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ABSTRACT

Machine learning models have difficulty generalizing to data outside of the distribution they were trained on. In particular,
vision models are usually vulnerable to adversarial attacks or common corruptions, to which the human visual system is robust.
Recent studies have found that regularizing machine learning models to favor brain-like representations can improve model
robustness, but it is unclear why. We hypothesize that the increased model robustness is partly due to the low spatial frequency
preference inherited from the neural representation. We tested this simple hypothesis with several frequency-oriented analyses,
including the design and use of hybrid images to probe model frequency sensitivity directly. We also examined many other
publicly available robust models that were trained on adversarial images or with data augmentation, and found that all these
robust models showed a greater preference to low spatial frequency information. We show that preprocessing by blurring can
serve as a defense mechanism against both adversarial attacks and common corruptions, further confirming our hypothesis
and demonstrating the utility of low spatial frequency information in robust object recognition.

Introduction

Currently, deep neural networks are the state-of-the-art models for numerous computer vision tasks such as object detection1,
image recognition2, semantic segmentation3, etc. However, these models are often not robust, as demonstrated by their inability
to generalize to new data distributions. For instance, current neural networks are not able to generalize to common corruption
noise such as ImageNet-C4, where network performance is stress tested against 15 different kinds of image corruption applied
to the ImageNet dataset. Furthermore, these models seem to be extremely sensitive to targeted noise such as adversarial
attacks5. In contrast, the human visual system does not seem to suffer from such problems: in particular, recognizing object
identity is little affected by the common corruptions6, and adversarial perturbations that break machine learning models are
imperceptible to humans7. This difference in behavior between the brains and deep learning algorithms might be explained by
differences in inductive bias, i.e. they learn different features from data. Accordingly, natural vision has an inductive bias, a
bias towards which fixed network are learned by the optimization algorithm from a class of models given the set of training
data, towards robust features, which means insensitivity to perturbations that do not change the perceptual relevant latent
variables such as object identities. How can we instill the brain’s inductive bias towards robust to targeted and random noise
distortions to these deep learning algorithms? Recent work has shown that machine learning models which are encouraged to
learn brain-like representations, a paradigm known as neural regularization, are also more robust to certain common corruptions
such as Gaussian noise and adversarial attacks8, 9. Furthermore, other work has shown that models that explain more variation
in primate primary visual cortical (V1) responses also tend to be more robust to adversarial attacks10.

Much recent parallel work has also attempted to produce models that are robust to common corruptions (ANT11, SIN12,
DeepAugment, AugMix4) and to adversarial attacks (PGD Training13, TRADES14). These models achieve significant im-
provements upon baseline models by employing several other methods, including data augmentation, adversarial training, and
anti-aliasing15. AutoAugment, a data augmentation method for common corruption robustness, has produced improvements
mainly for high frequency common corruption noises16. Consistent with this work, we hypothesize that one of the reasons for
the success of current robustness methods for both common corruption and adversarial attacks can be explained by a simple
computational principle: models that are biased to rely on low spatial frequency information for object recognition are more
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robust. Here, we tested this hypothesis with several frequency-oriented analyses. Finally, we introduced a simple preprocessing
step based on these principles that produced robust models with comparable performance to these more sophisticated methods.

Results
Neural regularization boosts model robustness
There are many ways to bias a machine learning model toward brain-like computations, such as architecture, learning rules, the
training dataset or task’s objective functions17. Among them, methods that use auxiliary loss functions to bias models towards
brain-like representations are called neural regularization. We will focus on two particular forms of neural regularization: neural
similarity regularization8, 18 and neural response regularization9. Both methods directly encourage a model to learn a brain-like
representation of the visual stimuli.

 model features neural responses

manifold matching

Figure 1. Schematic of neural similarity regularization. Machine learning models are trained so that the stimuli manifold in
the model feature space resembles the manifold in the neural response space. The most simple version considers only pairwise
relationships among stimuli instances. Two images that are close in the neural response space should also be close in the model
feature space.

The neural responses of natural images are located on a low dimension manifold in the response space19. Similarly, for any
machine learning model, features of images stimuli also form their own manifold embedded in model feature space. Neural
similarity regularization adjusts the manifold in the model’s hidden layers so that it is biased towards the same geometry as the
manifold in the neural response space (Fig. 1), while performing benchmark tasks like image classification at the same time. Li
et al.8 showed that a ResNet18 model regularized to incentivize its representational similarity20, which is the pair-wise cosine
similarity between the representation for a set of images, to be more like the one measured in mouse V1 is more robust against
Gaussian noise and adversarial attacks.

Another way to induce brain-like representations is to request the model to predict neural responses of the visual input as an
auxiliary task. Safari et al.9 showed that a VGG19 model co-trained with monkey V1 data, where the VGG19’s core was used
to predict neural responses directly, is able to improve robustness against common corruptions on Tiny ImageNet. Since the
neural readout module is shallow, the VGG19 core has to encode neural features to make the co-training work.

In this study, we expanded both neural regularization, either using mouse’s representational similarity matrix or using the
monkey responses directly, by testing model robustness against various common corruptions and adversarial attacks.

Since neurally regularized models are trained on grayscale images, we used grayscale versions of the CIFAR10-C and
TinyImageNet-C datasets for evaluation. Models regularized with either mouse or monkey V1 representations have higher
accuracy at different severity levels of common corruptions compared to baseline models (Fig. 2a, e), though their performance
on clean images is slightly worse. Targeted gradient-based boundary attacks21 were performed to find the minimum perturbations
needed to change model predictions to wrong categories. The use of strong attacks is critical in evaluating adversarial robustness,
as weak attacks such as FGSM only provide a loose upper bound on the minimum adversarial perturbation size. We verified
the effectiveness of boundary attacks by extensive comparison between many off-the-shelf methods, and are confident it
characterizes the adversarial robustness of models. Evaluation on the full testing dataset showed that neurally regularized
models need larger adversarial perturbations on average (Fig. 2b, f), i.e. they are more robust against adversarial attacks. The
attack size that gives 50% success rate is ε = 1.25/255 for the baseline ResNet and ε = 2.89/255 for the mouse regularized
one. If we look at the distribution of minimum perturbation size needed for each image, the mean and standard deviation is
ε = (1.34±0.70)/255 for the baseline ResNet, and ε = (3.09±1.61)/255 for the mouse regularized one. Similarly, the attack
size that gives 50% success rate is ε = 1.84/255 for the baseline VGG and ε = 2.46/255 for the monkey regularized one.
And the minimum perturbation size for all images is ε = (1.93±0.89)/255 for the baseline VGG, and ε = (2.64±1.26)/255
for the monkey regularized one. In the following text, we use the mean value of minimum perturbation sizes to characterize
adversarial robustness of the model.

A natural question is: what does the neural regularization do? First, we decided to explore the structure of the neural
similarity matrix of mouse V1 responses with a simple decomposition analysis. We calculated the eigenvalues and eigenvectors
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Figure 2. Neural regularization boosts model robustness and makes it less sensitive to high frequency component of the input.
ResNet18 models are trained for grayscale CIFAR10 with mouse neural similarity regularization8, VGG19 models are trained
for grayscale TinyImageNet with monkey neural response regularization9. (a) Grayscale CIFAR10 classification accuracy
against common corruptions at different severity levels. Average accuracy over all corruptions are reported for a baseline
ResNet model (black) and a mouse regularized model (orange). (b) Success rate of targeted attacks at different perturbation
budget ε , using the boundary attack21 with an L∞ metric. (c) Classification accuracy against different types of corruptions,
broken down into three groups based on their frequency characteristics (Appendix Tab. 1). Model performance is averaged over
all severity levels. (d) Radial profile of the Fourier spectrum of adversarial perturbations. We found the minimal adversarial
perturbations of all testing images, and calculated the averaged Fourier spectrum thereof, where blue is minimum and red is
maximum values (insets). The portion of power under different frequency thresholds are compared between baseline and
neurally regularized models. The abscissa is the absolute value of the spatial frequency, normalized by sampling frequency fs.
(e–h) Same as a–d, except comparing a baseline VGG model with a model co-trained with monkey neural data on the grayscale
TinyImageNet dataset22.

of the similarity matrix and computed the linear approximation of each principal component with respect to the image. We
observed that geometry of mouse V1 representation is well approximated by a small number of principal components, and
the spatial tuning of them reveals low frequency structure (Appendix Fig. 10). This has led us to ask if the bias towards low
frequency features is inherited by neurally regularized models. We divided the 15 common corruptions in the CIFAR10-C
and TinyImageNet-C datasets23 into three categories based on their frequency spectra (Appendix Tab. 1). Low-frequency
corruptions: ‘snow’, ‘frost’, ‘fog’, ‘brightness’, ‘contrast’; medium-frequency corruptions: ‘motion_blur’, ‘zoom_blur’,
‘defocus_blur’, ‘glass_blur’, ‘elastic_transform’, ‘jpeg_compression’, ‘pixelate’; high-frequency corruptions: ‘gaussian_noise’,
‘shot_noise’, ‘impulse_noise’. Fourier spectra of different corruptions are shown in Appendix Fig. 7. The biggest performance
boost in model classification accuracy comes from the category with the high-frequency corruptions (Fig. 2c, f).

We also compared the adversarial perturbations for baseline models and neurally regularized ones. We performed a Fourier
analysis on the minimal adversarial perturbation found through our boundary attack21, and calculated the average frequency
spectrum for different models (insets of Fig. 2d, h). We observed that the mouse and monkey neurally regularized models
contain relatively higher low-frequency components than the baseline model. To quantify this frequency shift, we characterized
the frequency preference by a radial profile of the spectrum of the adversarial perturbation, i.e. the power of all Fourier
components whose frequency is smaller than certain values. We found the radial profile of the adversarial perturbation spectrum
for the neurally regularized model is shifted toward lower frequencies (Fig. 2d, h). Furthermore, we can quantify this shift
by the half power frequency f0.5, which is the frequency where half of the Fourier power lies below (marked by the dashed
line in Fig. 2d, h). f0.5 = 0.316± 0.015 for mouse regularized ResNet and f0.5 = 0.442± 0.009 for baseline, with mean
and standard deviation estimated from 1000 images (Fig. 2d). Similarly, f0.5 = 0.306±0.020 for monkey regularized VGG
and f0.5 = 0.316±0.034 for baseline (Fig. 2h). The half power frequency f0.5 is smaller for the neurally regularized model
compared with baseline, though effect on the monkey regularized model is much weaker than the mouse regularized one.

Hybrid image experiment
To directly probe the frequency bias of models, we next designed a new dataset of hybrid images constructed by mixing the
low-frequency components and high-frequency components from two different images. We select two images belonging to two
different categories, and examine whether the model prediction on the mixed image is consistent with either component. For a
given mixing frequency fmix, we combine the Fourier components of an image whose frequencies are smaller than fmix with
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Fourier components of another image whose frequencies are larger than fmix, and then use an inverse Fourier transformation to
get a hybrid image (Fig. 3a, see Methods for more details).
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Figure 3. Probing frequency sensitivity of mouse regularized model using hybrid images. (a) Examples of hybrid images at
different mixing frequencies. Hybrid images are constructed by mixing the low-frequency component of one image and the
high-frequency component of another, while the two seed images belong to different categories. The range of mixing
frequency’s values are normalized by the Nyquist frequency. (b) Model predictions on hybrid images at different mixing
frequencies. As more low-frequencies from one image are included, the probability that a network reports its label plow
increases. The reversal frequency frev where plow = phigh is smaller for the mouse regularized model (‘neural’) than for the
baseline model (‘base’).

We denote the probability that a hybrid image is classified as the low-/high-frequency seed image class as plow and phigh
respectively, and calculate the probability difference plow− phigh at different mixing frequency values. When the mixing
frequency is very small, the hybrid image is close to the high frequency seed image, therefore phigh is high for a properly trained
model. Likewise, when the mixing frequency is big, plow is high. We are interested in the mixing frequency when plow = phigh,
as it characterizes the frequency bias of a model. We term this frequency the reversal frequency frev. The result shows that frev
is smaller for a mouse regularized model (0.371±0.0006, mean ± standard deviation estimated from 4 randomly permuted
hybrid image datasets) than a baseline model (0.528±0.0009), indicating that the neurally regularized model is more likely
to classify the hybrid image as the class of the low-frequency component (Fig. 3b). This provides strong evidence that the
reason behind the robustness gain by mouse neural regularization could be a bias towards low-frequency features. The same
experiments and analysis were done for monkey regularized models as well, but the low-frequency bias is smaller compared to
mice. frev is 0.376±0.003 and 0.426±0.002 for monkey regularized VGG19 and a baseline model, respectively (Appendix
Fig. 8).

Frequency analysis on robust models
We then asked if other models that are not regularized with neural data, but engineered to be robust to common corruptions and
adversarial attacks also have this low frequency bias. To this end, we analyzed and compared several robust models trained on
CIFAR10, most of which were downloaded from RobustBench24. Some of the models are trained for adversarial robustness
and some are trained for common corruption robustness. A full description of models is listed in Appendix Tab. 2. Since the
mouse regularized models in Fig. 2 are trained on grayscale CIFAR10, it is not included in this comparison.

Two additional models were trained and included in this comparison. Both models were constructed by attaching a
preprocessing layer before a ResNet18 model. The parameters of the preprocessing are not trainable but fixed beforehand. One
is called the ‘blur’ model as the preprocessing is a convolution with a Gaussian kernel. The other is called the ‘PCA’ model
as the preprocessing keeps only the first a few principal components (PCs) calculated from all training images. The standard
deviation σ of the Gaussian kernel and the number of PCs K are chosen such that the classification accuracy on CIFAR10 of
both models are around 90%, similar to other robust models. More details are included in the Methods section.

The ‘blur’ model directly biases the model towards low-frequency features, because the high frequency features are
attenuated during the preprocessing step. The filtering of features based on their spatial frequency can be treated as a special
form of reweighting of input principal components, since principal component analysis on natural images with translation
invariance recovers the Fourier basis, and the variance explained by a feature usually decreases monotonically as frequency
increases. Hence a ‘PCA’ model that explicitly projects the original image onto a low dimensional space spanned by the first
PCs is also included in the comparison. The hypothesis behind ‘PCA’ model is that the directions parallel to the data manifold
are robust features, and perturbations that are orthogonal to the manifold can be safely removed. Since natural images have
the greatest variance in low frequencies, the distance of any data point to a class boundary are longest along low frequency
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dimensions, and thus a model that mainly uses these low frequencies should be the more robust. Previous work also found that
this kind of PCA data preprocessing increases robustness to adversarial attacks25.

Similar to the analysis done on neurally regularized models, we calculated the Fourier spectrum of minimum adversarial
perturbations for all robust models. A fixed set of 1000 images were selected from testing set, and the incorrect class targets
for each image was also fixed. The adversarial perturbations for robust models, including the ones not specifically trained
for adversarial robustness, contained more low spatial frequency components, while in the baseline models, adversarial
perturbations were dominated by high spatial frequency components (Fig. 4a). To better visualize the differences of adversarial
spectrum shape, we plotted the radial spectrum for each model. The portions of the spectral power within different spatial
frequencies are compared (Fig. 4b), and the half power frequency f0.5 is marked by the dashed line. Compared with the baseline
model, all robust models have smaller f0.5, indicating the minimum adversarial perturbations for them have lower frequencies.
The size of average minimal perturbations are plotted against f0.5 in Fig. 4c, revealing a negative correlation between adversarial
robustness and the frequency bias of the model.
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Figure 4. Frequency analysis of adversarial attacks on robust models trained on CIFAR10. (a) The Fourier spectrum of the
minimal adversarial perturbations of different models, including one baseline model, seven models trained for adversarial
robustness, two models for corruption robustness, one model preprocessing by blurring, and one preprocessing by PCA
compression (Appendix Tab. 2). The spectrum is averaged over 1000 images, and color maps are not shared across each panel.
(b) Radial profiles of adversarial perturbation spectra. Dotted lines represent each individual model, while thick lines are the
average within each robustness method (‘adv’, ‘crp’). The frequency where each line crosses 50% is denoted as half power
frequency f0.5. (c) Scatter plot of minimum adversarial perturbation size versus f0.5 for all models.

We next tested model predictions on hybrid images. Hybrid images for RGB CIFAR10 are constructed similarly as in
Fig. 3a. The reversal frequencies frev for all models are plotted against the classification accuracy on the CIFAR10-C dataset
(averaged over all corruptions and severity levels) in Fig. 5b. The result shows that all models are more robust to common
corruptions than the baseline, even those trained for adversarial robustness. They all have a low frequency bias characterized by
frev, which suggests that low frequency information is more important to these models. However, one interesting observation
is that compared to adversarial attacks, common corruption robustness seems to cap in an specific frev. For example the
adversarially robust models (blue) have smaller corruption accuracy compared to the other robust models. This seems to
indicate a trade-off, where using too few frequencies ends up affecting performance. We decided to explore this by using
different ‘blur’ models with increasing blurring kernels’ size. In Fig. 5b, we observe that most models except the ones trained
for common corruption robustness lie close to the curve (green) fit to ‘blur’ models. This is an indication that the decrease in
performance as a function of frev can be partly explained through the frequency preference of the models.

Next we explored this relationship between robustness and frequency bias on models trained for ImageNet classification. In
addition to a baseline model, we analyzed two adversarially trained models and six models trained for robustness to common
corruption (Appendix Tab. 3). In Fig. 6a, we plot the minimum adversarial perturbation size ε with respect to the half-power
frequencies, f0.5, of adversarial perturbation spectra. We can observe that the minimum perturbation size is negatively correlated
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Figure 5. Hybrid CIFAR10 image classification performance of robust models. (a) Difference between probability of
choosing the low frequency label vs the high frequency label of hybrid images. Thin and light lines of ‘adv’ models and ‘crp’
models are for each individual model in Appendix Tab. 2, and the dark line is the average within either group. (b) Scatter plot
of common corruption robustness versus reversal frequency frev in hybrid image classification. The dashed green line is the
performance of a series of ‘blur’ models, using different degree of low-pass filtering. The left end corresponds to σ = 3 pixels
and the right end corresponds to σ = 1 pixel, while the green dot is the model with σ = 1.5 pixel listed in Tab. 2.

with half-power frequencies, this indicates that robustness to adversarial attacks is correlated with adversarial attacks that have
more energy in the low frequencies. Furthermore, Fig. 6b shows corruption accuracy versus the reverse frequency, frev, for the
ImageNet-C dataset. Here we observe that the common corruption robust models are more robust than the baseline and have
smaller frev, consistent with our findings in CIFAR10 models. However the adversarially robustness models are less robust than
baseline even though they have smaller frev. This is probably because the clean performance of adversarially robust models on
this dataset is too low, therefore they are not comparable to baseline (Appendix Tab. 3).
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Figure 6. Frequency analysis of models trained on ImageNet. One baseline model (‘base’), two models (‘adv’) trained for
adversarial robustness, and six models (‘crp’) trained for corruption robustness are compared. (a) Minimum adversarial
perturbation size ε versus the half-power frequency f0.5 calculated from adversarial perturbation spectra. (b) Common
corruption robustness versus reverse frequency frev calculated from hybrid image experiment.

Discussion

Recent studies have linked brain-like representations to robustness of deep network models8–10. By introducing a novel hybrid
image task, we were able to study the frequency preference of a neural networks, and show that these brain-like models were
more robust mainly through a preference towards low spatial frequency features. This work follows in spirit the approach of
Geirhos et al.12, where the authors combined the shape of an input and the texture of another one to produce an input that had
features with “conflicting information” towards different classes. This approach of producing cue-conflict style tasks seems to
be useful for understanding the model preference towards certain features and not others.

Furthermore, we have shown that this bias is present in an extensive group of machine learning models trained for robustness:
we found that robustness to common corruptions and adversarial examples are correlated with this low frequency bias. However,
there seems to be a difference between robust models on CIFAR10 vs ImageNet. Adversarially robust models are more robust
to common corruptions on CIFAR10 but not on ImageNet. Previous work has also shown that adversarially robust models are
not robust to common corruptions26. However, they attributed this behavior to both perturbations having qualitative different
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properties. In our case, we argue that adversarial robustness in ImageNet dataset is more difficult to achieve, and therefore the
models we analyzed cannot handle perturbations as large as the ones in common corruptions compared to CIFAR10 trained
models. All of this seem to indicate that robustness to different datasets might be achieved trough different methods but
low-frequency preference seem to be a key component of current robust models.

In addition, we were able to use the strategy of biasing towards low spatial frequencies and enforced it with a simple
preprocessing layer to produce robustness on par with this group of robust machine learning methods. Previous work has
also tried to use frequency information to produce robust models for ImageNet. For example, antialising has been shown
to improve robustness to common corruptions when introduced before or after the nonlinearities of different models27, 28.
However, this method seems to behave differently than our preprocessing models. For example, these anti-aliasing models
decrease in performance as you go into the high frequency corruptions, similar to the baseline models. This is in contrast to
the other robust models that perform better on high frequency corruptions compared to low frequency ones. As the authors
explained in their work, the anti-aliasing methods focus more on producing shift-invariant models while preserving as much
high frequency information as possible. This might be the reason why this model behaves differently than the ‘blur’ or ‘PCA’
models which explicitly attenuate high frequency information from the input, and why our models behave more similarly to
neurally regularized and data augmented models. This indicates that there can be different approaches to producing robust
models to common corruptions with focus on different properties of the frequency spectrum.

However, as previous work has shown, using low frequency bias has its limitations. For example, Yin et al.16 have shown
that training a model on the “Fog” common corruption only using the frequency, but not the spatial information is insufficient to
generalize to the same “Fog” common corruption during testing. This makes sense given that the corruption has a very specific
spatial structure that does not depend only on the frequency. In addition, as we observed in Fig. 5b and Fig. 6b, the bias towards
low frequencies can be too strong, such that the performance deteriorates. This suggests that to reduce the gap between humans
and machine learning models in out-of-distribution generalization, we must move beyond this low frequency-based preference
found in current robust machine learning models and find a better and more principled inductive bias.

One possibility to achieve this grand goal is to use ideas from neuroscience. As our and previous work has suggested,
neuroscience has provided inspiration to machine learning, but specific paradigms to directly translate biological scientific
insights and data into a performance improvement in machine learning are largely absent. The neural regularization approach is
a demonstration that this direction can help engineer more intelligent algorithms to usher the new field of NeuroAI. Furthermore,
given that current machine learning models are still not robust to adversarial attacks and common corruptions, this work is just
the start of bridging the gap between natural and artificial intelligence.

Methods

Hybrid images
We randomly select two images Ilow and Ihigh from two different categories as seed images for low-frequency and high-frequency
components respectively. The 2D Fourier transform of these two images are denoted as Ĩlow and Ĩhigh, and we define a binary
mask on frequency domain as

M( f ) =
{

1, || f || ≤ fmix
0. otherwise (1)

The Fourier transform of the hybrid image is thus the combination of Ĩlow and Ĩhigh through M, according to Ĩhybrid =
Ĩlow�M+ Ĩhigh� (1−M), where � denotes an element-wise product. The hybrid image Ihybrid is calculated from Ĩhybrid using
an inverse Fourier transform.

Blur model
We designed a blur model to explicitly implement a frequency bias. Our blur model is simply a ResNet model prepended with a
blurring layer. The blurring layer is a linear convolutional layer whose kernel weight is fixed as

w(∆x,∆y) =
1
Z

exp
(
−∆x2 +∆y2

2σ2

)
(2)

in which Z is the normalization factor. The blurring layer can pass a gradient back to the input image, so gradient-based
adversarial attacks can be performed. Clean performance of the ‘blur’ model decreases as σ increases because more information
is discarded. We choose the value of σ such that the trained model has a similar classification accuracy on CIFAR10 testing set
compared with other robust methods; σ = 1.5 pixel is selected.
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PCA model
Similar to the blurring model, the PCA model is also a ResNet model with a non-trainable preprocessing layer. Treating the
input image as a vector x whose dimension N is the number of pixels, we first performed principal component analysis (PCA)
on the training set and obtained the eigenvectors vi (1≤ i≤ N) sorted by their eigenvalues. We took the first K eigenvectors,
denoted by a K×N matrix W K , and constructed the filtering matrix

W =W K ·W K
T. (3)

The PCA preprocessing layer is a linear layer whose input and output dimensions are both N, with its weights given by the
matrix W . This layer projects the original image onto the subspace spanned by the first K eigenvectors, and effectively denoises
the image. Similarly to the blur model, the PCA model allows gradient backward passes to the input image, and can be attacked
with gradient-based adversarial attacks. The value of K is chosen so that the trained model has a similar clean performance
compared with other models, and K = 512 was selected for the CIFAR10 dataset.

Contributions
ZL, JOC, AT, XP, AP conceived the conceptualized framework. ZL and JOC trained and analyzed models. ER contributed
robust models. ZL, JOC, WB, MB contributed adversarial analyses. ZL wrote the first draft, and ZL, JOC, FA, AT, XP, AP
revised and edited. AT, XP, AP supervised the project. All authors provided comments on the final manuscript.

Acknowledgements
It is supported by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business
Center (DoI/IBC) contract number D16PC00003. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoI/IBC, or the U.S. Government. Research reported in this publication was supported
by the National Eye Institute of the National Institutes of Health under Award Numbers R01EY026927. This research was also
supported by NEI/NIH Core Grant for Vision Research (EY-002520-37).

References
1. Girshick, R. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, 1440–1448 (2015).

2. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770–778 (2016).

3. He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn. In Proceedings of the IEEE international conference on
computer vision, 2961–2969 (2017).

4. Hendrycks, D. et al. Augmix: A simple method to improve robustness and uncertainty under data shift. In International
Conference on Learning Representations (2020).

5. Szegedy, C. et al. Intriguing properties of neural networks. arXiv e-prints (2013).

6. Geirhos, R. et al. Comparing deep neural networks against humans: object recognition when the signal gets weaker. arXiv
e-prints (2017).

7. Szegedy, C. et al. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).

8. Li, Z. et al. Learning from brains how to regularize machines. In Wallach, H. et al. (eds.) Advances in Neural Information
Processing Systems 32, 9525–9535 (Curran Associates, Inc., 2019).

9. Safarani, S. et al. Towards robust vision by multi-task learning on monkey visual cortex. In Advances in Neural Information
Processing Systems 34 (Curran Associates, Inc., 2021).

10. Dapello, J. et al. Simulating a primary visual cortex at the front of cnns improves robustness to image perturbations. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F. & Lin, H. (eds.) Advances in Neural Information Processing
Systems 33, vol. 33, 13073–13087 (Curran Associates, Inc., 2020).

11. Rusak, E. et al. A simple way to make neural networks robust against diverse image corruptions. In Vedaldi, A., Bischof,
H., Brox, T. & Frahm, J.-M. (eds.) Computer Vision – ECCV 2020, 53–69 (Springer International Publishing, Cham, 2020).

12. Geirhos, R. et al. Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and
robustness. In International Conference on Learning Representations (2019).

8/14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.01.31.478509doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478509
http://creativecommons.org/licenses/by-nc-nd/4.0/


13. Madry, A., Makelov, A., Schmidt, L., Tsipras, D. & Vladu, A. Towards deep learning models resistant to adversarial
attacks. arXiv e-prints (2017).

14. Zhang, H. et al. Theoretically principled trade-off between robustness and accuracy. In International Conference on
Machine Learning, 7472–7482 (PMLR, 2019).

15. Zhang, R. Making convolutional networks shift-invariant again. In International conference on machine learning,
7324–7334 (PMLR, 2019).

16. Yin, D., Gontijo Lopes, R., Shlens, J., Cubuk, E. D. & Gilmer, J. A fourier perspective on model robustness in computer
vision. In Advances in Neural Information Processing Systems 32, vol. 32, 13276–13286 (Curran Associates, Inc., 2019).

17. Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M. & Tolias, A. S. Engineering a less artificial intelligence. Neuron 103,
967–979 (2019).

18. Federer, C., Xu, H., Fyshe, A. & Zylberberg, J. Improved object recognition using neural networks trained to mimic the
brain’s statistical properties. Neural Networks 131, 103–114 (2020).

19. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population
responses in visual cortex. Nature 571, 361–365, DOI: 10.1038/s41586-019-1346-5 (2019).

20. Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis - connecting the branches of systems
neuroscience. Front. Syst. Neurosci. 2, 4, DOI: 10.3389/neuro.06.004.2008 (2008).

21. Brendel, W., Rauber, J., Kümmerer, M., Ustyuzhaninov, I. & Bethge, M. Accurate, reliable and fast robustness evaluation.
In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems 32, 12861–12871 (Curran Associates, Inc.,
2019).

22. Le, Y. & Yang, X. Tiny imagenet visual recognition challenge. CS 231N 7, 3 (2015).

23. Hendrycks, D. & Dietterich, T. Benchmarking neural network robustness to common corruptions and perturbations. In
International Conference on Learning Representations (2019).

24. Croce, F. et al. Robustbench: a standardized adversarial robustness benchmark. arXiv e-prints (2020).

25. Bhagoji, A. N., Cullina, D., Sitawarin, C. & Mittal, P. Enhancing robustness of machine learning systems via data
transformations. In 2018 52nd Annual Conference on Information Sciences and Systems (CISS), 1–5 (IEEE, 2018).

26. Laugros, A., Caplier, A. & Ospici, M. Are adversarial robustness and common perturbation robustness independant
attributes? In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 0–0 (2019).

27. Zhang, R. Making convolutional networks shift-invariant again. In International conference on machine learning,
7324–7334 (PMLR, 2019).

28. Vasconcelos, C., Larochelle, H., Dumoulin, V., Roux, N. L. & Goroshin, R. An effective anti-aliasing approach for residual
networks. arXiv e-prints (2020).

29. Rebuffi, S.-A. et al. Fixing Data Augmentation to Improve Adversarial Robustness. arXiv e-prints arXiv:2103.01946
(2021).

30. Gowal, S., Qin, C., Uesato, J., Mann, T. & Kohli, P. Uncovering the Limits of Adversarial Training against Norm-Bounded
Adversarial Examples. arXiv e-prints (2020).

31. Wu, D., Xia, S.-t. & Wang, Y. Adversarial Weight Perturbation Helps Robust Generalization. arXiv e-prints
arXiv:2004.05884 (2020).

32. Zhang, J. et al. Geometry-aware Instance-reweighted Adversarial Training. arXiv e-prints arXiv:2010.01736 (2020).
2010.01736.

33. Carmon, Y., Raghunathan, A., Schmidt, L., Liang, P. & Duchi, J. C. Unlabeled Data Improves Adversarial Robustness.
arXiv e-prints (2019).

34. Sehwag, V., Wang, S., Mittal, P. & Jana, S. HYDRA: Pruning Adversarially Robust Neural Networks. arXiv e-prints
(2020).

35. Cui, J., Liu, S., Wang, L. & Jia, J. Learnable Boundary Guided Adversarial Training. arXiv e-prints (2020).

36. Kireev, K., Andriushchenko, M. & Flammarion, N. On the effectiveness of adversarial training against common corruptions.
arXiv e-prints (2021).

37. Engstrom, L., Ilyas, A., Salman, H., Santurkar, S. & Tsipras, D. Robustness (python library) (2019).

9/14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.01.31.478509doi: bioRxiv preprint 

10.1038/s41586-019-1346-5
10.3389/neuro.06.004.2008
2010.01736
https://doi.org/10.1101/2022.01.31.478509
http://creativecommons.org/licenses/by-nc-nd/4.0/


38. Hendrycks, D. et al. The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization. arXiv
e-prints (2020).

39. Lee, J. et al. Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network.
arXiv e-prints arXiv:2001.06268 (2020).

40. Sinz, F. et al. Stimulus domain transfer in recurrent models for large scale cortical population prediction on video. In
Bengio, S. et al. (eds.) Advances in Neural Information Processing Systems 31, 7199–7210 (Curran Associates, Inc., 2018).

10/14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.01.31.478509doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478509
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix
Common corruption categorization
Fourier analysis is performed for the perturbations induced by common corruptions in the CIFAR10-C dataset (at severity 5).
All 15 corruptions are divided loosely into three categories based on their dominant frequencies (Tab. 1)

category corruptions
low snow, frost, fog, brightness, contrast

medium
motion_blur, zoom_blur, defocus_blur, glass_blur,

elastic_transform, jpeg_compression, pixelate
high gaussian_noise, shot_noise, impulse_noise

Table 1. Categorization of common corruptions. 15 types of corruptions23 are divided into 3 categories based on the average
frequency estimated from the Fourier spectrum of the perturbations (Appendix Fig. 7).

Figure 7. Corruption spectrum for the CIFAR10-C dataset. Fourier power spectra are plotted for all different common
corruptions. Color maps are shared across panels.

Hybrid image experiment for monkey regularized model
Frequency bias is compared between a monkey-response-regularized VGG model and a baseline model through the experiment
using hybrid images. Though a weaker effect compared with the mouse-regularization result, we found the reversing frequency
for ‘neural’ model is smaller than that of ‘base’ model, suggesting a low frequency bias induced by neural regularization.
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Figure 8. Probing frequency sensitivity of the monkey regularized model using hybrid images. Results are presented similar
to Fig. 3.

Details of robust models
Details of models trained for CIFAR10, including one baseline model, six models trained for adversarial robustness, two models
trained for common corruption robustness and two models using preprocessing are shown in Tab. 2.
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Type Model name Architecture Test accuracy on CIFAR10
baseline Baseline24 WideResNet-28-10 94.78%

adversarial

Rebuff2129 WideResNet-70-16 92.23%
Gowal2030 WideResNet-70-16 91.10%
Wu2031 WideResNet-28-10 88.25%
Zhang2032 WideResNet-28-10 89.36%
Carmon1933 WideResNet-28-10 89.69%
Sehwag2034 WideResNet-28-10 88.98%
Cui2035 WideResNet-34-20 88.70%

corruption Hendrycks204 ResNeXt29-32x4d 95.83%
Kireev2136 PreActResNet-18 94.77%

preprocess Blur ResNet-18 90.66%
PCA ResNet-18 89.85%

Table 2. Models trained for CIFAR10. One baseline model, 7 models trained for adversarial robustness, 2 models trained for
common corruption robustness, and 2 models with simple preprocessing are compared in this study.

Details of models trained for ImageNet, including one baseline model, two models trained for adversarial robustness and
six models trained for common corruption robustness are shown in Tab. 3.

Type Model name Architecture Top1 test accuracy on ImageNet
baseline Baseline37 ResNet-50 76.13%

adversarial L∞ (ε = 4/255)37 ResNet-50 62.42%
L2 (ε = 3)37 ResNet-50 57.90%

corruption

ANT11 ResNet-50 76.07%
SIN12 ResNet-50 74.59%
AugMix4 ResNet-50 77.54%
DeepAugment38 ResNet-50 74.59%
DeepAug+AugMix38 ResNet-50 75.82%
Assemble39 Assemble-ResNet-50 80.81%

Table 3. Models trained for ImageNet. One baseline model, two models trained for adversarial robustness and six models
trained for common corruption robustness are compared.

Analysis on neural similarity matrix
Previous work8 demonstrated that models regularized with neural similarity matrix are more robust against multiple types of
pixel noise as well as adversarial attacks. To understand why this type of neural regularization works, we analyzed the neural
similarity matrix that characterizes the geometry of mouse V1 representation. We obtain neural responses of natural images
through a well trained predictive model40, and denote the population response to image i as ri. The dimension of vector ri is the
number of neurons. Neural similarity matrix Sneural is defined as the cosine similarity of mean-corrected responses r1, . . . ,rN
for N images,

Sneural
i j =

r̃i · r̃ j

‖r̃i‖‖r̃ j‖
, (4)

in which r̃i = ri− r̄ is the population response to image i subtracted by mean response.
A first thing to notice is that the neural similarity matrix is low rank. For example, the one shown in Fig. 9 is a 5000×5000

matrix from 5000 images, but a rank-204 approximation can explain more than 90% of its variance. To account for 99% of the
variance, a matrix of rank 1452 is sufficient. The result is not due to a small number of neurons. In fact, the neural response
vector ri used in this example is a union over 8 different scans, containing more than 40,000 recorded units. The low rank nature
of Sneural shows that the vision system is encoding a small number of features through a highly correlated neuron population.

The next question is, how do these neural features look? Performing eigenvalue decomposition on Sneural, we can calculate
its eigenvalues λ1,λ2, . . . ,λN (λ1 > λ2 > .. . > λN) and the corresponding eigenvectors v1,v2, . . . ,vN (‖vi‖= 1). The i-th neural
feature is defined as f i =

√
λivi. The rank-204 approximation in Fig. 9 is generated using the first 204 neural features, i.e.

Ŝ = ∑
204
i=1 f i fTi .
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similar pair

dissimilar pair

Figure 9. The neural similarity matrix and its low rank approximation. Neural responses of 5000 grayscale images are
provided by a well trained brain model40. The cosine similarities between all pairs of responses are then calculated after
subtracting the mean responses. An eigenvalue decomposition of the matrix shows that the first 204 principal components
account for more than 90% of the variance. Therefore, a low rank approximation can be constructed based on these
components.

Each neural feature f i is a vector of the same length as the number of images, and can be treated as a scalar function of
images. The first order approximation of f i is a linear model with respect to the pixel values as input. The linear weight can be
easily calculated by solving the regression problem,

wi = argmin
wi

(∥∥ f i−wT
i X

∥∥2
+α‖wi‖2

)
. (5)

Each column of X is a flattened image, and the dimension of wi vector is the number of pixels. α‖wi‖2 is a regularization term.
The first 16 linear weights wi are visualized as as spatial maps in Fig. 10.

Figure 10. Linear approximation of neural features. Neural features are the eigenvectors vi of the neural similarity matrix
properly scaled by corresponding eigenvalues λi. Each neural feature is approximated by a linear function on image pixel
values, and the linear weight wi is displayed as a spatial map.

We further analyzed two properties of the linear approximation of neural features. Treating wis as spatial maps, we can
calculate its dominant spatial frequency via Fourier analysis. The results show that the dominant Fourier component of wi
associated with strong neural features are relatively low frequency (Fig. 11). Though wi show certain spatial structure (Fig. 10),
neural features f i are nonlinear in general. We quantified the linearity of f i by how good the linear approximation is, and found
that correlation coefficient between f i and the best linear prediction is high only for the neural features with high eigenvalues
(Fig. 11).
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Figure 11. Overview of neural features. Properties of the first 204 neural features are visualized with colors indicating the
eigenvalue corresponding to each. Each neural feature is approximated by a linear model. The ordinate is the correlation
coefficient of linear approximation and the neural features on a hold-out set of images, characterizing how linear the feature is.
The abscissa is the dominant frequency of the linear weights when viewed as spatial maps (Fig. 10). The results show that
neural features, with high eigenvalues, are more linear, and contains lower spatial frequencies.
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