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Abstract
During  their  maturation  from  horizontal  basal  stem  cells,  olfactory  sensory  neurons
(OSNs) are known to select exactly one out of hundreds of olfactory receptors (ORs) and
express it on their surface, a process called monogenic selection. Monogenic expression
is preceded by a multigenic phase during which several  OR genes are expressed  in a
single OSN. Here, we perform pseudotime analysis of a single cell RNA-Seq dataset of
murine olfactory epithelium to precisely align the multigenic and monogenic expression
phases with the cell types occurring during OSN differentiation. In combination with motif
analysis of OR gene cluster-associated enhancer regions, we identify known and novel
transcription (co-)factors (Ebf1,  Lhx2,  Ldb1, Fos and Sspp2) and chromatin remodelers
(Kdm1a, Eed and Zmynd8) associated with OR expression. The inferred temporal order of
their activity suggests novel mechanisms contributing to multigenic OR expression and
monogenic selection.

Introduction 
The sense of smell is tasked with the daunting challenge of making sense of potentially billions of
different chemical stimuli to enable a multitude of different behaviors such as food search, prey
hunting, predator evasion, mating and other social interactions1. This task is solved by several
different receptor families, of which the best studied is both the evolutionary oldest and the largest
(odorant  receptor  genes,  OR genes)2.  The  analytical  power  of  this  system is  maximal  when
information gathered from activation of  individual  receptors is  kept  separate at  the peripheral
level. Indeed for both vertebrates and insects it has been shown that individual olfactory sensory
neurons (OSNs) express only a single OR gene out of the entire olfactory receptor repertoire,
which has been christened as monogenic expression3,4. Sensory neurons expressing the same
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receptor are distributed across the olfactory sensory surface,  but their  axons converge into a
single target region in the olfactory bulb, the first relay station of olfactory information processing5–

8.  These  target  regions  (so-called  glomeruli)  show a stereotyped  arrangement,  resulting  in  a
receptotopic map on the olfactory bulb (or antennal lobe in the case of insects). Thus monogenic
expression has a central importance for the olfactory coding logic. In fact, expression of ORs is
even monoallelic, i.e. restricted to one allele of the OR selected in monogenic expression3,4,9,10.
The molecular path towards monogenic and monoallelic expression is still not well understood,
and the relative timing of these processes is not clear. 

To reach monogenic and monoallelic expression presents a massive challenge in the case of
very large gene families such as those of mouse and rat ORs, which both number well over one
thousand intact genes2. A striking feature of genomic arrangement of OR genes is the occurrence
in several clusters, which contain from a single to over one hundred different OR genes11. For
mouse 68 such clusters have been identified, with the largest cluster containing 269 OR genes11.
Another  large  cluster  contains  all  145  class  I  OR  genes,  which  show  a  spatially  restricted
expression pattern in the olfactory epithelium12–14. These observations have prompted the search
for cluster-specific regulatory elements. In a seminal publication, 63 genomic regions containing
such elements were identified and named after Greek islands11,15. Fourty-two class II OR clusters
and the single class I OR cluster are associated with these Greek islands, which lie proximal to
and sometimes even inside the clusters11. A common feature of Greek islands is the presence of
closely  adjacent  Lhx2 and Ebf1-binding  motifs,  which are also  found individually  in  promoter
regions of individual OR genes16–19. 

Beyond individual cluster-specific regulatory elements the chromatin structure itself appears to
play an essential role in regulating OR expression. OSNs possess a unique nuclear architecture
compared to other cell types including the basal cells giving rise to the OSN lineage. In the silent
phase before onset of expression OR genes are aggregated in constitutive heterochromatin and
are associated with its molecular hallmarks, H3K9me3 and H4K20me320,21. Onset of expression is
concomitant with selective de-methylation (H3K9me3), methylation of H3K27me3 and re-location
into expression-competent territory21–24. Moreover, of the two alleles of an active OR only one is
found in the more plastic facultative heterochromatin22–24, i.e. amenable to expression, whereas
the  other  remains  blocked  inside  the  constitutive  heterochromatin,  resulting  in  monoallelic
expression. This suggests an involvement of chromatin remodelers in regulation of expression of
OR genes. Furthermore, the stabilization of monogenic expression appears to require negative
feedback from an active  OR gene25,26,  which may be mediated by silencing  of  the  activating
demethylase LSD1,  synonym Kdm1a27,28.Recent  progress in deep sequencing techniques has
allowed to obtain high quality single cell transcriptomes (scRNA-Seq), resulting in the surprising
observation  that  monogenic  expression  of  ORs  found  in  mature  OSNs  is  preceded  by  a
multigenic stage/phase in immature OSN29,30. 

It is so far mostly unclear how these OR expression phases align to the developmental stages of
OSN differentiation. Furthermore, although the basic stages (stem cell,  dividing precursor cell,
immature neuron, mature neuron) were known previously29,30, deep sequencing techniques allow
an unbiased ordering of individual cells along pseudotime trajectories according to their entire
transcriptome.  This  enables  a  more  precise/more  stringent  categorization  of  developmental
stages compared to previous attempts.

Here, we re-analyzed a scRNA-Seq dataset obtained by Fletcher et al31 with the goal to precisely
determine  the  timing  of  multigenic  and  monogenic  expression  during  OSN  differentiation.  A
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combination of sequence binding motif and time series analysis then identifies novel regulatory
components involved in establishing OR gene expression patterns. We ascertain the transcription
(co)factors and chromatin remodelers that are specifically correlated with the onset of multigenic
and of monogenic expression (e.g., Fos, Ssbp2, Eed and Zmynd8). Finally, we suggest potential
mechanisms for multigenic and monogenic selection.

Results

Reanalysis  of  a  single  cell  RNA-Seq  data  set  reveals  four
lineages originating from globose basal cells.

We re-analyzed a scRNA-Seq dataset obtained from Fletcher et al31. After quality filtering and
pre-processing (Methods, SFigure 2,3), 687 cells were included into further analysis and grouped
into 13 clusters using Seurat  KNN clustering on the top 15 principal  components (Methods).
Dimension  reduction  and  visualization  was  performed  using  principal  components  analysis
(Figure 1A) and tSNE / UMAP. Using an extensive set of known marker genes, we assigned
clusters to cell types of the main olfactory epithelium (MOE) (Figure 1B, Methods SFigure 4A).
We detected all cell types described by Fletcher et al31, and additionally we could subdivide the
globose basal stem cell cluster into quiescent cells (qGBC) and active cells (GBC). Active GBC
were identified by their expression of Ascl1/Mash132–35 and by the presence of cell cycle genes
such  as  Mki67  and  Top2a.  GBC are  known as  the  adult  OSN stem cells  responsible  for  a
sustained self-renewal of the OSNs throughout life35. 

Further, trajectory inference by Slingshot36 (Methods) revealed a tree with four leaves (Figure 1A).
Be aware that Slingshot does not provide information on the direction of development, but merely
a tree topology. In the following, we restrict our analysis to the neuronal lineage and therefore
choose qGBC as a root node for pseudotime analysis. qGBC has been reported as a general
stem cell population in the MOE following injury35. A previous analysis by Fletcher et al31 focused
on differentiation processes starting from HBC0. They placed their root node in HBC0, which is a
leaf  node  of  our tree, and  therefore  merely  report three  lineages. Apart  from  this,  their
reconstruction is essentially identical to ours. The four branches of our tree are (Figure 1A):

1) The basal stem cells lineage, which connects the quiescent horizontal basal stem cells (HBC0,
represented by 91 cells in the data) via two transient populations of horizontal basal stem cells
(HBC1 (29 cells) and HBC2 (118 cells)) with the qGBC (53 cells).

2)  The  supporting  cells  lineage  ranges  from mature  sustentacular  cells  (mSus  (70 cells))  to
qGBCs, and includes immature sustentacular cells (iSus (49 cells)) and HBC2. 

3) The microvillous cells lineage contains merely microvillous cells (MV (36 cells)). No transient
cell types have been detected in this trajectory. 

4) The neuronal lineage ends with mature olfactory sensory neurons (mOSN (32 cells)). It spans
a range of several stages, namely GBC (34 cells),  three intermediate neuronal precursors
Early.INP (26 cells), Mid.INP (20 cells), Late.INP (34 cells) and immature olfactory sensory
neurons (iOSN (95 cells)). 
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Figure 1. Cell type identification, trajectory inference and pseudotime assignment. A) 2D
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PCA projection of MOE cells shows the four predicted lineages starting from qGBC (center, pink,
the starting point of the four trajectories is marked in green). The differentiation trajectory end
points (red dots at the end of paths) are HBC0 (top left, pale blue), mSus (center left, green), MV
(bottom, brown) and mOSN (top right, purple). The transition stages in the four lineages (black
dots) are HBC1 (light blue), HBC2 (blue), iSus (light green), GBC (red), Early.INP (pale orange),
Mid.INP (light orange), Late.INP (dark orange) and iOSN (light purple) from the left to the right. B)
DotPlot representation of the average expression (red for high expression and pale blue for lower
one) of known marker genes (x.axis) corresponding to cell types of MOE (y.axis), and the size of
each dot represents the percentage of cells that expresses a corresponding marker gene in a
given cell type.

OR gene expression is limited to the last three stages of OSN
differentiation: Sudden onset of multigenic OR expression in
Late.INP is followed by transition to monogenic expression in
immature OSN stage. 

Expectedly, OR expression is essentially unique to the neuronal lineage (Figure 2). Next we used
Slingshot to assign a pseudotime to each cell, thereby providing a linear order of all 294 cells in
the neuronal lineage from qGBC to the terminal cell cluster (Methods). Our analysis could detect
157 cells  of  neuronal  lineage that  express at  least  one OR gene at  relevant  levels,  i.e.  ≥50
normalized counts. 132 of them belonged to the last three stages of OSN differentiation. Most of
Late.INP cells (28 of 34), iOSN (76 of 95) and mOSN (28 of 32) express at least one OR. Many
cells express more than one OR (multigenic expression), in particular in the Late.INP stage (26 of
28 cells expressing OR genes, 92.8%). The frequency of multigenic expression drops sharply in
later stages, 42% and 32% for iOSN and mOSN, respectively. We found 212 different OR genes
that were expressed at least once in a single cell of the neuronal lineage (Excel file 1). Figure 2A
shows the total number of reads that were assigned to OR genes, separately for each cell. While
aggregate OR expression levels are almost zero for qGBC/GBC, early and mid INPs, there is a
steep onset of OR expression in Late.INP. Then, overall OR expression stays at similarly high
levels in iOSN and mOSN (Figure 2A). A few OSN do not appear to express any OR at a relevant
level. More precisely,19 out 95 iOSN cells (20%) and 4 out 32 mOSN (12.5%) have less than 50
normalized OR counts. While it cannot be excluded that this is caused by incomplete annotation
of the OR repertoire, it  is also possible that reads were excluded due to multiple mapping to
closely similar OR genes. 

It  is known that mature OSNs express only a single OR gene3,4,9,37,  after a transient period of
multigene expression29,30. We therefore decided to rank OR genes by expression level, separately
in each cell. We then investigated the temporal behavior of the top four ranked OR genes in each
cell. These genes account for 99% of all reads (413,388 out of 416,033)mapped to OR genes in
cells from the neuronal lineage. The top-ranked gene of each stage will be referred to as ‘winner’
and the others as the ‘runners-up’. While the abundance of all  runners-up drops sharply after
Late.INP, the winner does not drop and in fact absolute levels keep increasing several fold until
the mOSN stage (Figure 2C,D). As a consequence the distance between winner and runners-up
increases considerably in the iOSN stage and even more so in the mature neurons (mOSN).
Since we observe each cell only once, we cannot be sure that the winner gene observed in one
cell at a certain stage will be the highest expressed OR gene when that cell matures. However,
this  is  by far  the most  plausible  explanation,  since a rank switch between the winner  and a
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runner-up before / during iOSN stage would require a coordinated switch of expression between
these two specific OR genes, from high to almost zero and vice versa, an unlikely scenario.

Taken together, the pseudotime analysis of neuronal lineage cells suggests three main phases
for OR expression (Figure 2C,D):

1) The silent phase exhibits virtually no OR expression, which is the case for the four early stages
of neuronal lineage (qGBC, GBC, Early.INP and Mid.INP). In the present data, the silent phase is
represented by 133 cells. 

2)  The  onset  of  OR  expression  (multigenic  phase)  is  characterized  by  the  simultaneous
expression of several OR genes per cell at relatively similar levels; this phase is represented by
34 cells and contains specifically the Late.INP stage and the beginning of the iOSN stage. 

3) Finally, the monogenic phase includes the end of the iOSN stage and the mOSN stage, where
each cell expresses essentially one functional OR allele (henceforth called the “winner”,  Figure
2C) at a very high level while the remaining ORs (the “runners-up”, Figure 2D) show no or very
low expression. Our data contains 127 cells in this phase.

Our analysis reveals that Late.INP is a crucial stage in stochastic selection.
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Figure  2. OR  expression  dynamics  along  neuronal  lineage.  A) Aggregate  expression
(normalized  pseudocounts)  of  all  OR  genes  for  each  cell.  Cells  are  sorted  according  to
pseudotime and colored according to cell type. B) Number of active OR clusters per cell, sorted
by pseudotime.  C) Expression of  the OR gene with the highest  expression level in each cell
(“winner”). For each stage of the neuronal lineage, we show the distribution of the corresponding
expression values (pseudocounts) as a violin plot. D) Using the same representation as in C, the
expression of the OR gene with second, third and fourth highest expression (“runners up” 1-3) in
each cell is shown in the top, middle, and bottom row, respectively. Note that the y-axis is in log
scale, and that the scale of the winner expression is on average one to two orders of magnitude
higher than that of the runners up. The dotted horizontal line in C) and D) marks an expression
level of 50 counts, which separates the expression of the winner from that of the runners-up.
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OR gene expression during multigenic phase shows no sign
of OR cluster-specific activation

Next, in an attempt to infer the mechanism of activation in the multigenic stage and transition to
monogenic stage, we analyzed the joint OR gene expression per cell (Figure 2B, Excel file 2). We
found that each of the cells expressing more than one OR gene in the Late.INP stage had at least
two active OR clusters (i.e., clusters with an OR gene expressed at a level of at least 50 counts).
The number of active clusters reached up to 7 for some cells. We performed a permutation test to
assess whether OR genes that are jointly active in one cell have the tendency to be located in the
same cluster  (see  SCode 1 and the description  therein).  The results  however  show that  the
average number of clusters with more than 1 active OR gene is consistent with the null model of
random cluster allocation of OR genes (SFigure 10, p=0.79). Moreover, we found that the top two
active OR clusters (ranked by expression level) always belonged to different chromosomes in
each cell of the Late.INP stage. Thus the onset of OR gene expression in the multigenic stage
cannot  be  caused  by  activation  of  an  individual  chromosome  or  a  particular  OR  cluster.
Conversely  the  transition  to  monogenic  stage  could  be  partially  caused  by  restriction  of
expression to a single chromosome and cluster.  However,  this may not be the only selection
mechanism involved, as some cells express up to 3-4 different OR genes simultaneously within a
single cluster. Specifically, for the 34 Late.INP cells we found 20 cells, which expressed at least 2
OR genes from the same cluster (expression defined as ≥50 normalized counts). Thus, additional
steps are required to restrict expression to a single gene within a cluster.

Motif  search  in  Greek  island  enhancers  identifies  novel
transcription factors 

Next  we  proceeded  to  identify  potential  factors  involved  in  both  onset  of  multiple  OR gene
expression and the transition to monogenic expression. We focused on transcription factors that
had a detectable expression in our scRNA-seq dataset. We consider a factor detectable if it has
at least 35 counts in at least 15 out of 294 cells in the neuronal lineage, leaving us with 1358
(co)TFs.

Previously, 63 intergenic enhancer regions, termed Greek islands, have been identified inside or
near OR clusters using DNase I hypersensitivity-sequencing and chromatin immunoprecipitation
sequencing15 and ATAC-seq11. SFigure 1 show the co-localization of the Greek islands and the
OR clusters on a map of the murine genome. Chromatin conformation capture experiments have
revealed that Greek islands extensively contact OR clusters, remarkably both in cis and trans38,39.

We performed a de novo  motif search on all Greek island enhancer regions as annotated by11

using MEME40,41 (Methods). Ungapped motif analysis of Greek islands identified one known and
two  novel  motifs,  TYCCYWKGGGVCTHATTARM  (reported  in  Monahan  et  al11),
GVDHCYYCAGRGAV and TBYTCHTCTCYMCAGDGWBNY motifs, with E-value 1.7e−057, 3.7e−027

and 4.1e−008, respectively. Almost all  Greek islands contain each of these motifs exactly once,
except 8 Greek islands which are missing the third motif. TOMTOM was employed to align these
motifs with known transcription factor motifs from the JASPAR database42 (Methods). TOMTOM
did not predict any significant TF binding for the two novel motifs, therefore we do not discuss
them further. We found 65 significant target binding sites for transcription factors inside the first
motif (see Excel file 3). From those, 9 TFs were expressed at a detectable level.  
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The  most  significant  motif,  TYCCYWKGGGVCTHATTARM  is  composed  of  two  adjacent
submotifs, which are overlapped by a third submotif (Figure 3A). The first submotif is targeted by
the COE1 DNA-binding domain which is found exclusively in the Ebf transcription factor family
(Ebf1-4). The second submotif is bound by homeodomain TFs such as Lhx2, Emx2 and Uncx
(Figure 3A). These results are consistent with previously reported Ebf1 and Lhx2 motifs to be
positioned  next  to  each  other  in  most  Greek  islands11.  Furthermore,  the  second  submotif  is
expected to interact with transcription factors from three other families, the homeobox domain TF
family,  the Pou (this family has a strong enrichment in OR genes TF family (Pou6f1) and the
ARID (AT-Rich Interaction Domain) domain TF family (Arid3a).

Noteworthy, our analysis predicted a third submotif, which is a possible binding site for Fos, Fosb
and  Fosl2.  Fos  and  Fosb  are  well-known early  response  transcription  factors,  which  in  turn
regulate  a  broad  variety  of  other  transcription  factors  thus  regulating  many  physiological
processes43–45. This Fos-binding motif overlaps with the end of the first and the beginning of the
second submotif, suggesting a cooperative/inhibitory interaction of the respective binding factors.
This possibility will be investigated further in the context of the pseudotime analysis.

Complementary to the de novo motif analysis, we did a forward motif search with AME46  looking
for known TF binding sites enriched in the 63 Greek Islands (Methods). This returned a total of
120 TFs (Excel file 4), of which 10 had a detectable expression (at least 35 count per cell  in
15/294 cells of neuronal lineage) in our scRNA-seq dataset (SFigure 5). Six of those are also
detected in the de novo motif search (see above), the additional TFs are Pax6, Dlx5, Pou2f1 and
Arid3b (SFigure 3A). Dlx5 is part of the same TF family as Lhx2, which was found in the de novo
motif search. Pax6 and Pou2f1 have a homeobox domain, whereas Arid3b is part of the same TF
family as Arid3a.

Taken together we describe 13 TFs that are found at detectable levels and predicted to bind to
Greek islands  by  de novo and/or  forward motif  search.  Next  we determined  the pseudotime
profiles  of  these  TFs  and  found  clear  and  distinct  temporal  expression  patterns,  providing
additional evidence for their active involvement in the regulation of OR expression.
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Figure 3: A) Binding motifs found in Greek islands. The top row shows the motif found de novo.
In the rows below, known binding sites of transcription factors that partly align with the de novo
motif in different sites (TOMTOM) and/or are enriched in Greek islands (AME). The transcription
factors given in square brackets refer to the TFs found only by Tomtom alignment whereas the
round brackets refer to TFs found only by forward motif search (see  SFigure 5).  B) Single cell
pseudotime  courses  of  the  TFs  in  bold  print  show  4  characteristic  trends  along  OSN
differentiation. The grouping of the TFs in grey follows their pseudotime profile. It agrees with their
grouping according to binding sites, except for Pax6 and Pou2f1 that have a homeobox domain
like Lhx2.

Pseudotime analysis suggests transcription factors involved 
in OR expression

The sorting of cells according to pseudotime (Methods) generates, for each gene, a time course
of its expression (see above). Notably, all TFs found by motif search in the previous paragraph
show a pronounced temporal expression pattern, which belongs to one of three groups (Figure
3B and SFigure 5): The first group is active early in the silent phase, but strongly downregulated
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in late silent phase to reach a minimum in the multigenic phase (Fos, Fosb, Fosl2, Pax6 and
Pou2f1).  Some,  but  not  all,  are  upregulated  again  in  the  monogenic  phase (Fos,  Fosb).The
second group peaks specifically within the multigenic phase (Ebf1, Lhx2, Emx2, Uncx and Dlx5).
The third group is  specifically  upregulated during the monogenic phase (Arid3a and Pou6f1).
Hereafter we will refer to these group definitions.

The fact  that  all  TFs with  a known Greek island  binding  site  show a clear  temporal  pattern
prompted us to perform a systematic search for TFs that change their expression upon transition
between the three phases of OR expression. We also include co-factors in this analysis, because
co-factors such as LDB1 have been found to be selectively associated with Greek islands and
were  suggested  to  initiate  OR  expression38.  We  searched  for  (co-)TFs  with  a  significant
differential  gene expression of at least 2-fold between silent  vs. multigenic phase or between
multigenic vs. monogenic phase (Methods), resulting in 83 (34 going up, 49 down) respectively 39
(8 up, 31 down) relevant hits (Figure 4A, see Excel files 5,6). 

Several of these differentially expressed factors were also identified by motif analysis (e.g., Ebf1,
Lhx2, Dlx5, Fosb and Fos), but many are not. We manually inspected the pseudotime patterns of
all differentially expressed (co-)TFs, and for detailed discussion, we selected those factors whose
pseudotime expression pattern falls clearly into one of the three groups described above. We limit
ourselves in the following to discussion of novel (co-)factors with additional evidence from motif
analysis  or  a  previous  link  to  OR  expression11,18,19,38.  All  other  factors  with  a  characteristic
expression time course are shown in SFigure 9A.

For group 1 (active early in silent phase, downregulated in late silent phase and minimum in the
multigenic  phase)  the  differential  expression  search newly  identified  Egr1,  whose  expression
resembles that of Fos and Fosb, which were already identified by motif analysis (see above).
Therefore we searched explicitly for the known Egr1 binding motif (Methods) in Greek islands,
which could be identified in 16 of 63 Greek islands. Fos, Fosb and Egr1 are immediate early
genes,  which are rapidly  upregulated in  response to external  stimuli,  immune response,  and
cellular stress45. Egr1, Fos and Fosb are specifically downregulated during the multigenic phase
(Figure 4B and SFigure 9A). This suggests combinatorial interactions with the other components
that regulate OR expression and will be discussed later.

The  second  group  peaks  specifically  within  the  multigenic  phase  and  6  factors  have  been
identified  by  motif  analysis  (see  above).  Differential  expression  analysis  further  obtains  the
cofactor Ssbp2 (Figure 4B) and three factors, Cebpg, Rcor1 and Ldb1, which have been reported
previously to be involved in OR expression11,38,47,48. Ssbp2 binds to Ldb1 and thereby prevents
Ldb1 from degradation49,50. While Ldb1 and Lhx2 were shown to bind to Greek island enhancers
to regulate OR expression in trans38, Ssbp2 is a novel candidate with such a function. 

The third group is specifically upregulated during the monogenic phase and two factors from this
group have been identified by motif analysis. Differential analysis identifies additionally the TFs
Mef2b, Rfx3 and Sub1, also known as PC4 (Figure 4B and SFigure 9A). Among these factors,
only  Rfx3 has a known motif,  for  which we performed a strict  motif  search in  Greek islands
(Methods).  We  report  that  56  out  of  63  Greek  islands  contain  the  binding  motif  for  Rfx3.
Moreover, note that Mef2a, which shares a similar SRF binding domain with Mef2b51, is found to
be strongly bound to OR promoters19.

Taken  together,  our  pseudotime  analysis  recovers  a  large  proportion  of  candidate  (co-)TFs
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identified by motif analysis - both for initiating onset of OR expression, and for the transition to
monogenic stage. Moreover it extends the range of candidates whose time course correlates with
these  two  transitions,  and  consequently  the  regulatory  repertoire  for  these  transitions.

Figure  4:  Differential  Expression  analysis  and  Pseudotime  expression  profiles  of
Candidates Factors. A) Volcano plots revealing the up- (peach) and downregulated (magenta)
factors in the two transitions from silent to multigenic (left)  and from multigenic  to monogenic
phase (right). TFs are shown as filled circles, cofactors are triangles. We selected (co-)TFs* with
an adjusted p-value less than 0.05 (y-axis,  log10 Bonferroni adjusted p-value) and an average
expression change of at least 2 fold (x.axis, log2 fold). (Co-)TFs with only significant changes are
shown in brown, those with only relevant expression fold > 2 are colored in grey, all others are in
black (not significant).  B) Single cell  pseudotime courses of selected transcription factors and
cofactors that show characteristic trends along OSN differentiation (cell stages are indicated by
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colors). Left to right: each group of 2 columns shows examples of transcription (co-)factors in
group 1, 2, and 3 as defined in the text. C) Same as B) for chromatin remodelers. *Note that co-
TFs in A) include chromatin remodelers.

Changes in chromatin remodeler expression accompany both
transitions in the OR selection process

It  is known that chromatin changes accompany the selection of OR genes20,21,23.  We therefore
searched our data for chromatin remodelers that show expression changes during OR selection
(Methods, Excel files 5,6). We confirmed previous observations that the chromatin remodelers Lbr
and Cbx5 (SFigure 9B) are expressed at earlier stages and are downregulated in the course of
OSN differentiation15,21. Furthermore, we discovered novel candidates for silencing OR genes, for
onset of (multigenic) expression, and for transition to monogenic expression (Figure 4C):

Among the genes whose expression profiles fall into group 1 (minimum in multigenic phase), we
found Eed, one of the constitutive subunits of the polycomb repressive complex 2, PRC2 (Figure
4C). Eed is required to maintain repressive H3K27me3 marks52,53 and its downregulation may lead
to de-repression of OR expression in Late.INP stage. Note that another PRC2 subunit, Ezh2 is
expressed during the silent phase as well,  but decreases later, at the transition to monogenic
phase (SFigure 6). Nsd1 is a histone methyltransferase that demethylates H3K36me254 (Figure
4C). All remodelers found with a group 1 pseudotime profile (Hells, H2afz and Set) are predicted
to play a repressive role in the silent phase of OR selection (we only show H2afz as example
SFigure 9B).

For  group 2  (peak  in  multigenic  phase),  we found  prominent  chromatin  remodelers  such  as
Zmynd8,  Ell3,  Sertad2,  Med12l  and Scai  (Figure  4C,  SFigure  9B).  We also  investigated the
expression profile of Kdm1a which was known before as a regulator of OR expression. Kdm1a
alias LSD1 is  a Lysine demethylase and functions both as a coactivator  by demethylation of
mono-  or  di-methylated  H3K9  and  as  a  corepressor  through  demethylation  of  mono-  or  di-
methylated H3K455–58.  There have been contradictory reports on the function of Kdm1a in OR
expression as an activator27 or repressor of transcription48. The present data sheds light on this
debate: While Kdm1a expression sharply peaks directly before the multigenic phase (arguing for
its role as activator), it can be part of the Co-REST repressor complex59. Two components of the
Co-REST repressor complex, Rcor1 and Hdac2, sharply peak during multigenic phase  (Figure
5C, SFigure 8A), arguing for  a change of  function of  Kdm1a by recruitment to the Co-REST
complex at the transition to monogenic phase55,60,61.

Of the four novel remodelers with a group 2 pseudotime profile,  Zmynd8 and Ell3 are highly
differentially  expressed  (Figure  4C).  Zmynd8,  a  chromatin  reader,  is  a  particularly  appealing
candidate, since it is also known to play a role in the selective expression of the  immunoglobulin
heavy  chain  (Igh)  regions  in  immune  cells  (B  cells).  Its  product  ZMYND8  binds  Igh super-
enhancers known as 3’ regulatory region (3’RR). ZMYND8 thereby controls the 3′RR activity by
modulating the enhancer  transcriptional  status62.  Consistent  with an activating role during the
multigenic phase, Ell3 does not only bind to active enhancers, but also marks the enhancers that
are in a poised or inactive state in ES cells63. 

Remodelers  whose  pseudotime  profiles  fall  into  group  3  (specifically  upregulated  during  the
monogenic phase) are Cbx4 (Chromobox 4) and Jarid2 (Figure 4C). Cbx4 is a component of a
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Polycomb  group  (PcG)  multiprotein  PRC1-like  complex,  which  is  required  to  maintain  the
transcriptionally  repressive  state  of  many  genes64,65.  Jarid2  (Jumonji  and  AT-Rich  Interaction
Domain Containing 2) is required to repress expression of cyclin-D1 (CCND1) in cardiac cells by
setting H3K9 methylation marks66, and it is upregulated upon transition from Late.INP to iOSN
(SFigure 4B), i.e. upon exit from the cell cycle.

So far, we identified several chromatin remodelers that add to the regulatory repertoire for the
onset of OR expression, and for the transition to monogenic stage. Another important feature
which requires chromatin remodeling is the monoallelic expression of ORs in mature OSNs. This
feature appears to be established from the very beginning of OR expression4,23. Factors involved
in generating allelic exclusion therefore would be expected to peak at least as early as factors
regulating the onset of (multigenic) expression (group 2 factors). We found two remodeling factors
with a very early onset within group 2 which could potentially play such a role: Smchd1 (structural
maintenance  of  chromosomes  flexible  hinge  domain-containing  protein  1)  and  Cdyl2
(chromodomain Y-like protein 2) (see SFigure 7).

Based on the interactions and temporal coordination of remodelers and (co-)TFs, we generate
and discuss some hypotheses about OR selection below.
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Figure  5. Graphical  summary  of  OR  gene  expression  and  hypothetical  selection
mechanisms. A) Frequency distribution of active OR clusters and chromosomes per cell in the
three  phases  of  OR expression.  Two  exceptional  cases  of  cells  in  multigenic  phase  with  6
respectively 7 active OR clusters are omitted from the plot.  B) Pseudotime ordering of (co-)TFs
and remodelers according to peak of expression in one of the three phases. Factors that so far
have not been reported are highlighted in red. C) Four mechanisms potentially contributing to OR
selection. Factors are colored according to their phase of peak expression. The placement of the
nucleosomes is according to the pseudotime at which the respective processes take place. Green
arrows indicate an activating effect on target genes, black blunt end arrows indicate an inhibitory
effect. Top row: Competitive binding of Fos vs. Ebf1 and Lhx2 to different parts of the Greek
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island consensus motif,  resulting in different enhancer activities during the three OR selection
phases.  Second row: Downregulation  of  the Eed subunit  dissolves the PRC2 complex at  the
beginning of the multigenic phase and thus enables access of demethylases to H3K27me3. Third
row: Methylated H3K9 is recognized, bound and protected by Cbx5 during the silent phase. At the
end of this phase Cbx5 is downregulated and Kdm1a is upregulated. It participates in the process
of  H3K9  demethylation  by  removing  the  H3K9me1/2  mark.  Later,  after  H3K4me3  has  been
demethylated to H3K4me2, presumably by Kdm5a during the multigenic phase, Kdm1a has a
second  role  as  part  of  the  CoRest  complex  and  demethylates  H3K4me2.  Bottom row:  After
demethylation  of  H3K4me3/2  by  Kdm5a  at  Greek  island  enhancers,  the  chromatin  reader
Zmynd8, which peaks during the multigenic phase, can recognize H3K4me and repress enhancer
activity. Activity is restored upon downregulation of Zmynd8 in monogenic phase.

Discussion
The monogenic expression of ORs presents a big challenge for the olfactory system, since it
requires a random selection of exactly one OR per cell from the large family of OR genes. OR
genes are known to be aggregated in silenced chromatin clusters during the silent phase, before
the selection is made21.  The identification of  a multigenic  state in  early  immature OSN29,30 by
scRNA-seq made clear that the escape from silencing is not limited to a single OR gene in a
single cell. In a single cell, we observed up to seven different OR clusters and more than a dozen
different  OR genes concomitantly  active.  Both transcription  factors and chromatin remodelers
have been identified as regulators of OR expression. 

Here we have employed pseudotime analysis of a single cell transcriptome data set31  focusing on
OR expression.  We aligned  the three main  phases of  OR expression,  silent,  multigenic  and
monogenic29,30, with the stages of OSN differentiation as defined in31. By analysis of winner vs.
runners-up OR expression, we could precisely assign the onset of multigenic phase to Late.INP,
and the onset of monogenic selection to iOSN. Most cells in the multigenic phase express ORs
from more than one cluster and more than one chromosome (Figures 2B, 5A). We tested whether
ORs co-expressed in one cell tend to lie in identical OR clusters and did not find evidence for that
(SCode 1, SFigure 10). We conclude that the selective expression of OR genes during multigenic
phase is not caused by escape from compaction of merely one OR cluster. In the monogenic
phase, the vast majority of cells express only a single OR gene (Figure 5A).

We  then  identified  candidate  factors  (TFs  and  cofactors  including  chromatin  remodelers)
differentially  expressed between these stages  and thus  potentially  involved  in  the  transitions
silent-to-multigenic (40 TFs, 43 cofactors) and multigenic-to-monogenic (19 TFs, 20 cofactors)
(Methods, Excel files 5,6). Many of these differentially expressed factors are likely not directly
involved  in  OR  selection,  since  cells  undergo  many  substantial  changes  along  OSN
differentiation.  Thus,  we performed an independent  de novo motif  analysis  of  Greek islands,
which should enrich TFs involved in OR selection. This search revealed one motif that could be
decomposed into three consecutive submotifs, only two of which were described previously11. We
additionally  recognized  a  central  Fos  binding  motif  overlapping  the  previously  described  two
elements (Figure 3A). All  but one of  the factors that bind to these motifs show characteristic
pseudotime expression time courses, which could be classified in three groups (Figure 5B). The
temporal  coordination  of  these  factors  together  with  the  precise  location  of  their  respective
binding sites enables us to generate hypotheses about their molecular interactions and possible
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functional consequences.

Competitive binding of Fos may block transcriptional activation by Ebf1 and Lhx2

In  the  silent  phase  the  transcriptional  regulator  Fos  is  binding  to  the  central  motif  and  may
competitively prevent binding of the known activators of OR expression, Lhx2 and Ebf111, which
bind to the left and right submotifs (Figure 3A, top row of Figure 5C). The strong downregulation
of Fos expression in the multigenic phase then would allow Lhx2 and Ebf1 to access their binding
motifs,  and recruit  their  known binding partner Ldb1 to Greek islands38.  Ldb1 mediates trans
interactions  between  different  Greek  islands,  creating  super-enhancer  hubs  that  include
neighboring OR clusters38. Our pseudotime analysis predicted additionally the co-factor Ssbp2 to
play a role in this process. Ssbp2 is in other contexts known to bind to Ldb1 and thereby prevents
its degradation by the proteasome49,50. Thus expression of Ssbp2 in the multigenic phase would
amplify the effect of Ldb1.

All four factors peak during the multigenic phase (Figure 4A-B, Figure 5B and SFigure. 9A). This
expression is anti-correlated to that of Fos, which supports the competitive interaction hypothesis
outlined above (first row of  Figure 5C). The high activity of Fos in silent and monogenic phase
would counteract complex formation even of the small concentrations of Lhx2 and Ebf1 observed
in this stage.

Disassembly of PRC2 complex may play a role in onset of OR expression

Our results found no OR expression during the Mid.INP stage despite significant expression of
Lhx2, Ebf1 and Kdm1a (known activators of OR genes).  We note that all  components of the
polycomb repressive complex 2 (PRC2),  Eed,  Ezh2 and Suz12,  are active in Mid.INP, which
could  explain  the  absence  of  OR gene  expression  in  Mid.INP  despite  the  presence  of  the
activators  (second  row  of  Figure  5C).  Moreover,  an  essential  subunit  of  PRC2,  Eed,  is
significantly reduced during onset of OR expression in Late.INP (Figure 4 and SFigure 6). This
elimination  of  Eed is  sufficient  to disassemble the PRC2 complex,  which then can no longer
maintain the repressive H3K27me3 mark52,53. Furthermore, we showed a dramatic reduction in
expression of Ezh2 and Suz12 subunits of PRC2 along OSN differentiation (second row of Figure
5C and  SFigure  6).  We  conclude  that  PRC2  activity  may  be  involved  in  repression  of  OR
expression in Mid.INP. The disassembly of PRC2 in Late.INP then enables the Greek Island hubs
to transiently activate the cis-corresponding OR gene/s, which enables the expression of multiple
OR genes in most of Late.INP stage cells at the same time with relatively low levels compared to
later stages of OSN differentiation (Monogenic phase).

Kdm1a plays a dual role in OR expression regulation

Heterochromatic  silencing  of  ORs  throughout  OSN  differentiation  is  enforced  by  the
(interchromosomal) convergence of OR loci to OSN-specific, highly compacted nuclear bodies21.
It has been shown that in the monogenic phase individual active OR genes require de-silencing
by lysine demethylase Kdm1a27 and spatial segregation of the single chosen OR allele towards
euchromatic nuclear territories21. Another study however showed that the deletion of Kdm1a leads
to persistent multigenic expression, suggesting a silencing role of Kdm1a rather than activating
one48. Here, pseudotime analysis sheds light on the seemingly contradictory role of Kdm1a (third
row of Figure 5C):

 17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.31.478392doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478392
http://creativecommons.org/licenses/by-nc/4.0/


The CBX5 protein is responsible for silencing of OR genes during the silent phase by binding to
and  thereby  protecting  the  repressive  H3K9me3  mark  in  gene  bodies21.  It  vanishes  upon
transition  to multigenic  phase (SFigure 9B).  After  H3K9me3 has lost  one methyl  group (e.g.,
through the action of  Kdm4a),  Kdm1a can demethylate H3K9me2.  Kdm1a peaks at  Mid.INP
stage and acts on di-methylated lysines only55. Thus the action of Kdm1a on H3K9me3 leads to
activation in Mid.INP (Figure 5C).

In contrast, another methylation site, on H3K4 is a mark of an active promoter/enhancer in the
methylated stage  (trimethylated  for  promoter,  monomethylated  for  enhancer).  Kdm5a  peaks
during multigenic phase (Figure 5C, SFigure 8A) and can demethylate tri- or di-methylated H3K4
to its monomethylated form. Kdm1a by itself cannot act on H3K4me, but in a complex with Rcor1
and Hdac2 (CoRest complex) it is able to demethylate H3K4me2/155,60,61(Figure 5C). Rcor1 and
Hdac2 have their peak expression during Late.INP stage, i.e. shortly after onset of the Kdm1a
peak (Figure 5B, SFigure 8A). Thus, in Late.INP but not in Mid.INP, Kdm1a can demethylate
H3K4me2/1, resulting in repression. This amounts to the multigenic phase (Late.INP) beginning
to build up the molecular machinery to downregulate all but one of expressed ORs.

Taken together, the same enzymatic activity of the same factor (demethylation by Kdm1a) results
in opposing effects on transcription due to co-factors Rcor1 and Hdac2 modulating substrate
specificity  of  Kdm1a.  Moreover  our  pseudotime  analysis  supports  the  hypothesis  that  OR
expression issues a negative feedback signal on Kdm1a which is mediated by Atf5 and Adcy3
during transition from multigenic to monogenic phase25,27,28 (see SFigure 8B).

Zmynd8 regulates the activity of Greek islands

During  the  monogenic  phase,  a  super-enhancer  is  formed  by  the  trans  interaction  between
multiple Greek islands. Among the OR genes associated with this super-enhancer, merely one
OR is expressed at very high levels38. During the multigenic phase, H3K4me3 marks of Greek
islands20 are converted to H3K4me, e.g. by Kdm5a  (SFigure 5C). The latter histone mark can be
recognized by the chromatin reader Zmynd867. Zmynd8 has been shown to participate in another,
highly  specific  selection  process,  namely  the expression of  Igh genes62.  There,  it  recognizes
H3K4me and represses super-enhancer activity in B cells. We therefore speculate that it might
play a similar  role in OR expression.  Assuringly,  the Zmynd8 pseudotime course  (Figure 4C)
correlates  well  with  that  of  the  super-enhancer  forming  complex  Ebf1-Lhx2-Ldb1-Ssbp2  (see
above and Figure  5C).  Upon transition  to the monogenic  phase,  Zmynd8 expression ceases
(fourth row of Figure 5C). The vanishing of the corresponding protein turns the super-enhancer on
and allows for the very high expression of the selected OR. 

Potential timing of monoallelic expression

So  far  it  is  unknown  whether  the  monoallelic  expression  characteristic  for  mature  OSNs  is
preceded by a biallelic  phase. The dataset  evaluated here does not  allow us to analyze this
question  directly,  because  it  does  not  exhibit  enough  sequence  diversity  between  alleles  to
distinguish them. We searched for epigenetic factors known to be involved in allelic selection in
other contexts, which show significant and relevant expression changes during OR differentiation.
We found  two  factors,  Smchd1  and  Cdyl2  (SFigure  6),  which  were  discussed  as  stabilizing
monoallelic  expression.  They  play  a  role  in  epigenetic  silencing,  spermatogenesis,  random
inactivation of X chromosome, and stabilize monoallelic expression68–70. Both factors peak sharply
in mid to late INP. Assuming these two factors initiate monoallelic expression, this would place
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monoallelic selection before or concomitant with the onset of (multigenic) expression in Late.INP,
in other words, there might be no biallelic stage at all.

Future prospects
The dissection of the OSN maturation process into different stages allowed us to reveal three
phases of OR gene selection. This in turn enabled an in-depth analysis of pseudotime expression
profiles71, leading to several promising candidates and to testable hypotheses on the mechanisms
involved in OR gene selection. It will be interesting to complement the present data with single
cell chromatin accessibility data (e.g. scATAC-seq) or single cell chromatin conformation data (Hi-
C) in the context of conditional knockouts of the factors we have identified. Experiments should
be carried out in hybrid crosses to additionally monitor allelic expression. Our study has narrowed
down the cell stages and the time window that need to be analyzed for these purposes, thereby
enhancing future research on this topic.

Methods
Most statistical analysis and visualization were done in RStudio using R version 3.6.3.

a. Data processing and Quality control

Our analysis  of  OR expression patterns during OSN differentiation is based on a scRNA-seq
dataset generated by (Fletcher et al31, GEO: GSE9560). Ngai group investigated the homeostatic
differentiation  in  the  postnatal  olfactory  epithelium.  Horizontal  basal  stem  cells  (HBC)  were
released from quiescence by a conditional knockout of the Trp63 transcription factor. Briefly, cells
were FACS (fluorescence-activated cell sorting) selected for Sox2-EGFP-pos-itive, ICAM1-negative,
SCARB1/F3-negative expression to enrich for the cell population of interest (GBCs, later neuronal
intermediates, and microvillous cells over sustentacular cells). Then scRNA-seq was done using the
Fluidigm C1 microfluidics cell capture platform followed by Illumina multiplex sequencing. Fletcher
et al31 used RefSeq transcript annotations to align reads to the GRCm38.3 mouse genome with
Tophat2. This resulted in 849 cells with a mean coverage of 1.36M reads per cell (before read
quality control). Contaminations, doublets and other technical artifacts were removed according to
the ’oeHBCdiff_filtering.R’, protocol (https://github.com/rufletch/p63-HBC-diff). 

From here on our data processing differs from Fletcher et al31. We included all transcripts (above
40 counts in total) that occured in at least one cell to ensure retrieval even of OR genes with very
sporadic expression. Further filtration was done using Seurat (version 3.1.4)72–74,  keeping only
cells with at least 1250 expressed genes. A total of 687 cells with a mean library size of 460k
unique reads passed all filtration criteria and the median number of genes per cell is 4164. The
library size distribution of these cells is shown in (SFigures 2,3). 

Duplicate  removal  and normalizing  the counts  was  performed by  Seurat’s  SCTransform with
default  parameters72,  resulting  in  a  687  cells  times  17228  genes  matrix  followed  by  Seurat
workflow72. 

b. Dimension reduction, clustering and cell type assignment
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We followed the Seurat clustering workflow. First, dimension reduction was done using Principal
Component  Analysis  (PCA).  The  number  of  principal  components  kept  was  set  to  15,  after
assessing the goodness of approximation by JackStraw and ElbowPlot functions. A shared k-
nearest neighbor graph was built by the FindNeighbors function. Afterwards, the Lovain algorithm
was applied  to define  13 distinct  clusters from the shared nearest  neighbor  graph using the
FindClusters function and the Jaccard index as a similarity measure. This number matches the
number of clusters identified in (Fletcher et al31) for this data. The expression of cell type marker
genes that were collected from the literature (STable 1) served to assign cell clusters manually to
known cell  types according  to the Seurat  guidelines72.  At  least  two expressed markers were
required to confidently annotate a specific cell type. Visualization of the data was performed by
PCA, UMAP75 and tSNE76.

c. Trajectory inference and pseudotime assignment

Slingshot36 was used to construct a minimum spanning tree (MST) based on the 15-dimensional
representation of the cells obtained above. The topology of the MST is independent of the root
choice. For biological reasons, we selected qGBC as the root for the assignment of pseudo time,
where it can differentiate to any cell type of MOE35. For each cell, a pseudotime between 0 (cells
at the root node) and 1 (leaf node cells) was assigned by the slingPseudotime function.

d. Differential expression analysis

For each cell stage, we identified marker genes showing differential expression compared to all
other cell stages using FindAllMarkers in Seurat, using the Wilcoxon rank sum test. Supplemental
Figure 3 shows a heatmap of the top 10 differentially expressed genes (i.e., putative markers) for
each cell stage of MOE. 

Among 2712 (co-)TFs (include chromatin remodelers)  obtained from the GO.db package and
AnimalTFDB3.0  (http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/),  we  found  2004  (co-)TFs
expressed (at least one count in one cell) in the neuronal lineage. In later differential expression
analysis we compared the expression profiles of cell stages that were placed consecutively along
the neuronal trajectory (i.e., the maturation of OSN) to identify genes that change their expression
upon transition between cell stages (SFigure 4B). Volcano plots for each cell type transition were
generated  by  a  slightly  modified  EnhancedVolcano  function
(https://github.com/kevinblighe/EnhancedVolcano).

Differential  expression  analysis  for  silent  to  multigenic  and  multigenic  to  monogenic  phase
transitions were performed by comparison of pre-Late.INP cells vs. Late.INP cells and Late.INP
vs. post-Late.INP cells, respectively. Genes with a Bonferroni adjusted p-value <0.05 (Wilcoxon
rank sum test, FindMarkers function in Seurat) and an average absolute FC >=2 were considered
differentially expressed. This yielded 83 respectively 39 differentially expressed (co-)TFs for the
two transitions.

e. Motif Analysis

The genomic ranges of 68 OR clusters and 63 Greek islands were compiled from Monahan et
al11,  which allows the matching of OR clusters and Greek islands. UCSC genome browser tools
were used to find all genes inside OR clusters. We performed a motif search on the 63 Greek
island  sequences (Excel  file  7)  and  the  approximate  promoter  regions  (500bp  upstream the
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transcription starting sites) of all OR genes were obtained by using the "ucsc-twobittofa" bioconda
package and the "biomart" R package respectively. The MEME suite web server for motif search
and analysis40,41 was used to predict the transcription factors (TF) that bind to Greek islands. We
applied MEME using default values for all parameters to find the novel, ungapped motifs inside
Greek islands with the following command: meme greek_islands.fa -dna -oc .  -nostatus -time
14400 -mod zoops -nmotifs 3 -minw 6 -maxw 50 -objfun classic -revcomp -markov_order 0

Then we performed motif comparison between each motif found in the above-mentioned analysis
against  a  database  of  known  TFs  motifs  (JASPAR2018_CORE_non-redundant  and
uniprobe_mouse databases) using Tomtom tool42. The Pearson correlation coefficient was used
to measure the similarity between columns of position weight matrices (PWMs) and we restricted
the results by setting q-value <= 0.1 (rather than 0.5 by default) as a threshold (10% FDR) using
the following command: tomtom -no-ssc -oc . -verbosity 1 -min-overlap 5 -mi 1 -dist pearson -
thresh  0.1  -time  300  query_motifs  db/MOUSE/uniprobe_mouse.meme
db/JASPAR/JASPAR2018_CORE_non-redundant.meme

We also investigated the enrichment motifs in 63 Greek islands sequences using AME tool46 by
using an average odds score method and fisher’s exact test as a motif enrichment test through
the following command: ame --verbose 1 --oc . --scoring avg --method fisher --hit-lo-fraction 0.25
--evalue-report-threshold  1.0  --control  --shuffle--  --kmer  2  greek_islands.fa
db/MOUSE/uniprobe_mouse.meme db/JASPAR/JASPAR2018_CORE_non-redundant.meme

Finally,  a  strict  motif  search in  Greek islands  for  selected TFs was  done by  "ucsc-findmotif"
bioconda package, allowing for 3 mismatches.

f. Visualization of time series 

Grouped  time  series77 was  used  to  visualize  pseudotime  series  of  individual  genes  and  to
calculate  and  visualize  aggregated  groups  of  genes,  e.g.  all  OR  genes.  Since  the  original
expression count matrix is sparse (75.45% zero count entries), we first applied ALRA78,  which
has specifically been designed for the imputation of missing values in scRNA-Seq data (SFigure
3). The imputed expression matrix retrieved 2403 missing values, reducing the fraction of zero∼2403 missing values, reducing the fraction of zero
count entries to 61.50%. The median number of expressed genes per cell was 6715 (see SFigure
2,3).  Note that the imputed expression matrix was used only for visualization,  for all  analysis
steps we used normalized counts without data imputation. 
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