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Abstract 

The rapid evolution of fertilization proteins can result in remarkable diversity in their 

structure and function. Many of the proteins in vertebrate egg coats contain copies (1-6) of the 

ZP-N domain. These ZP-N domains can facilitate multiple reproduction functions, including 

species-specific sperm recognition. We integrated phylogenetics and machine learning to 

investigate how ZP-N domains diversified in structure and function. The most C-terminal ZP-N 

domain of each paralog is associated with another domain type (ZP-C) which together form a 

“ZP module.”  All modular ZP-N domains were phylogenetically distinct from non-modular or 

free ZP-N domains. Machine learning-based classification identified 8 residues that form a 

stabilizing network in modular ZP-N domains that is absent in free domains. Positive selection 

was identified in some free ZP-N domains. Our findings suggest that purifying selection has 

conserved an essential structural core in modular ZP-N domains, while free N-terminal domains 

have been able to experience functionally diversify.  

 

Introduction  

One of the evolutionary innovations associated with multicellularity is the specialization 

and organization of cells into tissues and organs. Construction of such multicellular structures 

requires cells to manipulate their local environments by the secretion of different proteins. These 

components assemble into extracellular matrices and contribute to tissue functions such as 

morphogenesis, tissue repair (Clause and Barker 2013), homeostasis, and cell adhesion (Streuli 

2016). Such extracellular proteins (e.g. collagen) often contain peptide motifs that allow 

assembly into fibrils and higher order structures (Brodsky and Persikov 2005). Extracellular 

matrices may be diversified by the duplication of whole genes and individual protein domains, 

providing new targets for natural selection to act upon. Vertebrate egg coat proteins present a 

clear example where a complex history of domain duplication is tied to the evolution of an 

essential extracellular structure. 

Vertebrate oocytes are surrounded by an elevated glycoprotein envelope that provides 

protection from the environment and regulates the rate of sperm entry (Monne et al. 2008). This 

structure goes by many names, termed the zona pellucida (ZP) in mammals, the chorion in 

fishes, and the vitelline membrane in amphibians, reptiles, and birds (Wilburn and Swanson 

2018). Named after the mammalian version, all vertebrate egg coat proteins contain a pair of 

immunoglobulin-like domains, ZP-N and ZP-C, that together form a polymerization unit called a 

ZP module (Jovine et al. 2002; Wilburn and Swanson 2017; Bokhove and Jovine 2018). The 

last common ancestor of vertebrates possessed six paralogous genes (zp1, zp2, zp3, zp4, zpd, 

zpax) that have experienced clade-specific birth and death events. Consequently, the egg coat 

of each major vertebrate class has a different composition of ZP module-containing proteins 

(Conner et al. 2005; Wong and Wessel 2005; Goudet et al. 2008; Meslin et al. 2012; Shu et al. 

2015; Wassarman and Litscher 2016; Killingbeck and Swanson 2018). ZP modules are also 

found in non-reproductive proteins that form extracellular matrices, such as uromodulin (UMOD) 

which protects against urinary pathogens (Brunati et al. 2015; Bokhove et al. 2016; Devuyst and 

Pattaro 2018) and tectorin alpha (TECTA) which function in inner ear organization (Bokhove et 

al. 2016; Kim et al. 2019).  

While both ZP-N and ZP-C are immunoglobulin-like domains with a core β-sandwich 

(Bokhove and Jovine 2018), they are evolutionarily distinct domains that have low amino acid 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.31.478407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478407
http://creativecommons.org/licenses/by-nc-nd/4.0/


sequence identity, unique disulfide patterns, and variable loop structures (Lin et al. 2011). 

Independent ZP-C domains outside of the ZP module have been identified in C. elegans 

(Weadick 2020), and four of the egg coat proteins (ZP1, ZP2, ZP4, and ZPAX) contain 

additional ZP-N domains independent of the ZP-N/ZP-C pair in the ZP module. We refer to ZP-

N domains in the module as “modular” and the N-terminal repeats as “free” domains. As ZP-N 

domains can form asymmetric dimers through their β-sandwich edges (Jovine et al. 2002; 

Bokhove and Jovine 2018; Litscher and Wassarman 2020), they have been considered the 

major driver of ZP module polymerization. While free ZP-N domains may similarly function as 

polymerization units, recent structural studies support that they may have acquired novel 

functions: the free ZP-N domains of ZP1 form intermolecular cross-links important for egg coat 

structure (Nishimura et al. 2019), while N-terminal domains in ZP2 (Avella et al. 2013; Avella et 

al. 2014) and ZP4 (Dilimulati et al. 2022) have been implicated in sperm-egg binding. Despite 

their functional significance, the evolutionary history of ZP-N domains within and between these 

many paralogous proteins has not been examined. Using a combination of phylogenetic and 

machine learning approaches, this manuscript addresses how a complex history of whole gene 

and tandem domain duplications followed by structural adaptation produced the current diversity 

of ZP proteins.  

 

Results and Discussion 

We investigated the evolutionary history of vertebrate ZP-N domains by extracting a total 

of 1448 ZP-N domain sequences from ZP module containing genes of 210 species with both 

reproductive (zp1, zp2, zp3, zp4, zpax, zpd) and non-reproductive (umod, tecta, cuzd1) 

functions (Table S1). While modular and free ZP-N sequences were found to share little 

sequence identity beyond 4 conserved cysteine residues that form stabilizing disulfide bonds, 

both domain types are highly similar in three-dimensional structure (Fig 1A). As such, we used a 

structure-based sequence alignment (Pei et al. 2008) to perform phylogenetic analysis. 

Maximum likelihood-based phylogenies indicated that the free ZP-N domains form a single 

clade distinct from the ZP-C associated modular ZP-N domains (Fig 1B), and this separation 

was robust to amino acid substitution matrices (LG, WAG, and JTT) (Fig S1). The topology of 

the modular ZP-N clade was broadly consistent with previously published gene trees based on 

the complete ZP module with both ZP-N and ZP-C (Claw and Swanson 2012; Feng et al. 2018). 

The topology of the free ZP-N clade supports that the initial duplication gave rise to the first 

repeat of the tandem array shared by ZP1, ZP2, ZP4, and ZPAX, which was followed by lineage 

specific repeat expansions of free ZP-Ns in ZP2 and ZPAX (Fig 1C). 

The phylogenetic separation of modular and free ZP-N domains using a structure-based 

alignment suggests important structural differences between the two domain types, but their 

high sequence divergence complicated manual identification of such characteristics. Machine 

learning methods have been applied to various aspects of protein biology such as function 

prediction (Yang et al. 2018; Bonetta and Valentino 2020) and the classification of membrane 

bound proteins (Guo et al. 2019). Here, we used a machine learning-based classification 

strategy to identify what structural features distinguish these two types of ZP-N domains. We 

applied a logistic regression model to the structurally aligned ZP-N domain sequences, where 

the probability of being a modular vs free ZP-N type was estimated for each of the 20 amino 

acids at each position in the alignment. Given the large number of parameters in this model 

(7981), we combined elastic net regularization and cross-validation to identify the most 
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parsimonious model (i.e. the fewest non-zero parameters) within the 95% confidence interval of 

the highest scoring model (Fig 2A-B). Through this regularization strategy, we identified a total 

of 8 modular-associated residues that were sufficient to predict whether a given ZP-N sequence 

was modular or free with 100% accuracy (Fig 2B).  

Examination of the residues associated with either ZP-N type in the context of three-

dimensional structures suggest differences in both function and quaternary structural dynamics. 

ZP-N monomers have an immunoglobulin-like β-sandwich fold with the 4- and 3-membered β-

strands connected by a disulfide bridge on each edge of the molecule. Biochemical and 

crystallographic studies support that modular ZP-N domains form asymmetric dimers through 

the molecular edge that includes the most N- and C-terminal β-strands (Jovine, et al. 2006; 

Bokhove, et al. 2016). Free ZP-N domains do not appear to dimerize through this N/C-terminal 

edge, and have experienced functional diversification of the outer edge of the molecule to 

perform additional protein binding functions (Raj, et al. 2017; Nishimura, et al. 2019). When the 

modular-associated sites were mapped onto their respective structures, we observed that 

modular-associated residues form an integrated network of mostly hydrophobic stabilizing 

contacts that interlock between the β-sheets around the outer edge of the molecules (Fig 2C, 

Fig S2). The phylogenetic clustering of free ZP-N domains (Fig 1C), along with molecular 

dynamics support the loss of dimerization activity along the free ZP-N lineage, which could have 

facilitated their evolution of new binding partners (Fig S3). The stabilizing contacts along the 

outer edge of the modular ZP-N domains are consistent with these domains principally having 

structural roles, while in free domains this edge has diversified to allow functional innovation. 

Further subdivision of free ZP-N domains by their major clades (the first repeat versus internal 

repeats in ZP2 and ZPAX) provided little additional information distinguishing these different 

free ZP-Ns from one another or modular ZP-N domains (Fig S4). Consequently, our sequence-

based machine learning classifier appears to have identified residues underlying structural 

differences between the two domain types that have implications on their respective functions.  

The difference in relative conservation of modular domain structures motivated 

additional analysis of the sequence evolution of these ZP-N domains. Here we focused on 

mammalian ZP genes (zp1, zp2, zp3 ,zp4, umod, tecta, and cuzd1) due to both higher genomic 

assembly quality and to avoid synonymous substitution saturation that may occur when 

considering greater phylogenetic breadth (Anisimova and Liberles 2012). Measures of 

sequence diversity within and between ZP-N groups reveal that modular domains are less 

diverse overall, and that free ZP-Ns are just as dissimilar to one another as they are to modular 

domains (Fig 3A).  

These findings motivated molecular evolutionary analyses, and of the 12 ZP-N domains 

analyzed, only ZP2-N1 and ZP2-N2 showed evidence of positive selection (Table S2). These 

are notably the two domains with the lowest within group similarity (diagonal of Fig 3A). 

Positively selected sites in ZP2-N1 are far from the homodimerization edge and physically 

closer to the network of modular biased residues (Fig 3B).  Positively selected sites also 

constituted a substantial portion of the solvent exposed surface area (34% in ZP2-N1 and 24% 

in ZP2-N2), potentially facilitating their evolution of novel functions and protein interactions. The 

rapid evolution of ZP2-N1 is consistent with its role in species-specific sperm recognition 

(Avella, et al. 2014) and may reflect sexual coevolution with its sperm receptor (whose identity is 

currently unknown). Remarkably, these positively selected sites cluster near a region associated 

with species-specific sperm protein binding in free invertebrate ZP-N domains (Raj et al. 2017). 
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However, based on expansion and retraction of loop lengths outside the core β-sandwich, we 

believe that these invertebrate free ZP-N domains evolved independently of the free ZP-N 

domains of vertebrates, suggesting that the expansion of ZP-N arrays for species-specific 

sperm recognition is a convergent phenomenon that has arisen multiple times throughout 

metazoan evolution.  

In summary, our combined phylogenetic, machine learning classification, and positive 

selection analyses illustrated a clear distinction between modular and free ZP-N domains.  

These two classes of domains experienced different evolutionary trajectories, as modular ZP-Ns 

likely retained a conserved structural role while free ZP-Ns neofunctionalized to serve different 

reproductive functions. These findings are of relevance to the evolution of species-specificity in 

fertilization, as the ZP-N domain expansion of ZP2 provided substrates to evolve novel species-

specific interactions. Structural changes within free ZP-Ns could result in of a dimerization edge 

and the evolution of a new sperm binding loop. As these domains are coopted into a 

reproductive context, coevolution (Clark et al. 2009; Hart et al. 2018) and sexual conflict 

(Gavrilets and Waxman 2002) with sperm proteins could contribute to their rapid evolution. This 

reflects the evolutionary dynamics that drive structural diversification and neofunctionalization of 

duplicated domains. Our combined phylogenetic and machine learning approach outlined here 

can be applied to other essential gene families with complex duplication histories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.31.478407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478407
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and Methods 

Multiple Sequence Alignment 

 Sequences for multiple ZP-N containing proteins were curated from the Ensembl 

database (release 104) (Howe et al. 2021). Sequences were assigned labelled as one of the ZP 

genes of interest based on PSI-BLAST e-value scores (Altschul et al. 1997). Sets of orthologous 

genes were aligned preliminarily with MAFFT (Katoh and Standley 2013) and then trimmed to 

individual ZP-N domains. Groups of orthologous ZP-N domains were deemed “orthogroups”. 

Sequences with ambiguous characters were removed, and then sets of orthologous ZP-N 

sequences were realigned with MAFFT. A full multiple sequence alignment was made by putting 

the individual orthogroup alignments together using a representative paralog alignment. 

Individual representative sequences were taken from each orthgroup, and these paralogs were 

aligned using the structural based PROMALS tool (Pei et al. 2008). This approach was used 

because of the low sequence identity, but high structural similarity between paralogous Z-N 

domains. A custom script was used to algorithmically add gaps to orthogroup alignments to form 

a full multiple sequence alignment. CD-Hit was used to remove highly cluster highly similar 

sequences (>90% identity) (Li and Godzik 2006; Fu et al. 2012), in order to improve computing 

speed, and because this study was not concerned with very recent phylogenetic splits. 

Phylogenetics  

 Maximum likelihood phylogenies were built using RAxML-NG(Kozlov et al. 2019), and 

multiple different amino acid substitution matrices were tested (LG+G, JTT+G,WAG+G), to 

demonstrate the robusticity of the deepest phylogenetic divide. The best tree was selected from 

100 replications of the maximum likelihood analyses. Nodal support was calculated with transfer 

bootstrap expectation (Lemoine et al. 2018), a modified form of bootstrapping that is more 

effective at detecting deep phylogenetic relationships in datasets with large number of taxa. 

While initial labelling of sequences was based on BLAST values, but when these labels were 

ambiguous labelling was based on phylogenetic clustering. The clades of ZP1-N1, ZP2-N1, and 

ZP4-N1, were labelled according to a 90% ma 

Machine Learning 

 A basic machine learning algorithm using mean squared regression and regularization 

was coded on python to distinguish the two free and modular groups of ZP-N domains. Logistic 

regression models are well suited for these classifications, because their outputs are bounded 

between 0 and 1, which can be interpreted as probability that a given domain is modular(Bewick 

et al. 2005). The multiple sequence alignment was identical to that used for phylogenetic 

analysis.  The alignment was split into a testing (25%) and training set (75%), and we employed 

logistic regression modelling with cross-validation on the training set. In that approach, the 

training set was split into five subsets, and then each of the five subsets is used to validate 

models trained on the other rest of the training data. For additional rigor, the separate testing 

dataset was used for the final scoring and model selection.  

In order to encode an aligned ZP-N domain within this machine learning framework, 

each position in the sequence was converted into a vector of twenty digits, corresponding to the 

twenty amino acids. The value was set to 1 for the entry in the vector corresponding to that 

residue, and all other values are set to 0. Gapped sites were set to a vector of twenty 0’s.  Thus, 

the classifier was trained using 20n features (plus an additional intercept term), where n is the 
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alignment length. Each of these features has a parameter associated with it and the value of the 

parameter indicates how informative that feature is, and whether it supports a modular ZP-N or 

free ZP-N classification.  There are a large number of possible parameters in this model (7981 

including the intercept), but it is worth considering the optimal number of non-zero parameters 

for this model. Increasing the number of non-zero parameters will always improve its accuracy 

on the data it was trained on, but too many parameters will reduce its accuracy when applied to 

other datasets, in a phenomenon called “overfitting.”(Hawkins 2004)  

In optimizing these models, we employed elastic net regularization which two functions 

that penalize parameters and reduce risk of overfitting (Zou and Hastie 2005). In our sci-kit learn 

implementation (Pedregosa et al. 2011), we varied both the strength of regularization and the 

ratio between the two penalty types, and evaluated a range of possible models. The highest 

scoring model was identified according to the negative mean-squared error scoring metric. In 

order to choose a suitable sparse model (i.e. fewest non-zero parameters), we adapted the one 

standard error rule common in machine learning (Hastie et al. 2009), in which you select the 

sparsest model that is still within one standard error of the highest scoring model. For this 

analysis we used 95% confidence intervals (~1.96 standard errors), to achieve the sparsest 

model (fewest non-zero parameters) that is not statistically different from the highest scoring 

model sampled. Raw parameter values were plotted in the style of sequence LOGO plots 

(Schneider and Stephens 1990). The sum of the raw parameter values for matching amino 

acids in the alignment (and the intercept term), are essentially the log odds that a given 

sequence is classified as modular. For simplicity, each parameter is described as the log odds 

associated with a particular residue. After the phylogenetic analysis separated the first N-

terminal ZP-N as its own clade, we re-ran the analysis with three multiclassification, but with an 

otherwise identical hyperparameter search space and computational pipeline. 

Sequence Divergence and Positive Selection Analyses 

 Our analyses of sequence divergence and positive selection was limited to boreutherian 

mammals, because of genome quality concerns, and because at large phylogenetic distances 

sequence differences begin to approach saturation which obscures evolutionary differences 

(Anisimova and Liberles 2012). For this reason, we were limited to the 12 mammalian ZP-N 

domains coming from zp1, zp2, zp3, zp4, umod, tecta, and cuzd1. Boreoeutherian sequences 

were mined from ensemble (Howe et al. 2021), and were included in these analyses if they 

were present in 10 or more of these ZP-N domain orthogroups. Phylogenetic distances both 

within and between orthogroups were calculated in MEGA using poisson estimation with a 

gamma distribution of variation between sites (Kumar et al. 2016; Kumar et al. 2018).  

 To determine whether there was any evidence of positive selection we ran PAML 

analyses (Yang et al. 2005; Yang 2007) on the same sets of ZP-N domains from the sequence 

divergence estimation. A likelihood ratio test between a model allowing positive selection (M8) 

and a neutral model (M8a), was used to determine which domains showed evidence of positive 

selection. Twice the difference of log-likelihood between the models was applied to a chi-

squared distribution with one degree of freedom, because M8 has one more parameter M8a. 

We also performed a Benjamini-Hochberg p-value correction to account for multiple testing 

(Benjamini and Hochberg 1995). Positively selected sites were visualized on a published crystal 

structure (ZP2-N1 ) (Raj et al. 2017), or the alpha-fold predicted structure (Jumper et al. 2021 

Jul 15) when this did not exist (ZP2-N2). Sites were labelled if they had a posterior probability of 

being positively selected > 75% according Bayes Empirical Bayesian (BEB) analysis. 
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Visualization and Other methods 

 When protein structures were not available Alpha-Fold2 tertiary structure prediction was 

used (Jumper et al. 2021), and three-dimensional protein structures were visualized using either 

pymol (Schrödinger 2015) or ChimeraX (Pettersen et al. 2004). Rosetta (Chaudhury and Gray 

2008; Sircar et al. 2010) was used to perform docking simulations on ZP2-N1 and ZP3-N 

homodimers, to illustrate the greater energetic stability of modular ZP-N homodimers. 
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Phylogenetic analysis of ZP-N domain duplication history 

Figure 1: A) A structural alignment of Mouse ZP2-N1 and ZP3-N highlights the broad structural conservation of these 
two classes of ZP-N domains (RMSD = ~4.7 Å) despite only ~18% amino acid sequence identity. B) Phylogenetic 
analysis (Kozlov et al. 2019) of ZP-N sequences (shown as a maximum likelihood tree) supports an ancestral 
separation between free and modular ZP-N domains (~78% support). C) A summary of ZP-N domain evolution based 
on the gene tree in panel B. The ancestral protein contained a ZP module with a C-terminal ZP-N and ZP-C domains, 
and duplication of the ZP-N produced the most N-terminal domain found in ZP1, ZP4, ZP2, and ZPAX. Later 
duplication events within ZP2 and ZPAX gave rise to multiple additional ZP-N domains between ZP-N1 and the ZP 

module. 
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Machine learning based 

inference of sequence 

features that distinguish 

modular and free ZP-N 

domains. 

 

Figure 2: A logistic regression 
model with elastic net 
regularization was trained on 
the ZP-N multiple sequence 
alignment generated as part of 
the phylogenetic analysis, with 
the data partitioned for training 
and testing (75% and 25%, 
respectively), with 5-way cross 
validation of the training data 
employed to estimate the error 
distribution of the score 
function. We defined our 
optimal model as the most 
parsimonious model (i.e. the 
fewest parameters) within the 
estimated 95% confidence 
interval of the unregularized 
model. (A) The space of 
regularization hyperparameters 
was explored during model 
optimization, plotted as a 3D 
surface (left). The score is the 
negative mean squared error, 
and dots correspond to the 
two-dimensional cross section 
shown on the right, with the 
blue line denoting the 
intersection between the lower 
confidence limit of the 
unregularized model to its 
intersection with the score as a 

function of regularization strength. B) Comparison of the unregularized and optimal logistic regression models as 
LOGO plots with the height of each amino acid at each position corresponding to its parameter weight, with colored 
amino acids denoting parameters retained in the regularized model. Each parameter weight approximating the logs 
odd ratio for a modular domain prediction, when a residue is present at that position. C) Mapping highly predictive 
sites onto ZP-N protein models suggest differences in structural properties between free and modular domain. The 
available crystal structure ZP3-N (3d4c) was used and modelled as a dimer for spatial context. Modular-associated 
sites are generally buried along the outer edge of the homodimer. 
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Amino acid diversity and tests of positive 

selection in modular and free ZP-N 

domains. 

Figure 3: A) A heatmap showing the within group 
and between group mean phylogenetic distances 
for orthologous groups of ZP-N domains (Kumar et 
al. 2018). B)  Positively selected sites in 
mammalian ZP2-N1 and ZP2-N2 were identified 
through maximum likelihood analysis and mapped 
onto protein models (4wrn for ZP2-N1, and an 
AlphaFold prediction for ZP2-N2) (Yang 2007). 
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  Mammals Birds Reptiles Amphibians Fish 

ZP1-N1 30 11 10 1 19 

ZP1-N 30 9 8 0 20 

ZP2-N1 46 20 4 2 34 

ZP2-N2 46 19 10 1 21 

ZP2-N3 45 18 11 2 3 

ZP2-N 38 7 10 1 14 

ZP3-N 36 13 12 2 38 

ZP4-N1 37 11 10 2 23 

ZP4-N 29 8 8 1 42 

ZPAX-N1 2 9 11 2 50 

ZPAX-N2 2 9 9 2 53 

ZPAX-N3 2 9 9 2 51 

ZPAX-N4 2 8 7 2 56 

ZPAX-N5 2 12 11 2 55 

ZPAX-N 2 5 8 2 44 

ZPD-N 0 9 10 2 54 

UMOD-N 41 0 6 1 6 

TECTA-N 1 1 0 0 2 

CUZD1-N 38 23 13 2 37 

 

Summary of species sampled in phylogeny 

Table S1: We included a total of 1488 ZP-N domain sequences across the five classes of vertebrates in the final 

phylogeny. Here the amphibians only included frogs due to genomic availability reasons. The fish class includes all 

non-tetrapod vertebrates, and is non-monophyletic. Labels in this table are based on BLAST results. 
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Domain M8a M8 -2ΔlogL p value p value 
corrected 

CUZD1-N p0 = 0.97, p1= 0.03,  
p = 0.64, q=2.1, ω = 1  

p0 = 0.99, p1= 0.01,  
p = 0.63, q=1.9, ω = 2.5 

2.4 0.06 0.25 

TECTA-N p0 = 0.98, p1= 0.02,  
p = 0.05, q=0.99, ω = 1 

p0 = 0.99, p1= 0.01,  
p = 0.05, q=0.97, ω = 1.9 

1.0 0.16 0.24 

UMOD-N p0 = 0.98, p1= 0.02,  
p = 0.29, q=0.61, ω = 1 

p0 = 0.98, p1= 0.02,  
p = 0.29, q=0.61, ω = 1 

0 0.5 0.57 

ZP1-N1 p0 = 0.74, p1= 0.26,  
p = 0.74, q=1.4, ω = 1 

p0 = 0.99, p1= 0.01,  
p = 0.54, q=0.51, ω = 3.5 

1.9 0.08 0.2 

ZP1-N2  p0 = 1, p1= 0,  
p = 0.46, q=0.68, ω = 1 

p0 = 1, p1= 0,  
p = 0.46, q=0.68, ω = 1 

0 0.5 0.57 

ZP2-N1  p0 = 0.43, p1= 0.57,  
p = 2.7, q=8.0, ω = 1 

p0 = 0.65, p1= 0.35,  
p = 1.2, q=1.4, ω = 1.5 

6.7 4.7E-03 0.03 * 

ZP2-N2  p0 = 0.42, p1= 0.58,  
p = 29.5, q=99, ω = 1 

p0 = 0.70, p1= 0.30,  
p = 1.6, q=1.5, ω = 1.9 

18.8 7.2E-06 8.6E-5 * 

ZP2-N3 p0 = 0.67, p1= 0.33,  
p = 1.6, q=7.9, ω = 1 

p0 = 0.85, p1= 0.15,  
p = 0.65, q=1.5, ω = 1.4 

1.5 0.11 0.22 

ZP2-N p0 = 0.87, p1= 0.13,  
p = 0.76, q=3.4, ω = 1 

p0 = 0.87, p1= 0.13,  
p = 0.76, q=3.4, ω = 1 

0 0.5 0.57 

ZP3-N p0 = 0.98, p1= 0.02,  
p = 0.55, q=1.2, ω = 1 

p0 = 1, p1= 0,  
p = 0.52, q=1.21 ω = 2.3 

0 0.5 0.57 

ZP4-N1 p0 = 0.58, p1= 0.42,  
p = 1.3, q=4.3, ω = 1 

p0 = 0.93, p1= 0.07,  
p = 0.64, q=0.70, ω = 1.9 

2.3 0.065 0.2 

ZP4-N  p0 = 0.82, p1= 0.18,  
p = 0.40, q=1.1, ω = 1 

p0 = 0.94, p1= 0.06,  
p = 0.37, q=0.67, ω = 1.5 

1.1 0.15 0.26 

 

 

Summary of PAML Output 

Table S2: This table summarizes the results from PAML analysis (Yang 2007). Here we compared a neutral model 

(M8a) to a model that allows positive selection (M8). A * denotes statistically significant p values after Benjamini-

Hochberg multiple testing correction (Benjamini and Hochberg 1995). 
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Phylogenies from alternative substitution matrices 

 

Supplemental Figure 1: These two trees were produced through RAxML-NG(Kozlov et al. 2019). Major aspects of the 

tree are conserved, specifically the monophyletic grouping of free ZP-N domains. 
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Modular-biased sites in the context of the ZP-N domain core 

 

Supplemental Figure 2: This figure shows the modular biased sites in the context of both ZP2-N1 (Raj et al. 2017) 

and ZP3-N (Monne et al. 2008) crystal structures. The brighter orange corresponds to the modular-biased sites 

according to our machine learning model, while the duller orange on ZP2-N1 represent the structural homolog of 

those sites according to a pymol (Schrödinger 2015) structural alignment. We observe a clustering of these sites 

within the core of the domain in ZP3-N and not ZP2-N1. The two positions of each are 90° rotations around the y-

axis. 
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Rosetta docking simulation of dimerization 

Supplemental Figure 3: This is a histogram of interface scores from rosetta docking simulations of dimers for both 

free (ZP2-N1) and modular (ZP3-N) ZP-N domains.  
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Multiclass machine-learning ZP-N domain classification 

 

Supplemental Figure 4: Since we observed monophyletic grouping of the most N-terminal ZP-N domain, we 

performed a multiclass variation of our machine learning analysis. The data was split into three classes: modular, first 

(i.e. most N-terminal free domain), and internal domains. In this multiclass analysis the model is fit three times, each 

time producing a classifier that distinguishes one of the classes from the rest of the data. The first row is the 

unregularized model from our two-class analysis, and our regularized multiclass models are summarized in the other 

three rows, where positive values suggest a bias towards that class. Our modular classifier recapitulates our earlier 

results, because it is in essence still comparing modular ZP-Ns versus all free ZP-Ns. The first ZP-N domain has few 

amino acids associated with it with relatively low parameter values. The internal ZP-N domains seem to have a bias 

against the cys 2-3 bond, but that likely is a reflection of the conservation of the second cysteine in the first ZP-Ns 

and the third cysteine in modular domains 
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