 

dynamics with a collision frequency of 1.0 psec-1 was used for temperature regulation. A 433 

Berendsen barostat with a relaxation time of 1.0 psec was used for pressure regulation. The time-434 

step was 2 fsec with hydrogen atoms constrained by SHAKE. Trajectories were analyzed for the 435 

distance between atoms in Set8/KMT5A and atoms in either the H4 peptide or SAH. 436 

Full genotypes of strains used in this study. 437 

Set8WT: y-w-;;{Set8WT}, Set820/20 438 

Set8RG: y-w-;;{Set8RG}, Set820/20 439 

Set8RGHL: y-w-;;{Set8RGHL}, Set820/20 440 
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KMT5A: y-w-;;{KMT5A}, Set820/20 441 

Set8ΔN: y-w-;;{Set8 Δ1-339}, Set820/20 442 

N-KMT5A::Set8-C: y-w-;;{KMT5A1-214 – Set8555-691}, Set820/20 443 

N-Set8::KMT5A-C: y-w-;;{Set81-554 – KMT5A215-352}, Set820/20 444 

HWT: y-w-; ΔHisC; {12xHWT} 445 

HWT, His4rΔ/Δ: y-w-; ΔHisC; {12xHWT}, His4rΔ/Δ 446 

H4K20A: y-w-; ΔHisC; {12xH4K20A} 447 

H4K20R: y-w-; ΔHisC; {12xH4K20R} 448 

H4K20A, His4rΔ/Δ: y-w-; ΔHisC; {12xH4K20A}, His4r Δ / Δ 449 

H4K20A, His4rK20A/Δ: y-w-; ΔHisC; {12xH4K20A}, His4rK20A/Δ 450 

H4K20R, His4rΔ/Δ: y-w-; ΔHisC; {12xH4K20R}, His4r Δ/Δ 451 

Data availability 452 

Strains and plasmids available upon request. The authors affirm that all data necessary for 453 

confirming the conclusions of the article are present within the article, figures, and tables. 454 
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Figure Legends 461 

Figure 1. Evolutionary relationship of Drosophila and human SET and PRDM containing 462 
proteins. Unrooted tree produced from an alignment of human and Drosophila PRDM and SET 463 
domain family proteins using ClustalOmega.  Drosophila proteins are indicated with bold, 464 
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underlined text. The red oval highlights the grouping of SET domain family proteins, including 465 
PR-Set7/Set8 and KMT5A (white).  466 

 467 

Figure 2. Human KMT5A functionally substitutes for Set8 during Drosophila development. 468 
A) Diagram of Set8, KMT5A, and Set8/KMT5A chimeric proteins expressed from transgenes 469 
located on chromosome 3, which also contains the Set820 null allele. Red shading and non-bold, 470 
non-italic numbers indicate Set8 sequence. Gray shading and bold, italic numbers indicate 471 
KMT5A sequence. In parentheses is the total number of amino acids in each protein product. B) 472 
Pupation of Set8WT, KMT5A, and chimera genotypes. Each circle represents the percentage of 40-473 
50 larvae in a vial that reached pupation. The mean and standard deviation of these percentages 474 
for 8-10 vials are shown for the indicated genotypes. All transgenic genotypes are in the Set820/20 475 
homozygous null background.  “2x” indicates that each transgene is also homozygous. C) 476 
Eclosion into adults of Set8WT, KMT5A, and chimera genotypes. Here, each circle represents a 477 
vial of 40-50 larvae, and 8 vials for each of the indicated genotypes were scored. Genotypes are 478 
as in panel B. D) Annotated alignment of Set8-related proteins. 301 homologous proteins with 479 
over 50% identity to Set8 as identified via BLAST were aligned using Clustal Omega and 480 
ordered by phylogeny. Set8 and KMT5A schematics are shown at the top of the diagram with the 481 
SET domains indicated by dark blue boxes. Residues of each protein in the alignment that match 482 
both Set8 and KMT5A exactly are colored dark red. Those that match only Set8 are colored light 483 
blue, and those that match only KMT5A are colored pink. Residues that match neither are 484 
colored black. Gaps in the alignment are indicated by white space. E) SEM images of adult eyes 485 
of flies of the indicated genotypes.  The penetrance of flies displaying a phenotype like that 486 
shown is indicated below each image.  “1x” and “2x” indicate flies containing either 1 or 2 487 
copies, respectively, of the transgene expressing Set8, KMT5A, or Set8/KMT5A chimeras in the 488 
Set820/20 homozygous null background. 489 

 490 

Figure 3. Generation Set8 proteins predicted to be catalytically inactive. 491 

A) Diagram of Set8(WT), Set8(RG) and Set8(RGHL) proteins expressed from transgenes 492 
located on chromosome 3.  B) Conservation of the Set8 Arg634 and Leu638 residues (orange 493 
bars) among KMT5A proteins from human, frog, and sea urchin, and among other SET domain 494 
proteins from these species. Asterisks mark where residues are identical across all twelve 495 
proteins. C) Modeling of Set8 with SAH and peptide from H4 bound to the enzyme. Shown are 496 
representative structures after 500ns of molecular dynamics for Set8, Arg634Gly and 497 
Arg634Gly, His638Leu mutations in Set8. D) Total length of time during 500 ns simulations that 498 
ligands remained in binding pocket as measured by distances between key atoms. The two 499 
distance measurements shown were selected because they were the most stable interactions 500 
between Set8 and H4 peptide and between Set8 and SAH. The selected hydrogen bond to the 501 
peptide was also the most stable interaction with the peptide and one of the last to be broken. 502 
Circles represent values from four replicate simulations. E) Western blot of third instar larval 503 
brain extracts from Oregon R wild type and the indicated Set8 mutants using anti-Set8 and anti-504 
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β-tubulin antibodies. F) Quantification of anti-Set8 signal on western blots by densitometry (see 505 
methods). Shown is the mean and standard deviation of measurements (circles) from technical 506 
replicates across four biological replicates.  Oregon-R normalized signal was set to 1 for each 507 
replicate. Significance was determined by a one-way Anova followed by Tukey’s multiple 508 
comparison test. **** indicates p<.0001 and ns indicates not significant.  509 

  510 

Figure 4. The Set8RG mutant phenotype is not null.  511 

A) Pupation and B) Eclosion into adults of Set8RG and Set8RGHL mutants. Each circle represents 512 
the percentage of 40-50 larvae in a vial that reached pupation or adulthood. The mean and 513 
standard deviation of these percentages for 8 vials are shown for the indicated genotypes. Note 514 
that the Oregon R and Set820/20 data in panels A and B are identical to Figure 2B and 2C, 515 
respectively, and shown here to allow comparison.  C) SEM images of adult eyes of flies of the 516 
indicated genotypes. Penetrance and transgene copy number are as in Figure 2 legend.  D) Pupal 517 
length was measured for animals of the indicated genotypes. Each symbol represents a single 518 
pupa. Thick bar indicates the mean and thin bars indicate standard deviation. ns indicates not 519 
significant and **** indicates p < 0.0001 by Student’s t test. 520 

 521 

Figure 5. H4K20 mutant phenotypes differ from Set8 mutant phenotypes. 522 

A) Diagram of histone mutant genotypes.  A deletion of HisC on the second chromosome is 523 
rescued by a third chromosome containing a transgenic 12x histone gene arrays and either with 524 
or without a mutation of His4r.  B) FACS analysis of DNA content within cells obtained by 525 
dissociation of larval wing imaginal discs. The percentage of cells in each phase of interphase is 526 
shown for the indicated genotypes. C) Pupation and D) eclosion into adults of different H4 527 
mutants. Each circle represents the percentage of 40-50 larvae in a vial that reached pupation or 528 
adulthood. The mean and standard deviation of these percentages for 8-11 vials are shown for the 529 
indicated genotypes. E) Pupal length was measured for animals of the indicated control and H4 530 
genotypes. Each symbol represents a single pupa. Thick bar indicates the mean and thin bars 531 
indicate standard deviation. ** indicates p<0.004 and **** indicates p < 0.0001 by Student’s t 532 
test. F) Representative image used for the pupal length data in panel E. G) SEM images of adult 533 
eyes of flies of HWT control and the indicated H4 mutant genotypes. Rough eye phenotype 534 
penetrance is indicated below each image. 535 

  536 
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