








Appendix
Common corruption categorization
Fourier analysis is performed for the perturbations induced by common corruptions in the CIFAR10-C dataset (at severity 5).
All 15 corruptions are divided loosely into three categories based on their dominant frequencies (Tab. 1)

category corruptions
low snow, frost, fog, brightness, contrast

medium
motion_blur, zoom_blur, defocus_blur, glass_blur,

elastic_transform, jpeg_compression, pixelate
high gaussian_noise, shot_noise, impulse_noise

Table 1. Categorization of common corruptions. 15 types of corruptions23 are divided into 3 categories based on the average
frequency estimated from the Fourier spectrum of the perturbations (Appendix Fig. 7).

Figure 7. Corruption spectrum for the CIFAR10-C dataset. Fourier power spectra are plotted for all different common
corruptions. Color maps are shared across panels.

Hybrid image experiment for monkey regularized model
Frequency bias is compared between a monkey-response-regularized VGG model and a baseline model through the experiment
using hybrid images. Though a weaker effect compared with the mouse-regularization result, we found the reversing frequency
for ‘neural’ model is smaller than that of ‘base’ model, suggesting a low frequency bias induced by neural regularization.
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Figure 8. Probing frequency sensitivity of the monkey regularized model using hybrid images. Results are presented similar
to Fig. 3.

Details of robust models
Details of models trained for CIFAR10, including one baseline model, six models trained for adversarial robustness, two models
trained for common corruption robustness and two models using preprocessing are shown in Tab. 2.
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Type Model name Architecture Test accuracy on CIFAR10
baseline Baseline24 WideResNet-28-10 94.78%

adversarial

Rebuff2129 WideResNet-70-16 92.23%
Gowal2030 WideResNet-70-16 91.10%
Wu2031 WideResNet-28-10 88.25%
Zhang2032 WideResNet-28-10 89.36%
Carmon1933 WideResNet-28-10 89.69%
Sehwag2034 WideResNet-28-10 88.98%
Cui2035 WideResNet-34-20 88.70%

corruption Hendrycks204 ResNeXt29-32x4d 95.83%
Kireev2136 PreActResNet-18 94.77%

preprocess Blur ResNet-18 90.66%
PCA ResNet-18 89.85%

Table 2. Models trained for CIFAR10. One baseline model, 7 models trained for adversarial robustness, 2 models trained for
common corruption robustness, and 2 models with simple preprocessing are compared in this study.

Details of models trained for ImageNet, including one baseline model, two models trained for adversarial robustness and
six models trained for common corruption robustness are shown in Tab. 3.

Type Model name Architecture Top1 test accuracy on ImageNet
baseline Baseline37 ResNet-50 76.13%

adversarial L∞ (ε = 4/255)37 ResNet-50 62.42%
L2 (ε = 3)37 ResNet-50 57.90%

corruption

ANT11 ResNet-50 76.07%
SIN12 ResNet-50 74.59%
AugMix4 ResNet-50 77.54%
DeepAugment38 ResNet-50 74.59%
DeepAug+AugMix38 ResNet-50 75.82%
Assemble39 Assemble-ResNet-50 80.81%

Table 3. Models trained for ImageNet. One baseline model, two models trained for adversarial robustness and six models
trained for common corruption robustness are compared.

Analysis on neural similarity matrix
Previous work8 demonstrated that models regularized with neural similarity matrix are more robust against multiple types of
pixel noise as well as adversarial attacks. To understand why this type of neural regularization works, we analyzed the neural
similarity matrix that characterizes the geometry of mouse V1 representation. We obtain neural responses of natural images
through a well trained predictive model40, and denote the population response to image i as ri. The dimension of vector ri is the
number of neurons. Neural similarity matrix Sneural is defined as the cosine similarity of mean-corrected responses r1, . . . ,rN
for N images,

Sneural
i j =

r̃i · r̃ j

‖r̃i‖‖r̃ j‖
, (4)

in which r̃i = ri− r̄ is the population response to image i subtracted by mean response.
A first thing to notice is that the neural similarity matrix is low rank. For example, the one shown in Fig. 9 is a 5000×5000

matrix from 5000 images, but a rank-204 approximation can explain more than 90% of its variance. To account for 99% of the
variance, a matrix of rank 1452 is sufficient. The result is not due to a small number of neurons. In fact, the neural response
vector ri used in this example is a union over 8 different scans, containing more than 40,000 recorded units. The low rank nature
of Sneural shows that the vision system is encoding a small number of features through a highly correlated neuron population.

The next question is, how do these neural features look? Performing eigenvalue decomposition on Sneural, we can calculate
its eigenvalues λ1,λ2, . . . ,λN (λ1 > λ2 > .. . > λN) and the corresponding eigenvectors v1,v2, . . . ,vN (‖vi‖= 1). The i-th neural
feature is defined as f i =

√
λivi. The rank-204 approximation in Fig. 9 is generated using the first 204 neural features, i.e.

Ŝ = ∑
204
i=1 f i fTi .
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Figure 9. The neural similarity matrix and its low rank approximation. Neural responses of 5000 grayscale images are
provided by a well trained brain model40. The cosine similarities between all pairs of responses are then calculated after
subtracting the mean responses. An eigenvalue decomposition of the matrix shows that the first 204 principal components
account for more than 90% of the variance. Therefore, a low rank approximation can be constructed based on these
components.

Each neural feature f i is a vector of the same length as the number of images, and can be treated as a scalar function of
images. The first order approximation of f i is a linear model with respect to the pixel values as input. The linear weight can be
easily calculated by solving the regression problem,

wi = argmin
wi

(∥∥ f i−wT
i X

∥∥2
+α‖wi‖2

)
. (5)

Each column of X is a flattened image, and the dimension of wi vector is the number of pixels. α‖wi‖2 is a regularization term.
The first 16 linear weights wi are visualized as as spatial maps in Fig. 10.

Figure 10. Linear approximation of neural features. Neural features are the eigenvectors vi of the neural similarity matrix
properly scaled by corresponding eigenvalues λi. Each neural feature is approximated by a linear function on image pixel
values, and the linear weight wi is displayed as a spatial map.

We further analyzed two properties of the linear approximation of neural features. Treating wis as spatial maps, we can
calculate its dominant spatial frequency via Fourier analysis. The results show that the dominant Fourier component of wi
associated with strong neural features are relatively low frequency (Fig. 11). Though wi show certain spatial structure (Fig. 10),
neural features f i are nonlinear in general. We quantified the linearity of f i by how good the linear approximation is, and found
that correlation coefficient between f i and the best linear prediction is high only for the neural features with high eigenvalues
(Fig. 11).
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Figure 11. Overview of neural features. Properties of the first 204 neural features are visualized with colors indicating the
eigenvalue corresponding to each. Each neural feature is approximated by a linear model. The ordinate is the correlation
coefficient of linear approximation and the neural features on a hold-out set of images, characterizing how linear the feature is.
The abscissa is the dominant frequency of the linear weights when viewed as spatial maps (Fig. 10). The results show that
neural features, with high eigenvalues, are more linear, and contains lower spatial frequencies.
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