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Abstract  19 

Epithelial-to-mesenchymal transition (EMT) is a developmentally conserved cellular process 20 
critical for tumor metastasis. EMT enables malignant epithelial cells to acquire mesenchymal-21 
like migratory and invasive phenotype. During EMT cancer cells undergo extensive metabolic 22 
reprogramming that correlates with the suppression of proliferation, and stimulation of the 23 
energy-intensive migratory behavior. However, the causal relationship between metabolic 24 
changes and coordinated physiological phenotypes that occur during EMT is still unclear. We 25 
used bulk time-course transcriptomics and proteomics, and single-cell transcriptomics from five 26 
independent EMT studies in A549 lung adenocarcinoma cells to simulate metabolic network 27 
activity using constraint-based modeling. Model predictions were validated using literature 28 
mining, experimental studies and CRISPR-Cas9 essentiality screens. We uncovered temporal 29 
metabolic dependencies in glycolysis and glutamine metabolism reactions, and experimentally 30 
validated isoform-specific dependency on Enolase3 for cell survival during EMT. Together, our 31 
approach uncovered temporally regulated cell-state-specific metabolic dependencies in cells 32 
undergoing EMT. 33 
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Introduction 37 

EMT is a reversible developmental process stimulated by extracellular signals that 38 

facilitate the transition from an epithelial (E) cell to a motile and invasive mesenchymal-like (M) 39 

cells, enabling circulating tumor cells to initiate metastasis (Pastushenko and Blanpain 2019). 40 

More importantly, EMT is not a binary process but occurs through a spectrum of distinct 41 

intermediate states with potential functional consequences. The cytokine - transforming growth 42 

factor 𝛃𝛃 (TGF-𝛃𝛃), is a potent inducer of EMT.  Consistently, TGF- 𝛃𝛃 levels are highly upregulated 43 

and directly correlate with tumor progression, enhanced invasion, metastasis, and poor survival 44 

in patients with non-small cell lung cancer (NSCLC) (Padua and Massagué 2009).  Cell culture 45 

models of TGF-𝛃𝛃 -induced EMT serves as robust in vitro model to investigate mechanisms of 46 

metastasis. In addition to metastasis, the process of EMT-MET is implicated in several clinically 47 

relevant aspects including, tumor heterogeneity, stemness, and drug resistance (Ramesh et al. 48 

2020). Understanding underlying regulatory mechanisms is essential to develop therapeutic 49 

strategies that can prevent EMT or promote MET to inhibit metastasis.  50 

Extensive molecular and structural changes that occur during EMT can potentially induce 51 

robust metabolic reprogramming to support changing cellular phenotypes. Cancers show 52 

enhanced glycolytic pathway activity even in the presence of oxygen, via the Warburg effect 53 

(Vander Heiden et al. 2009). It is now clear that the Warburg effect is not restricted to cancer cells 54 

but it is an adaptive physiological program that occurs in many normal cell types, when cells need 55 

rapid ATP production, biomass synthesis and balancing of reactive oxygen species (Pålsson-56 

McDermott and O'Neill 2020)(Kim et al. 2016), Studies have demonstrated an enhanced  57 

glycolytic activity during EMT. However, similar to EMT, metabolic reprogramming may also 58 

involve a spectrum of pathway combinations at a given cellular steady state. While several 59 

metabolic rewiring strategies have been observed in diverse cancers, a comprehensive systems-60 

level characterization of metabolic reprogramming during the EMT has not been carried out. 61 

Methods that can infer metabolic dysregulation using omics data will be invaluable for  62 
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understanding causal relationship between EMT and metabolic reprogramming. 63 

Constraint-Based Optimization and Reconstruction Analysis (COBRA) is a widely used 64 

approach for simulating genome-scale metabolic fluxes using omics data. COBRA simulates 65 

metabolic fluxes by using the metabolic network architecture, nutrient availability, and omics data 66 

as constraints in an optimization problem representing a cellular objective, such as maximizing 67 

biomass production (Orth et al. 2010). COBRA models have inferred metabolic rewiring strategies 68 

in several cancer subtypes (Oruganty et al. 2020; Yizhak et al. 2014; Nilsson et al. 2020). For 69 

instance, incorporating metabolomics data to identify synthetically lethal metabolic genes in 70 

pancreatic cancer (Nelson et al. 2020). However, to our knowledge, no one has applied COBRA 71 

to study metabolic network heterogeneity during the EMT and characterized the metabolic 72 

properties of intermediate states during EMT.  73 

We used COBRA to simulate metabolic activity and vulnerabilities during EMT using diverse 74 

omics sources, including time-course transcriptomics, proteomics, and single-cell transcriptomics 75 

data. Notably, this study applies constraint-based modeling to single-cell cancer transcriptomics 76 

data to capture the metabolic heterogeneity during EMT.  From our analysis, we were able to 77 

identify known metabolic dependencies during EMT, such as uptake of glucose and glutamine. 78 

We also predicted new metabolic dependencies including the enolase and GOT1 reactions and 79 

those related to alpha-ketoglutarate metabolism. Surprisingly, many of these dependencies were 80 

time-specific, suggesting that there is a narrow temporal window during which the cells can be 81 

targeted with drugs that inhibit these pathways. We also found metabolic changes that showed 82 

consistent trends based on model predictions derived from both the bulk and single-cell studies. 83 

Together, our analysis provide a framework to integrate multiple omics datasets to examine tumor 84 

metabolic heterogeneity and infer new drug targets. 85 
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Methods 86 

Differential Expression (Bulk Studies)  87 
We analyzed two transcriptomics (Hecker et al. 2009; Keshamouni et al. 2009) and two 88 

proteomics (Keshamouni et al. 2006; Lu et al. 2019) EMT time-course studies with A549 as the 89 

cell model undergoing TGF-𝛽𝛽 induction. All studies compared later time point after TGF-𝛽𝛽 90 

induction over day 0 to obtain differentially expressed genes and proteins. When possible, 91 

authors’ methods and provided datasets were used to obtain a list of up- and downregulated 92 

gene sets. If no preprocessed data was provided (as in the case of GSE17518), limma-voom 93 

(Law et al. 2014) was performed to determine differentially expressed genes between 94 

conditions. Additionally, a GAM-LOESS model was used to determine differentially expressed 95 

genes in GSE147405 (Cook and Vanderhyden 2020), aggregating single-cells at the time-96 

course level. The regression coefficients from the GAM-LOESS model were used to determine 97 

the sign of regulation (up/down). P-values from limma-voom and a GAM-LOESS model were 98 

adjusted using the Benjamini-Hochberg method and the significance threshold used was P-99 

value < 0.05. The expression matrix containing statistically significant normalized scores for all 100 

metabolic genes across all 5 experiments can be found in Supplementary Table 1. 101 

 102 
Individual Cell Differential Expression 103 

We computed differentially expressed genes for individual cells without TGF-𝛽𝛽 removal 104 

in GSE147405 to simulate individual cell fluxes and reaction knockout growth rates. Data 105 

preprocessing included data scaling, removing contaminant artifacts such as mitochondrial 106 

genes, and removing cells with low total gene counts. This was performed on the raw data 107 

object. Further, we used the data imputation algorithm MAGIC (Van Dijk, D. et al., 2018) to fill in 108 

drop out values. The MAGIC-imputed data was transformed to a Z-score using a Z-score 109 

method that subtracts out the median and centers the data based on the median absolute 110 

deviation (MAD). The formula for the robust Z-score for a specific gene i in a given cell j is 111 

shown in Equation 1: 112 
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𝑍𝑍𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖)

1.486× 𝑀𝑀𝑀𝑀𝑀𝑀
 [1] 113 

 114 
Where 1.486 is a scaling constant. For any given cell, a gene was determined to be 115 

upregulated/downregulated if the robust Z-score was positive/negative and the P-value < 0.05.  116 

 117 
Prioritizing metabolic gene targets across multiple studies 118 

We evaluated the robustness metabolic gene dysregulation across five EMT studies 119 

using the following prioritization score 𝜂𝜂. The method to compute 𝜂𝜂 shown in Equation 2: 120 

 121 
𝜂𝜂𝑖𝑖 = 𝑀𝑀∑ 𝑎𝑎𝑎𝑎𝑎𝑎(𝐸𝐸𝑖𝑖)𝑁𝑁

𝑖𝑖=1 , [2] 122 
 123 

Where 𝑀𝑀is the number of studies where the gene was determined to be significant and 𝐸𝐸𝑖𝑖is the 124 

gene effect size (log2 fold change or Z-score) for gene 𝑖𝑖. The prioritization scores were ranked in 125 

descending order and used to prioritize reactions for further investigation. 126 

 127 
COnstraint-Based Reconstruction and Analysis (COBRA) 128 

Flux balance analysis (FBA; Orth et al. 2010) was used to simulate metabolic activity 129 

using the human metabolic reconstruction RECON1 (Duarte et al. 2007). Cells were assumed to 130 

maximize biomass production as the objective function. Differentially expressed metabolic 131 

genes that intersected with RECON1 were used as biological constraints to maximize 132 

(upregulation) or minimize (downregulation) metabolic flux using a modified form of the iMAT 133 

algorithm (Zur et al. 2010; Shen et al 2019). Parsimonious enzyme usage (Lewis et al. 2010) 134 

was an additional assumption to obtain a unique metabolic flux distribution and to minimize 135 

fluxes that did not contribute to biomass formation. Metabolic fluxes and growth rates from 136 

single gene and reaction knockout simulations were obtained using COBRA. To ensure a 137 

feasible growth rate was calculated, we removed genes/reactions that were upregulated in the 138 

knockout and set the percent knockout to be 99% to promote a feasible flux solution. 139 

 140 
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Differential Metabolic Activity and Knockout Sensitivity Analysis 141 
To determine differentially active metabolic reactions, we used the priority score 142 

described in equation 1 on the absolute value of the metabolic fluxes. Most reactions show zero 143 

flux, and so reactions that showed metabolic activity were considered to be overactive metabolic 144 

reactions. 145 

To determine the impact metabolic genes have on the growth rate during different 146 

stages of EMT, we computed a sensitivity score 𝜃𝜃comparing EMT versus control growth rates 147 

for each gene knockout. The equation to compute the bulk sensitivity score is shown in 148 

Equation 3: 149 

 150 
θr = mean( canceri,j  / mean(cancerj)

controli,j / mean(controlj)
)− 1 [3]   151 

 152 
The flux or growth rate was mean-normalized for the control (day 0) and the TGF-𝛽𝛽 153 

treatment (all other days). Then, the final score was taken as the ratio of the TGF-𝛽𝛽 treated 154 

growth rate over the average control growth rate for a given reaction knockout. The average 155 

ratio across all cells was taken as the score to identify differentially sensitive metabolic 156 

reactions. The score was centered at 0. The intuition behind 𝜃𝜃 is as follows: if the score is 0, the 157 

gene/reaction knockout has no difference between cancer and control. If the score is less than 158 

0, the knockout impacts the cancer cell more than control, and is considered to be essential for 159 

cellular growth. To rank and prioritize metabolic targets for experimental validation, we used the 160 

same prioritization score as we did to rank differentially expressed genes.  161 

 162 

Classifying cancer cell line states 163 
 Cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) were annotated by 164 

their source from a primary tumor or metastatic tumor. To also classify whether a cell was in the 165 

epithelial versus mesenchymal state, we calculated the Z-score and p-value for all genes in the 166 

CCLE and mapped them to known EMT markers. Upregulated genes were classified as having 167 
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a positive Z-score and a significance threshold of p-value < 0.05, while downregulated genes 168 

were classified as having a negative Z-score with the same significance threshold.  169 

EMT markers (with up- and downregulated signatures) were taken from MSigDB 170 

(Liberzon et al. 2015) across three studies from different tissues of origin induced using TGF- 𝛽𝛽. 171 

We further filtered this list with NSCLC markers without up/downregulation annotations from 172 

EMTome (Vasaikar et al. 2021). The final number of markers obtained for EMT was 14 genes, 173 

which were used to classify cancer cell lines (CCLs). We chose to classify cell lines using upper 174 

and lower quantiles of gene makers. Up- and downregulated genes from NSCLC CCLs were 175 

cross referenced to the list of EMT signatures and labeled as E if the number of signatures was 176 

less than 5 genes or M if the number of signatures was greater than 8.  177 

 178 

CRISPR-Cas9 Analysis 179 
We analyzed batch corrected CERES Scores (Pacini et al. 2021) for metabolic genes 180 

that were predicted by COBRA to have increased metabolic activity or resulted in a reduction of 181 

growth rate from knockout. CERES Scores were separated based on their association with 182 

metastatic (Met) and primary (Prim) cell lines, which was determined based on the CCLE 183 

metadata (Barretina et al. 2012). We also compared the CCLE annotations against our own 184 

Epithelial (Epi) and Mesenchymal (Mes) annotations, methods described above.  185 

To evaluate how well our model predictions related to CERES Scores, we calculated the 186 

Pearson correlation coefficient between our predicted growth scores and ratios of Mes / Epi or 187 

Met / Prim CERES Scores. Further, we compared the growth scores against different subsets of 188 

the CERES Score data, including NSCLC only cell lines and all cell lines.  189 

 190 
Identifying metabolic enzymes and EMT studies for systematic literature 191 
validation 192 

To be considered for our systematic literature validation, we pooled a list of metabolic 193 

enzymes predicted from COBRA from bulk and single-cell reaction knockouts that had lethal 194 
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reactions in at least 2 studies (growth score < 0). The query was performed using PubMed and 195 

Google with the following keywords using AND filtering: “EMT”, “Metabolism”, “A549”, 196 

“metastasis”, “cancer”, “cancer metabolism”, and the individual gene of interest. The list of the 197 

manually curated results can be found in Supplementary Table 5.  198 

We expanded the scope of our literature search to encompass all cancer cell lines. The 199 

query was manually curated to either support or refute the COBRA predictions. None of the 200 

model predictions contradicted the literature. Reaction predictions and their confidence were 201 

scored (1-3), where 1 has no evidence based on literature and 3 has strong A549 or lung 202 

adenocarcinoma specific evidence. The rules to assign each score for each reaction prediction 203 

are shown below:  204 

● 1: Prediction has no literature support. 205 

● 2: Prediction has literature evidence with general cancer lineages. 206 

● 3: Prediction has literature evidence either with specific experiments from A549 207 

or related lung adenocarcinoma tissue/cell lines.  208 

 209 

Cell culture, siRNA transfection and EMT induction 210 
A549 human lung adenocarcinoma cell line was obtained from the American Type 211 

Culture Collection (Manassas, VA) and maintained in RPMI-1640 medium with glutamine 212 

supplemented with 10% FBS, penicillin, and streptomycin at 37°C in 5% CO2. For inducing 213 

EMT cells at 40-50% confluency in complete medium were serum starved for 24 hrs and treated 214 

with TGF- 𝛽𝛽 (5 ng/ml) for 72 hrs.  215 

 Isoform specific siRNA for enolases includes a pool of 4 SMART selection-216 

designed synthetic duplexes (Dharmocon’ s SMARTpool). A scrambled sequence from the 217 

same company is used as a control. Cells at 40-50% confluency were transfected with siRNA 218 

using Lipofectamine 2000 (Cat No: 18324-012, Invitrogen) and optiMEM medium (Cat No: 219 

31985, Gibco) following the manufacturer’s instructions. After 6 hours of transfection cells were 220 
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washed and allowed to recover from transfection in RPMI 1640 medium with 10% FBS before 221 

inducing EMT as described above.  222 

Apoptosis assays 223 
Apoptosis was assessed by two independent methods; 1) AnnexinV/7-AAD staining (Kit 224 

from Biolegend Cat# 640922):  At the end of the EMT experiment described above, all cells 225 

(including floating cells) were collected, washed and resuspended in Annexin V binding buffer. 226 

100 ul of cell suspension was stained with 5 ul of FITC-Annexin V, followed by 5 ul of 7-AAD 227 

staining solution. After 30 min incubation at room temperature in dark, 400 ul of Annexin V 228 

binding buffer is added and assessed for Annexin V and 7-AAD staining by flow cytometry. Both 229 

Annexin V postive (early apoptotic) and Annexin V and 7-AAD double positive cells (late 230 

apoptotic) are added together for assessing total apoptosis.  2) Assessing Caspase 3 activation:   231 

To assess casapase3 activation during EMT, an artificial caspase3 substrate coupled to a green 232 

fluorescent DNA-binding dye (DEVD-Nucview) is added to the cell culture. When caspase3 is 233 

activated, it cleaves the DNA-binding dye which enters the nuclei and labels an apoptotic cell 234 

with green fluorescence allowing its imaging. Green fluorescent apoptotic cells were imaged 235 

under a fluorescent microscope 48 hrs after TGF- 𝛽𝛽 -induced EMT.   236 
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Results 237 

COBRA reveals that cells undergoing EMT exhibit enhanced glycolysis 238 
during early and late stages  239 

We performed a meta-analysis of differentially expressed genes and proteins across four 240 

bulk EMT datasets. Two were RNASeq-based datasets (GSE17708 and GSE17518), and two 241 

were proteomics-based datasets (Garcia and Keshamouni). To aggregate the results from 242 

multiple studies, we designed a prioritization score to rank the reactions based on effect size 243 

and whether or not the gene was significantly expressed in a given study (Supplementary 244 

Table 1; Methods).  245 

We simulated the metabolic fluxes for each time-point using the transcriptomics and 246 

proteomics data to see how metabolic activity changes over time during EMT using Flux 247 

Balance Analysis (FBA; see Methods). FBA uses a linear optimization procedure with biological 248 

constraints, such as knowledge of the metabolic network structure (known as a stoichiometric 249 

(S) matrix) and expression levels as inputs to generate cell-state specific metabolic flux profiles  250 

(O'Brien et al. 2015). FBA assumes that the cell is maximizing an objective, usually its biomass 251 

production. While standard FBA outputs multiple flux profiles due to the rank deficiency of the S 252 

matrix (Orth et al. 2010), Parsimonious FBA or pFBA provides a unique flux distribution by 253 

assuming optimal enzyme efficiency by minimizing the overall metabolic flux throughout the 254 

metabolic network while maximizing biomass production (Lewis et al. 2010). pFBA identifies the 255 

smallest set of active reactions that best support biomass production. 256 

Our predictions using pFBA reveal that there are more active reactions during the early 257 

and late phases of EMT. During the intermediate phases of EMT, metabolic activity goes down. 258 

As cells undergo dramatic structural rearrangements when transitioning to a mesenchymal cell, 259 

cells require energetic substrates such as ATP to facilitate these processes. Our metabolic 260 

model assumed that these cancer cells were optimizing for increased biomass production, and 261 

the reduction of fluxes for biomass production during the intermediate EMT stages suggests that 262 
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metabolic activity is being siphoned towards other processes such as motility. Our metabolic 263 

flux profile data suggests that cancer cells upregulate metabolism initially to build up metabolic 264 

substrate levels, and then divert all transcriptional resources towards other processes.  265 

Samples within these time-points tend to have similar metabolic functions, as most 266 

active reactions are found within central carbon metabolism (glycolysis/gluconeogenesis, 267 

pentose phosphate pathway, folate metabolism) and nutrient exchange subsystems. These 268 

metabolic pathways contribute to biomass formation. We visualized the top 50 reactions sorted 269 

by prioritization scores (Methods; S. Figure 1; Supplementary Table 2). The prioritization 270 

score takes into consideration the number of studies where a given metabolic gene(s) encoding 271 

a reaction was determined to be significant and absolute value of the gene effect size (log2 fold 272 

change or Z-score). Developing a prioritization score enabled us to filter through 3744 reactions 273 

to provide a concise reaction list for downstream analyses. 274 

 275 
 Several glycolytic reactions were predicted to have increased metabolic activity and 276 

priority scores (Figure 1A), which was expected given how cancer cells rewire glycolytic 277 

activity, as evidenced by the Warburg effect (Vander Heiden et al. 2009). Several glycolytic 278 

substrates play a role in both cellular survival and cancer proliferation. It has been well 279 

established that TGF-𝛽𝛽 increases expression of several glycolytic enzymes (Jia et al. 2021). We 280 

found that hexokinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and enolase 281 

were the top 3 glycolytic reactions that were highly active in both early and late EMT stages, 282 

supporting previous studies that suggest glycolysis is directly impacted by TGF-𝛽𝛽 induction. The 283 

timing of metabolic activity suggests that glycolysis is essential for initiating EMT and 284 

establishing metastasis at later stages.  285 

Genome-scale reaction knockout simulation identifies extensive 286 
vulnerabilities in mesenchymal state  287 

While our previous analysis focused on reaction fluxes, next we used FBA to simulate 288 

the impact of reaction knockout on cellular growth in each time-points across five independent 289 
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A549 TGF-𝛽𝛽 induced EMT studies (S. Figure 2; Supplementary Table 3). Briefly, each 290 

metabolic reaction encoded in the reconstruction was systematically shut off (upper and lower 291 

bounds were set to 0) to simulate a “knockout”, while the growth rate objective was optimized. 292 

This method allows us to infer the impact systematic reaction knockouts have on cellular 293 

growth. We analyzed the distribution of knockouts across bulk experiments and by time-course.  294 

The later stage of EMT were predicted to have more vulnerabilities (932 reactions) than in the 295 

early stage (874 reactions) and intermediate stage (660 reactions), suggesting mesenchymal 296 

cells are more vulnerable to metabolic perturbation (Figure 2; inset). 297 

We identified over 40 reactions that were specifically sensitive in specific EMT stages 298 

and studies (Figure 2). These also highlight the technical and biological variance that is 299 

observed in EMT studies across different omics modes. Notably, alpha-ketoglutarate (AKG) 300 

transport between the cytosol was unique to the intermediate stage in two out of five 301 

independent studies. From a mechanistic standpoint, AKG likely suppresses metastasis by 302 

counteracting the effects of other oncometabolites such as 2-hydroxyglutarate, succinate, and 303 

fumarate (Wei et al. 2020). While the impact of AKG and cellular differentiation / proliferation 304 

has been observed through several nutrient perturbation studies in cancer and stem-cells 305 

(Campit et al., 2021), the exact source and subcellular contribution of AKG and its impact on 306 

metastasis is difficult to determine experimentally. Our computational model suggests that 307 

knockout of AKG transport between the cytosol and mitochondria has a negative impact during 308 

EMT, providing clues about cellular compartment dynamics and their impact on cancer 309 

metastasis. We hypothesize that accumulation of AKG within the mitochondria counteracts 310 

oncometabolite effects through additional regulatory mechanisms.  311 

Two other reactions in central carbon metabolism had high priority scores, namely, 312 

enolase (ENO) and lactate dehydrogenase (LDH_L), both predicted from the same EMT 313 

proteomics data (Keshamouni et al. 2006). Upregulated enolase levels are associated with 314 

promoting cell growth, migration, and invasion during EMT in various cancers (Song et al. 2014; 315 
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Zhao et al. 2015). Further, LDH is highly associated with cancer metastasis, and has been 316 

shown to activate EMT in several cancers, including lung cancer, during metastasis (Hou et al. 317 

2019; Zhang et al. 2018). While it is known that ENO and LDH upregulation and/or increased 318 

activity are associated with poor patient prognosis, little is known about how changes in 319 

metabolic activity over time leads to differential sensitivity in cancer. Our modeling approach 320 

shows that enolase and lactate dehydrogenase are essential during later stages of EMT 321 

compared to earlier stages, revealing information about time-dependent sensitivity of these well-322 

known targets for the first time. 323 

In addition to nutrient exchange reactions, we found three metabolic reactions that 324 

consistently decreased growth upon KO across all time points. Two metabolic enzymes were 325 

involved in fatty acid metabolism: Fatty acid CoA ligase hexadecanoate and beta-ketoacyl 326 

synthetase. Fatty acid synthase (FASN) is a potential therapeutic target for NSCLC, and beta-327 

ketoacyl synthetase is one component of FASN. Preclinical studies show that beta-ketoacyl 328 

synthase inhibition induces apoptosis and stops proliferation in cancer cells in vitro and in vivo 329 

(Menendez et al. 2004; Pizer et al. 1996).  330 

Further, our model suggests two additional reactions that do not have literature backing 331 

to be potential therapeutic targets, but are associated with metabolic pathways that are 332 

frequently dysregulated across different cancers. Lipid metabolites concentrations have 333 

prognostic value, and dysregulated fatty acid metabolism is associated with poor cancer patient 334 

prognosis. While it is known that metabolic enzymes such as Fatty Acid CoA Ligases modify 335 

ratios of these fatty acids, and that there is differential regulation and expression of these 336 

metabolic enzymes in cancer, little is known about the balance of fatty acids and fatty acyl-CoAs 337 

and its impact on cancer. Our model suggests that the fatty acid CoA ligase that specifically 338 

modifies hexadecanoate contributes highly to EMT and suggests an interesting hypothesis that 339 

needs to be validated experimentally, but has high potential as a new avenue for therapeutic 340 

intervention.  341 
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Additionally, we analyzed reactions that either had very strong effects on a single study 342 

or were predicted to impact biomass in specific time points in at least two out of five studies (S. 343 

Figure 2). This provided us information about reactions that show temporal-specificity or 344 

robustness across datasets. Glucose and aspartate exchange reactions were predicted to be 345 

sensitive across all time points and experiments, suggesting that cells in all stages of EMT are 346 

sensitive to perturbations to these nutrients. It is well documented in the literature that high 347 

glucose levels facilitate migration and invasion processes in EMT for several types of cancer 348 

(Xu et al. 2019; Liu et al. 2016). Additionally, aspartate is crucial to cell proliferation and survival 349 

in cancer (Birsoy et al. 2015; Alkan et al. 2018; Sullivan et al. 2015). Our model also captured 350 

aspects of metabolic heterogeneity associated with glutamine metabolism in EMT. We found 351 

that cells were dependent on glutamine exchange in early (1 hr) and late (48-72 hrs) time 352 

points, while becoming insensitive to glutamine exchange during intermediate stages (8 - 24 353 

hrs) (S. Figure 2; top row). Glutamine metabolism is essential for sustaining proliferation in 354 

many tumor lineages including NSCLC, and the dysregulation of glutaminolysis is a hallmark of 355 

cancer metabolism (Yang et al. 2017). Glutamine regulates the activation of STAT3, a critical 356 

transcription factor associated with tumor growth and metastasis  (Cacace et al. 2017; Yang et 357 

al. 2014). Together, these results suggest that our COBRA models can accurately predict well-358 

known impact of nutrient perturbations in cancer and EMT. 359 

Isoform-specific role of Enolase 3 in regulating cell survival during EMT 360 

Reactions in glycolysis, especially enolase, was identified by both our flux and gene 361 

knockout analysis to have high metabolic activity and sensitivity to knockout. During tumor 362 

progression, cancer cells must increase glucose metabolism. Owing to the hypoxic tumor 363 

microenvironments, cancer cells upregulate glycolytic enzymes, including Enolase (Eno), to 364 

support anaerobic proliferation (Warburg effect).  Enolase (Eno) is a key glycolytic enzyme that 365 

catalyzes the dehydration of 2-phosphoglycerate to phosphoenolpyruvate. It occurs as 3 366 
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isoforms, Eno1 (ubiquitously expressed in all cells), Eno2 (neuronal specific) and Eno3 (muscle 367 

specific) (Chang et al., 2006). Our transcriptomic analysis show that Eno3 the muscle specific 368 

isoform which is catalytically more efficient, is 10 fold differentially expressed in cells undergoing 369 

EMT (S. Figure 3) (Keshamouni et al., 2006). siRNA mediated inhibition of Eno3 selectively 370 

induced apoptosis in cells undergoing EMT whereas, inhibition of the ubiquitously expressed 371 

isoform, Eno1, did not, as assessed by Annexin-V/PI staining by flow cytometry (Figure 3A) and 372 

Caspase8 activation assay (Figure 3B). These observations suggest that EMT induces 373 

reprogramming of glycolysis to an Eno3 dependent pathway to meet the energy demands of 374 

migratory and invasive cells. Inhibition of Eno3 will selectively kill cells undergoing EMT and 375 

may prevent metastasis. 376 

Single-cell knockout simulations reveal metabolic heterogeneity in a cell 377 
population undergoing EMT 378 

To determine whether the variations observed in bulk dataset analysis are true reflection 379 

of metabolic phenotypes at the single cell level, we next analyzed single cell transcriptomics 380 

data of A549 cells induced with TGF-𝛃𝛃 (GSE147405; Cook & Vanderhyden, 2020). To capture 381 

subtle metabolic differences as cells’ transition from E to M states, we reconstructed separate 382 

models for each cell based on its transcriptomic profile measured in the dataset. To ensure we 383 

were observing the transition between E to M in this dataset, we visualized VIM and CDH1 384 

expression levels in the UMAP embedding and found that the expression profiles are consistent 385 

with what is observed in the literature (Supplementary Figure 4). We used the resulting models 386 

for 644 individual cells across all time points and computed growth rates after genome-scale 387 

reaction knockouts in each individual cell.  For comparison with the bulk datasets, we 388 

aggregated the cells, taking the average knockout scores across each time point (Figure 4; S. 389 

Table 4). We found that many reactions predicted to impact growth in the single-cell analysis 390 

were also sensitive in the bulk analysis (Table 1, S. Table 5; N = 95 intersected reactions). 391 
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To examine how reaction knockout sensitivity changes over  EMT progression for the top 5 392 

variable central carbon metabolism reactions, we plotted the growth scores for representative 393 

reactions that had high variance onto the UMAP embedding (Figure 5 A-F). Reactions that 394 

were predicted from our bulk knockout profiles including AKG-malate transport, Enolase, 395 

Carnitine O-acetyltransferase, and ATP-Citrate Lyase show heterogeneous sensitivity across all 396 

time points. Citrate Synthase was predicted to be sensitive across all time points, suggesting 397 

that this reaction is critical in all stages of EMT. We also observed metabolic heterogeneity in 398 

glutamine metabolism. We found that there was a positive correlation between the master 399 

regulator STAT3, glutamine synthetase, and glutamine transporter levels in the single cell data 400 

(S. Figure 5A & B). This is consistent with studies that have observed that glutamine regulates 401 

the activation of STAT3. Overall, our model identifies individual cells that are sensitive to 402 

specific reaction knockouts, providing a granular metabolic dependency profile of a population 403 

of cells undergoing EMT.  404 

 405 
Prioritization of metabolic targets during EMT using both bulk and single-406 
cell simulations 407 
 408 

We performed extensive literature curation for genes that were found to show growth 409 

reduction upon knockout in both the bulk and single-cell analysis (Table 1, S. Table 5; N = 95 410 

intersected reactions). These reactions were prioritized based on the number of studies found 411 

for each gene query and its relevance to cancer and EMT. Two high confidence predictions that 412 

were found in both analyses included Pyruvate Carboxylase and Fructose-Bisphosphate 413 

Aldolase, which were shown to contribute specifically to NSCLC progression and metastasis 414 

(Sellers et al. 2015; Fu et al. 2020). Eight reaction predictions had some evidence of being 415 

dysregulated in another cancer subtype, but not NSCLC. The remaining 10 reactions have not 416 

been highlighted in the literature, and present opportunities for experimental validation.  417 
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To further assess our model predictions against experimental data, we compared our 418 

bulk and single-cell knockout results against batch-corrected CRISPR-Cas9 essentiality 419 

knockout screens integrated from the Broad and Sanger Institute (Pacini et al. 2021). Given the 420 

limited availability of CRISPR-Cas9 screenings in EMT studies, we took NSCLC cancer cell 421 

lines from the DepMap dataset, which annotated them to be derived either from a primary tumor 422 

or a metastatic site. Further, we took EMT signatures from MSigDB and EMTome to classify 423 

cancer cell lines from the cancer cell line encyclopedia (CCLE) into epithelial-like or 424 

mesenchymal-like cell-lines (Methods). When comparing the classification of CCLE cancer 425 

annotation with our EMT classification, we found that there was high agreement between cancer 426 

cell lines obtained from a primary site and the epithelial state while there was low agreement 427 

between the mesenchymal cell state and cell lines from a metastatic site (Figure 6A).  428 

The essentiality of metabolic enzymes identified from our model predictions were 429 

interpreted using the CRISPR gene knockout (CERES) Scores, where a lower score is 430 

associated with a higher likelihood that a given gene is essential for survival in a given cell line 431 

(Meyers et al, 2017). A score of 0 was used as the threshold to indicate the median effect of 432 

non-sensitive genes. We overlaid the CERES Scores for metabolic genes corresponding to 433 

reactions predicted from our sensitivity analysis with the CCLE cancer cell line annotation and 434 

our EMT annotation (Figure 6B and C). Overall, we found that the median values for both 435 

classification methods agreed with each other for the most part. The alpha-ketoglutarate / 436 

malate transporter SLC25A11, ENO1, ENO2, ENO3, IDH1, and LDH show lower median 437 

CERES scores than the threshold of 0, supporting our model’s findings. From this analysis, we 438 

were able to identify isoform-specific sensitivity in NSCLC, analogous to our validation of Eno3 439 

dependency (Figure 3). IDH1 gene depletion is associated with NSCLC essentiality, compared 440 

to IDH2 and IDH3 depletion, suggesting that targeting IDH1 expression in NSCLC may be an 441 

effective therapy to supplement existing therapeutics that target specific IDH1/2 mutations. 442 
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To evaluate how well our knockout growth score predictions performed against CRISPR-443 

Cas9 experimental data, we took the ratio of the CERES scores for the Primary site derived 444 

NSCLC cell lines to the scores for the Metastatic site derived cell lines for each metabolic gene. 445 

We found that the average growth scores and metabolic fluxes agreed significantly with the ratio 446 

data with R = 0.31 and 0.20 respectively, P-value = 0.005 and 0.036 (S.Table 6 & 7). We 447 

determined the correlation between our predictions against all cell lines as well, but found that 448 

the correlations were not significant with the pan-cancer CERES Score data. These results 449 

match our expectations, as our COBRA models were constrained using A549 transcriptomics 450 

and proteomics data. We evaluated the quality of each dataset on COBRA predictions, and 451 

found that the single-cell RNASeq data best matched the CERES Score ratios (KO R = 0.27, 452 

KO P-value = 0.01; Flux R = 0.20, Flux P-value = 0.03; S. Table 6 & 7) while bulk 453 

transcriptomics and proteomics data were weakly correlated (R < 0.1; P-value > 0.05; all bulk 454 

experiments).  455 

There are several confounding variables that could contribute to the reduced correlation 456 

between our predictions and the experimental data. First, we assumed that cells derived from 457 

primary tumor sites have similar metabolic attributes to epithelial-like cells, while metastatic cell 458 

lines were similar to mesenchymal cells. We addressed this assumption by re-classifying cells 459 

based on EMT gene markers. We obtained similar correlations and p-values from grouping cell 460 

lines either using the CCLE annotation or our EMT classification method (S. Table 8 & 9).  461 

While the transcriptomics and proteomics EMT datasets to build the metabolic models were 462 

induced using TGF-𝛃𝛃, the cancer cell lines used in the CRISPR screen were not induced with 463 

an EMT inducer. Thus, the cell dynamics that occur during EMT are not captured in CRISPR 464 

screening data.  Finally, we used NSCLC CCLs to evaluate the statistical significance of our 465 

results, while our simulations were performed on A549 exclusively. Due to these confounding 466 

factors, in contrast to our siRNA knockdown experiment, we found that the CERES scores did 467 

not distinguish between the three isoforms of enolase.  Despite these assumptions and 468 
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considerations, we found that our simulations were correlated significantly with the CERES 469 

Scores, suggesting that our model is able to extract relevant biological insights.  470 

Discussion 471 

Here we utilize constraint-based modeling informed by multiple omics data sources to 472 

predict metabolic activity and knockout sensitivity during EMT. Our predictions are supported 473 

from literature validation, siRNA knockout studies, and CRISPR-Cas9 essentiality panels.  We 474 

further provide a list of high confidence metabolic reaction dependencies during EMT for future 475 

experimental validation. Our approach also provides insights into metabolic activity at the single-476 

cell level, which is not possible to infer with current experimental methodologies.  477 

Our modeling identified metabolic enzymes that are novel as well as those with 478 

experimental evidence in literature supporting their role in tumor progression. We identified 479 

known metabolic reactions that contribute to cancer progression, such as glucose and 480 

glutamine transport. We further identified metabolic reactions associated with fatty acid 481 

metabolism that contribute to metastasis. We found that most glycolytic reactions were 482 

overactive in the early and late stages of EMT. This time-dependent aspect of glycolytic activity 483 

was intriguing and suggests a potential vulnerability during EMT. We further experimentally 484 

validate the essential role of the enolase reaction in EMT. The enolase enzyme is implicated in 485 

cancer progression for various tissue lineages, but so far has not been identified as a crucial 486 

player in NSCLC metastasis. Our COBRA modeling approach identified reaction catalyzed by 487 

Enolase as highly active during the early and late stages of EMT and predicted enolase 488 

knockout to have a negative impact on cellular growth. Enolase has three isoforms with a 489 

degree of cell type specific expression. Eno1 is ubiquitously expressed in all cells, Eno2 is 490 

neuronal specific and Eno3 is a muscle specific isoform. In our transcriptomic data sets, we 491 

observed expression of Eno1 and Eno3, but not Eno2. Even though COBRA analysis did not 492 

distinguish between isoforms, we were able to experimentally demonstrate an isoform specific 493 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2022.01.31.478483doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478483
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

function for Eno3 in cell survival during EMT. This is consistent with the kinetically more active 494 

muscle specific Eno3 regulating energy-intensive migratory behavior of cancer cells.  495 

 Comparison of our model predictions against CRISPR knockout gene essentiality scores from 496 

cancer cell lines revealed a significant correlation. Interestingly, single-cell knockout simulations 497 

were more correlated with CRISPR-Cas9 gene knockout essentiality data than models derived 498 

from bulk omics data. CRISPR-Cas9 essentiality screening is a promising high-throughput 499 

approach to determine the contribution of individual genes on cell viability. The correlation 500 

between our single-cell knockout simulations and CRISPR-Cas9 knockout essentiality data 501 

suggests that our model captures vulnerabilities during EMT. In addition to Eno3, we found that 502 

glutaminase (FTCD), 4-hydroxyphenylpyruvate oxidoreductase (HPD), 503 

adenosylhomocysteinase (AHCY), and phosphatidylserine synthase (PTDSS1) to be novel 504 

reactions that have no literature backing but have negative CERES Scores (i.e. impacts 505 

viability) in NSCLC cancer cell lines. The reactions prioritized by our model are strong 506 

candidates for drug development because they reduce cell growth in cells from later timepoints 507 

(mesenchymal/metastatic-like) relative to earlier ones (epithelial/benign-like). In addition, our 508 

model predicted ATP-Citrate lyase (ACLY) to be essential in mesenchymal-like cells. ACLY has 509 

been implicated as a crucial metabolic enzyme that facilitates cancer progression and its 510 

upregulation is associated with poor patient prognosis (Migita et al., 2008).  511 

 In summary, we present a computational model that captures metabolic activity and 512 

gene essentiality during EMT. Our modeling approach can be applied to study metabolism at a 513 

single-cell resolution and can capture the heterogeneity of other critical biological processes, 514 

including tissue differentiation and development of disease states.   515 
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Data and software availability statement 663 

Bulk transcriptomics data was obtained from GSE17708 and GSE17518. Bulk proteomics data 664 
was obtained from Keshamouni et al., 2006 and Lu et al., 2019. Single-cell EMT transcriptomics 665 
data was obtained from GSE147405.  666 
 667 
All COBRA data and meta-analyses performed can be found in the supplementary table. 668 
 669 
All scripts used to analyze these datasets can be found in this GitHub repository. 670 
 671 
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Main Figures and Data Tables 674 
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Figure 1. A549 metabolism is predicted to be overactive during the early and late phases 677 
of EMT. 678 

A. Reactions are sorted based on the priority score, which is a function of the number of 679 
studies with significant metabolic genes that encode the reaction and the effect size (Z-680 
score or log2 fold change). The metabolic fluxes were simulated using the RECON1 681 
human metabolic reconstruction. Several metabolic reactions within the 682 
Glycolysis/Gluconeogenesis metabolic subsystem are overactive in the earlier stages 683 
(1hr) and late stages (48-72hrs) of EMT, based on the absolute value of the metabolic 684 
fluxes predicted by constraint-based modeling. The top 5 reactions in the 685 
Glycolysis/Gluconeogenesis subsystem have at least two studies supporting the flux 686 
predictions. Enolase is bolded as it was prioritized for experimental validation.  687 

B. Metabolic reactions within the Citric Acid Cycle are predicted to have more uniform 688 
activity across all time points relative to control (unconstrained flux distribution) and have 689 
lower priority scores compared to glycolysis. 690 

C. Metabolic reactions within the Oxidative Phosphorylation metabolic subsystem are also 691 
predicted to have more uniform activity relative to control across all time points. 692 
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Figure 2. A global view of cancer growth sensitivity to metabolic reaction knockout 697 
during EMT. Normalized KO Growth Scores closer to a value of -1 confer a decrease in growth 698 
relative upon simulated reaction knockout relative to the control (an unconstrained metabolic 699 
reconstruction growth rate). Reactions are sorted based on priority scores.  700 
The barplots (inset) show the distribution of lethal reactions (Growth Score < 0) for three 701 
timepoints 1 hour, 24 hours, and 48-72 hours after TGF-𝛃𝛃 induction across all experiments in 3 702 
time points. Reactions with red and bold text were predicted to be highly sensitive to knockout 703 
and were prioritized for downstream analyses with CERES essentiality scores. 704 
  705 
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Figure 3. siRNA-mediated inhibition of Eno3, but not Eno1, triggers apoptosis in A549 708 
cells undergoing EMT after 72 h TGF-b treatment. 709 

A. Apoptosis is assessed by the percentage of AnnexinV & PI positive cells by Flow 710 
cytometry. 711 

B. Caspase activation is measured using a caspase8 specific substrate that fluoresces 712 
after caspase 8-mediated cleavage. 713 

 714 
 715 
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Figure 4. Single-cell COBRA reaction knockout analysis is consistent with results from 720 
bulk studies. Reaction knockout growth rates for the top 40 most variable reactions are shown 721 
in the heatmap. Column1 shows averaged data across all cells in the single-cell simulations, 722 
and data from cells grouped by time points are shown in subsequent columns (day 0, 8 hrs, day 723 
1, day 3 and day 7). This list contains many reactions that were also found to be sensitive upon 724 
knockout in bulk studies (Table 1).  725 
  726 
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Figure 5. Visualization of Single-cell COBRA reaction knockout data.  728 
A. Shown is the UMAP visualization of the temporal trajectory of cells induced with TGF-B. 729 

B – F. Single-cell knockout growth rates were overlaid onto a UMAP embedding for A549 TGF-730 
B single cell data. Growth rates were scaled from 0 to 1, where 1 indicates no change in growth 731 
rate between the cancer cell and control, while 0 indicates cell death in the cancer cell relative 732 
to control. Selected single-cell growth rate profiles for reactions that were sensitive in bulk 733 
reaction knockout simulations are shown in B-E. Growth scores (g.s.) were discretized into 734 
sensitive (g.s. < 0; red), not sensitive (g.s. = 0; light gray), mildly enhancing (0 < g.s. < 0.3; dark 735 
gray) and enhancing (g.s. > 0.3; black). The citrate synthase reaction (panel F) was selected as 736 
a control as it is an essential metabolic reaction, and it correctly shows sensitivity across all time 737 
points.   738 
 739 
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Figure 6. COBRA-prioritized NSCLC CERES Scores reveal metabolic vulnerabilities 742 
during EMT.  743 

A. Frequency matrix for comparing the Cancer Cell Line Encyclopedia (CCLE) 744 
primary/metastatic annotations against our Epithelial/Mesenchymal annotations based 745 
on MSigDB and EMTome signatures. Cells from the CCLE were classified as epithelial 746 
or mesenchymal based on the number of genes were up/downregulated that matched 747 
the MSigDB/EMTome signatures (Methods). 748 

B. Reactions predicted by COBRA to be sensitive were compared against CERES Scores. 749 
Cell lines were classified as primary or metastatic, and their distributions are shown on 750 
the violin plots. Overall, the average predicted growth scores and fluxes in hour 72 751 
across all 5 experiments agreed with the Primary / Metastatic CERES Scores Ratios (R 752 
= 0.31 and 0.2; P-value = 0.005 and 0.035 respectively; S. Table 6 and 7).  These 10 753 
metabolic genes were selected based on reactions of interest from our bulk COBRA 754 
knockout profiles and single-cell flux profiles (from Figure 2). 755 

C. The same analysis was repeated with the epithelial/mesenchymal annotations for 756 
sensitive reactions. The predicted growth scores and fluxes from the single-cell 757 
simulations (GSE147405) agreed with the Epithelial / Mesenchymal CERES Scores 758 
Ratios (R = 0.28, p-value=0.01). 759 
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Main Tables and Legends 761 

Table 1. Literature review of known and novel essential reactions predicted from both bulk 
and single-cell simulations. 
For full list of all predicted essential reactions, see S. Table 5.     

Reaction Name 
Gene-Protein-
Reaction Rule 

Average 
NSCLC 
CERES 

Score PMID   
Strong evidence         

pyruvate carboxylase (PC) -0.5217 

26070193   
30005601   
25607840   

fructose-bisphosphate aldolase 
(ALDOA) or (ALDOC) 
or (ALDOB) -0.7012 

32530543   
28444969   
31358528   

Medium evidence         
ribulose 5-phosphate 3-epimerase (RPE) -1.3731 32365991   
triose-phosphate isomerase (TPI1) or (TPIP2) -1.1346 27908734   
formimidoyltransferase 
cyclodeaminase (FTCD) -0.0908 30784016   
glyceraldehyde-3-phosphate 
dehydrogenase 

(GAPDH) or 
(GAPDHS) -0.7870 27878251   

UTP-glucose-1-phosphate 
uridylyltransferase (UGP2)  -0.2952 31243371   
ATP-Citrate lyase (ACLY) -0.7807 23807225   
acetone mitochondrial transport via 
proton symport (SLC16A1) -0.0556 31371390   
aspartate transaminase (GOT2) -0.3341 23535601   
Novel predictions         
glutaminase (mitochondrial) (FTCD) -0.0908    
4-Hydroxyphenylpyruvate:oxygen 
oxidoreductase (HPD) -0.0390    
adenosylhomocysteinase (AHCY) or (AHCYL1)  -0.6535    

enolase 
(ENO1) or (ENO3) or 
(ENO2) -0.0015    

Phosphatidylserine synthase homo 
sapiens (PTDSS1) -0.2514     

 762 
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Supplementary Figure 1. The top 50 reactions that are predicted to be overactive are 767 
ranked by priority score. (Related to figure 1)  768 
The priority score is a function of the number of studies with significant metabolic genes that 769 
encode the reaction and the effect size (Z-score or log2 fold change). The metabolic fluxes were 770 
simulated using the RECON1 metabolic reconstruction. Several EMT associated metabolic 771 
reactions predicted by our model such as Glycolysis/Gluconeogenesis, Glutamine metabolism 772 
and Nucleic acid metabolism are commonly dysregulated in cancer. 773 
 774 
 775 
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Supplementary Figure 2. Top 50 reactions ranked by priority score predicted to be 780 
sensitive to reaction KO. (related to figure 2) The heatmap shows the top 50 reactions 781 
ranked by priority score predicted to reduce A549 growth rate upon reaction knockout in 782 
RECON1 in all bulk experiments. In contrast, Figure 2 focuses on reactions sensitive in specific 783 
EMT stages and studies, while this sensitivity profile shows the top 50 reactions by priority 784 
score. Eight nutrient exchange reactions including glucose and aspartate exchange reactions 785 
were predicted to have a negative impact on growth following knockout at different stages of 786 
EMT. Glutamine exchange interestingly decreased growth upon KO during early and late EMT 787 
timepoints but not in intermediate time-point (24hrs). Hexokinase and C100 fatty acid activation 788 
were predicted to be essential across all time points. Pyruvate carboxylase was predicted to be 789 
sensitive in early EMT (1 hour).  790 
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Supplementary Figure 3. mRNA expression fold change of ENO1 versus ENO3 over time  793 
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Supplementary Figure 4. Single-cell RNASeq data of EMT biomarkers reveals cell states. 796 
A. Time-course trajectory of A549 cells induced with TGF-B. 797 
B. VIM expression over time. 798 
C. CDH1 expression over time. 799 
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Supplementary Figure 5. Correlation analysis between STAT3 and glutamine metabolism-802 
related genes Glutamine Synthetase and glutamine transporter SLC7A5.  803 

A. Shown are cells that contain non-zero expression levels for both STAT3 and GLUL 804 
across cells with TGF-𝛽𝛽induction. A significant positive correlation (R = 0.444;  P-value = 805 
0.002) was observed. 806 

B. Shown are cells that contain non-zero expression levels for both STAT3 and SLC7A5 807 
across cells with TGF-𝛽𝛽induction. A significant but weaker positive correlation (R = 808 
0.158;  P-value = 0.017) was observed.  809 
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