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 30 

Abstract 31 

 32 

Despite advances in spatial transcriptomics, the molecular profiling of dynamic 33 

behaviors of cells in their native environment remains a major challenge. We present a 34 

method, termed behavioral transcriptomics, that allows us to couple physiological 35 

behaviors of single cells in an intact tissue to deep molecular profiling of individual cells. 36 

This method enabled us to establish a novel molecular signature for a striking migratory 37 

cellular behavior following tissue injury.  38 

 39 

Introduction 40 

 41 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.31.478519doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478519
http://creativecommons.org/licenses/by/4.0/


2 

 

Cells in a living organism are dynamic entities, changing their characteristics over space 42 

and time and constantly interacting with the host and pathogens. The ability to obtain 43 

such information and link it to detailed molecular phenotypes of the cells would be 44 

highly useful for biomedical investigations but has been underappreciated. Here, we 45 

present a method that allows us to characterize complex physiologic behaviors of single 46 

cells in an intact tissue and then perform live imaging-guided sequencing of the cells. 47 

We validate this approach using a regeneration model of airway tissues and 48 

demonstrate how this method leads to new biological findings.    49 

There is pressing need for a comprehensive understanding of cellular behaviors in the 50 

lung, the site where aberrant cellular behavior has been linked to asthma (Kim et al., 51 

2020; Park et al., 2015) pulmonary fibrosis (Fukumoto et al., 2016), and viral infections 52 

including influenza and coronaviruses (Kumar et al., 2011). Single-cell RNA-sequencing 53 

(scRNA-seq) has emerged as a precise way to define cell type and cell state, and new 54 

techniques are being developed to determine the spatial distribution of sequenced cells 55 

in tissues (Marx, 2021). However, the molecular pathways that drive the cellular 56 

behavior in situ continue to be inferred from time-lapse tissue sampling or transcriptional 57 

kinetics (La Manno et al., 2018). Moving beyond inference requires coupling visualized 58 

in situ cell behavior with deep molecular profiling of visualized cells. 59 

Live cell imaging is an established technique for capturing morphology and cellular 60 

dynamics such as cellular migration during skin regeneration (Park et al., 2019, 2017), 61 

but imaging in the lung remains challenging due to difficult access and the constant 62 

motion of the respiratory system. Additionally, molecular information that accompanies 63 

live imaging is largely limited to a few fluorescent reporters. Prior attempts to link deep 64 

molecular profiling with live imaging have relied on imaging dissociated cells (Lane et 65 

al., 2017; Yuan et al., 2018), cell monolayers (Hu et al., 2020) or organoids (Konen et 66 

al., 2017) rather than cell behaviors in their native tissue environment. 67 

 68 

Results  69 

 70 

We describe a novel approach to linking live tissue imaging with single cell profiling 71 

(Figure 1a). In order to visualize the airway epithelium at high resolution over days, we 72 

explant a mouse trachea and secure it in a custom imaging platform, which minimizes 73 

sample movement during imaging and maintains a constant supply of nutrients from 74 

below the explant without disrupting the air-liquid interface (Figure 1a and Figure 1 – 75 

supplement figure 1a). This platform allows us to image common and rare cell types in 76 

the airway epithelium at high resolution in their native environment (Figure 1 – 77 

supplement figure 1b). The explant culture also allows an uninjured tracheal epithelium 78 

to survive with its native cellular anatomy for weeks with daily high-resolution imaging 79 

(Figure 1 – supplement figure 1c). 80 

Discernable cell behaviors have a broad time scale, ranging from milliseconds to days. 81 

Thus, we imaged a wide range of cellular behaviors from rapid fluctuations of ciliary 82 

beating and directional mucociliary transport over milliseconds to wholescale 83 

regeneration of the airway epithelium, which occurs over days after the injury (Figure 1, 84 

c to f). Furthermore, this method allows single-cell level registration within tissues that 85 

are live-imaged and subsequently fixed and stained, which enables a unique 86 
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comparison between live fluorescence cellular patterns and immunostains that describe 87 

cell identity and function (Figure 1 – supplement figure 1d). 88 

Remarkably, this airway imaging platform faithfully recapitulates and captures cellular 89 

dynamics of epithelial regeneration from native basal stem cells after an extensive 90 

epithelial injury (Figure 1f and Figure 2 – supplement figure 1) induced by sulfur dioxide 91 

(SO2). In the first 5 days, the basal cells divide, increasing cellular density and reforming 92 

the pseudostratified epithelium. In the next 5-10 days, the epithelium differentiates, 93 

leading to restoration of the full epithelium, including the regeneration of ciliated cells. 94 

Complete regeneration requires an air-liquid interface (Figure 1f). Overall, this murine 95 

trachea explant ALI culture retains the nearly complete 3D organization and 96 

microenvironment of the basal progenitor cells and, therefore, offers a unique model to 97 

study organ physiology and regeneration outside of the body. 98 

Continuous time-lapse imaging of the airway epithelium for up to 80 hours after injury 99 

(Figure 2a and Figure 2 – supplement figure 2a and Movie 1) demonstrated changes in 100 

cellular architecture over time, including an increase in the average cellular density and 101 

epithelial thickness, without apparent phototoxicity (Figure 2 – supplement figure 2a). 102 

We examined cell movement using single-cell tracking following segmentation of cell 103 

nuclei and particle image velocimetry (PIV) of non-segmented images (Figure 2 – 104 

supplement figure 2b and c). These analyses revealed a variety of regeneration cellular 105 

dynamics inaccessible without live imaging. For example, Hertwig’s Rule predicts that a 106 

cell division plane is perpendicular to the long axis of the cell during the preceding 107 

interphase (Minc and Piel, 2012). This was established in plants (Besson and Dumais, 108 

2011) and developing simple model organisms (Aigouy et al., 2010; Concha and 109 

Adams, 1998; Tsou et al., 2003) but has never been probed in an adult regenerating 110 

tissue. We found that the long axis in most cells predicts the cell division axis, while the 111 

axis of cellular movement prior to cell division does not (Figure 1e and Figure 2 – 112 

supplement figure 3a and b). 113 

We also found a surprising degree of heterogeneity of collective cellular migration 114 

during regeneration throughout the injured airways. In regions that demonstrated rapid 115 

cellular movement after injury, the movement peaked at 26-38 hours after SO2 injury 116 

and the speed declined significantly in most regions by 50 hours after injury (Figure 2c). 117 

There was a significant interaction between time and the mean speed, but no significant 118 

difference between mouse and mean speed (Figure 2c). Variable migratory behavior of 119 

airway epithelial cells has been observed in cell culture models (Kim et al., 2020; Park 120 

et al., 2015) but not previously in an intact regenerating airway tissue. We found that the 121 

frequency distribution of cellular speed in different regions at 26-38 hours demonstrated 122 

large variability ranging from “non-mover” regions (< 1.5 μm/hr) to “mover” regions (> 4 123 

μm/hr) (Figure 2d). Furthermore, videos with higher temporal resolution revealed that 124 

the cells with slower movements in the “non-mover” regions had no directional 125 

preference, whereas the “mover” regions with faster cellular movements were more uni-126 

directional (Figure 2 – supplement figure 3c and d and Movie 2). 127 

Distinct subsets of cells have been theorized to contribute to the regeneration process 128 

(Pardo-Saganta et al., 2015a; Tadokoro et al., 2014), but it is unclear whether these 129 

heterogeneous transcriptional cell states reflect gene expression stochasticity or 130 

correlate with unique cell behaviors. To determine the molecular signatures of cells with 131 
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directional movement compared to regenerating non-moving cells, we marked epithelial 132 

regions by photoconversion at 24 hours after injury, imaged every 6 hours, screened for 133 

“movers” with >50 μm displacement (>3 μm/hr) at 18 hours after photoconversion, and 134 

then isolated photoconverted epithelial cells by FACS for plate-based scRNA-seq 135 

(Figure 3a and Materials and Methods). Dimensionality reduction revealed that cells 136 

from “moving” region (M) and a “non-moving” (NM) region cluster separately (Figure 137 

3b). Using unsupervised clustering and cell identity signatures (Methods), we found that 138 

nearly all the cells in the M region are basal cells, whereas the NM region contains 139 

basal and club cells (Figure 3c). We defined the differences in gene expression 140 

between the M basal cells and NM basal cells and identified gene signatures that are 141 

enriched (FDR < 0.05, likelihood-ratio test) either in the M or the NM basal cells (Figure 142 

3c). 143 

We wondered whether the identified phenotypes may be a common feature of injury-144 

induced epithelial regeneration. We examined published data of an independent injury 145 

model (Borthwick et al., 2001) and analyzed the prevalence of these signatures during 146 

repair after polidocanol injury. As predicted, the M basal cell signature is strongly 147 

enriched 24 hours post injury (hpi), declines at 48 hpi and 72 hpi, and returns to 148 

baseline at 1 week after injury (all p < 10-16, Mann-Whitney U test, Figure 4a). Similarly, 149 

the NM signature is decreased at 24 hpi when cell migration is presumed to be active, 150 

increases at 48 hpi and 72 hpi when cell migration is presumed to be diminished, and 151 

returns to baseline at 1-week post-injury when regeneration is complete (Figure 4a). 152 

Furthermore, at 24 hpi we found that scoring basal cells using M and NM signatures 153 

segregated basal cells into two statistically distinct cell populations (Figure 4b), 154 

indicating that polidocanol regeneration is likely also characterized by these cell 155 

phenotypes. To test this possibility, we used unsupervised clustering (Methods) to 156 

define two groups of basal cells at 24 hpi and found that these two populations were 157 

indeed separately enriched for the M and NM basal cell signatures (Figure 4c), 158 

confirming the presence of distinct M and NM basal cells during polidocanol 159 

regeneration. Taken together, these findings suggest that distinct M and NM cell 160 

behaviors are conserved features of early epithelial regeneration and demonstrate that 161 

our live imaging-guided single-cell profiling approach can discover generalizable 162 

principles of tissue biology. 163 

 164 

 165 

 166 

Discussion  167 

 168 

The rapid progress in spatially resolved transcriptomics is enabling the discovery and 169 

characterization of transcriptionally heterogenous cells in diverse tissue contexts (Lee et 170 

al., 2021; Ståhl et al., 2016). However, these methods do not capture the dynamics of 171 

cell behaviors that often define the unique biological processes that occur in the tissues. 172 

To address this gap, we developed an approach to examine the association of 173 

molecular and behavioral phenotypes of single cells in their native tissues. We first 174 

established a respiratory organ explant culture that maintains tissue dynamics for an 175 

extended length of time, and subsequently combined this platform with live imaging in 176 
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order to observe distinct lung cellular behaviors at a broad time scale, spanning cell 177 

migration, cell division, and ciliary beating. 178 

To link cell behavior to molecular analysis, we used photoconversion to mark cells that 179 

display distinct cell behaviors for subsequent single-cell genomics analysis. We found 180 

that a subpopulation of basal stem cells migrates within the lung during early 181 

regeneration. We used recently developed single-cell RNA-sequence approaches to 182 

establish molecular signatures for moving and nonmoving basal cells. Furthermore, we 183 

found these distinct cell signatures across independent lung regeneration models, 184 

suggesting that M and NM cell behaviors are likely not only conserved cellular features 185 

of early epithelial regeneration, and but also that live imaging-guided single-cell profiling 186 

approach can discover general principles of tissue biology.  187 

 188 

 189 

Materials and Methods 190 

 191 

Mice 192 

 193 

mT-mG (stock no. 007676), nT-nG (stock no. 023035), CAGs-LSL-rtTA3 (stock no. 194 

029617), and Col1a1-tetO-H2B-mCherry (stock no. 014602), CD11cCre (stock no. 195 

007567), and Ascl1nGFP (stock no 012881) mice were purchased from the Jackson 196 

Laboratory. Foxj1Cre (Zhang et al., 2007), KRT5rtTA(Diamond et al., 2000), B1EGFP 197 

(Miller et al., 2005), Foxj1CreER (Rawlins and Hogan, 2008), CC10CreER (Rawlins et 198 

al., 2009), and Kaede (Tomura et al., 2008) lines were previously described. A line of 199 

Membrane-GFP (mG) mice was generated by selecting GFP-positive pups of a 200 

Foxj1Cre-mTmG male parent (with mT to mG recombination in the sperm) and 201 

backcrossing to WT background to eliminate the Cre allele. The mG line without Cre 202 

was crossed to nT-nG to generate the “nT-mG” strain. Mice were maintained in an 203 

Association for Assessment and Accreditation of Laboratory Animal Care-accredited 204 

animal facility at the Massachusetts General Hospital, and procedures were performed 205 

with Institutional Animal Care and Use Committee (IACUC)-approved protocols. Mice of 206 

all strains were housed in an environment with controlled temperature and humidity, on 207 

12-hour light-dark cycles, and fed with regular rodent’s chow. 208 

 209 

Sulfur Dioxide Injury 210 

 211 

Sulfur dioxide (SO2) injury model was performed as previously described (Kim et al., 212 

2012; Pardo-Saganta et al., 2015b). In brief, mice were exposed to 500 p.p.m. of SO2 213 

for 3 h 40 min and the trachea was collected 16-24 hours after injury for imaging and 214 

explant culture. 215 

 216 

Tracheal Explant 217 

 218 

Tracheas were dissected, cleared of connective tissue and adjacent organs, and 219 

opened longitudinally along the anterior tracheal wall. The tracheas were placed on ice 220 

in DMEM/F-12 Media with Primocin (InVivoGen) and 15 mM HEPES until culture. 221 

Trachea explants were then sutured onto a silicone o-ring and placed in a custom-made 222 
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tissue culture dish over an inverted air-liquid interface (ALI) insert secured in a 60 mm 223 

tissue culture dish by PDMS. This approach ensured stability during high resolution 224 

imaging. The media contacted the explant from below through the ALI membrane. The 225 

dish was placed in a physiological live imaging chamber (CO2 and temperature-226 

controlled, TokaiHit) on the stage of the 2-photon microscope. 227 

 228 

Physiological 2-Photon Imaging 229 

 230 

Trachea explant imaging was performed on an Olympus FVMPE-RS multiphoton laser 231 

scanning microscope equipped with a MaiTai HPDS-O IR pulsed laser (900 nm for GFP 232 

and SHG) and INSIGHT X3-OL IR pulsed laser (1100 nm for tdTomato), using a 25X 233 

water immersion lens (NA 1.05). Explants were imaged at time points as indicated in the 234 

Figures. For orthogonal view reconstruction, we scanned the trachea with 0.75 µm Z 235 

steps. To reimage the same trachea at high resolution at different time points, 236 

landmarks such as cartilage rings and vascularity patterns were used as fiducial marks. 237 

These fiducial marks were also used for 2D and 3D registration of different time points. 238 

 239 

Image Analysis  240 

 241 

4D images (x,y,z,t) were imported into MATLAB and/or ImageJ for image processing 242 

and analysis. Because the curvature of the tissue changes over time, we first 243 

normalized each 3D image to generate a flat basement membrane. As the SHG signal 244 

is maximal at the basement membrane, we computed the z height of the basement 245 

membrane across the image after applying a Gaussian blur (typical σ values: 10-25 μm 246 

in xy, 1-4 μm in z). This height was subtracted from the original 3D data to level the 247 

basement membrane. MATLAB code for flattening the 3D images is available upon 248 

request. Other image processing steps including brightness and contrast adjustments, 249 

background subtraction, photobleaching correction, pseudocoloring, 3D time-lapse 250 

registration, and stitching were performed using built-in functions in ImageJ. 251 

 252 

Cilia beating was recorded by acquiring time-lapse two-photon images of the epithelial 253 

surface at 150 Hz over 200 frames using a resonant galvanometer scanner. To estimate 254 

the cilia beat frequency (CBF), we estimated the power spectral density of the 255 

fluorescence intensity fluctuations across the image using Welch’s method in MATLAB. 256 

The peak fluctuation frequency was computed for each pixel across the image 257 

corresponding to bright cilia. Mucociliary transport was measured by applying 1 μm 258 

fluorescent spherical beads to the epithelial surface and recording their displacement 259 

over time after equilibration. 260 

 261 

To track individual cells over time-lapse imaging, images were imported into ilastik for 262 

segmentation and cell tracking (Berg et al., 2019). Briefly, pixels corresponding to nuclei 263 

were first classified using manual training and machine learning. Next, individual cells 264 

were similarly identified through manual training and machine learning algorithms to 265 

classify objects. Finally, classified cells were tracked over time using a conservation 266 

tracking algorithm. Segmented and tracked cells were then imported into MATLAB for 267 

quantitative analysis, including computation of individual cell speeds over time. 268 
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 269 

For automated estimation of cell speed from time-lapse imaging, we performed 270 

automated particle imaging velocimetry (PIV). Image sequences were imported into 271 

MATLAB and analyzed using the PIVlab plugin (Thielicke and Stamhuis, 2014). A direct 272 

Fourier transform correlation with multiple passes of sizes consisting of 24 μm, 16 μm 273 

and 10 μm was used. This generated displacement vectors arranged in a grid with 10 274 

μm spacing for each sequential pair of images. The average cell speed for each time-275 

point was estimated by computing the average absolute displacement estimated by PIV 276 

in each (10 x 10) μm2 region divided by the time between images. To quantify the 277 

directionality of cell movement, we computed the circular variance of the displacement 278 

vectors generated by PIV analysis. 279 

 280 

Kaede Photoconversion 281 

 282 

Trachea from Kaede mice were explanted 20 hours after SO2 inhalation injury, sutured 283 

onto a silicone O-ring, and secured on an inverted ALI insert in media on ice, and 284 

placed on the imaging platform of a FV3000 Olympus Laser Scanning confocal 285 

microscope. Selected regions were outlined and photoconverted using the 405 nm laser 286 

for 2 minutes, while both disappearance of KaedeGreen and appearance of KaedeRed 287 

were simultaneously visualized using the 488 nm and the 561 nm lasers, respectively. 288 

 289 

To identify regions of movement and no movement, we explanted Kaede (Tomura et al., 290 

2008) mouse tracheas 20 hours after SO2 injury, photoconverted distinct regions with a 291 

specific shape, and proceeded with timelapse live imaging, screening for regions with 292 

significant shape displacement over time (from epithelial movement) (Figure 3a). After 293 

defining whether a region moved or remained non-moving, we excised a trachea 294 

fragment, dissociated the fragment into single cells, and used flow activated cell sorting 295 

(FACS) to isolate photoconverted (KaedeRed) epithelial cells. We then proceeded to 296 

single-cell RNA sequencing of cells isolated from moving and non-moving regions. 297 

  298 

Cell Dissociation and FACS 299 

 300 

Airway epithelial cells were dissociated using papain solution. Tracheal fragments with 301 

photoconverted regions were trimmed and incubated in papain dissociation solution and 302 

incubated at 37 °C for 2 hours. After incubation, dissociated tissues were passed 303 

through a cell strainer and centrifuged and pelleted at 500g for 5 min. Cell pellets were 304 

dispersed and incubated with Ovo-mucoid protease inhibitor (Worthington Biochemical, 305 

cat. no. LK003182) to inactivate residual papain activity by incubating on a rocker at 306 

4 °C for 20 min. Cells were then pelleted and stained with EpCAM–BV421 (1:50; BD 307 

Bioscience, #563214) for 30 min in 2.5% FBS in PBS on ice. After washing, cells were 308 

sorted by fluorescence (antibody staining, Kaede-Green and Kaede-Red) on a BD 309 

FACS Aria (BD Biosciences) using FACS Diva software and analysis was performed 310 

using FlowJo (version 10) software. 311 

 312 

Single cells were sorted into each well of a 96-well PCR plate containing 5 µl buffer. 313 

After sorting, the plate was sealed with a Microseal F, centrifuged at 800g for 1 min and 314 
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immediately frozen on dry ice. Plates were stored at −80 °C and submitted to a core 315 

facility for cDNA library generation, amplification, and sequencing. 316 

 317 

Single Cell Sequencing and Sequence Analysis  318 

 319 

cDNA was generated from single cells in the 96-well plate using the SmartSeq v4 kits 320 

(Takara Bio) using 1/4th volume reactions dispensed using a Mantis dispenser 321 

(Formulatrix). Samples were amplified using 18 cycles of PCR. Resulting cDNA was 322 

then made into Illumina-compatible libraries using the Nextera XT kit (Illumina Inc). 323 

Libraries were sequenced on a NextSeq using a Mid Output 150 cycle kit (Illumina Inc.) 324 

using 75bp paired end reads. 325 

 326 

Pre-processing of plate-based scRNA-seq data 327 

 328 

BCL files were converted to merged, de-multiplexed FASTQ files using the Illumina 329 

Bcl2Fastq software package v.2.17.1.14. Paired-end reads were mapped to the UCSC 330 

mm10 mouse transcriptome using Bowtie (Langmead et al., 2009) with parameters ‘-q–331 

phred33-quals -n 1 -e 99999999 -l 25 -I 1 -X 2000 -a -m 15 -S -p 6’, which allows 332 

alignment of sequences with one mismatch. Expression levels of genes were quantified 333 

as transcript-per-million (TPM) values by RSEM (Li and Dewey, 2011) v.1.2.3 in paired-334 

end mode. For each cell, we determined the number of genes for which at least one 335 

read was mapped, and then excluded all cells with fewer than 1,000 or more than 336 

10,000 detected genes, or less than 25% of reads mapping to the transcriptome. 337 

 338 

To identify variable genes a logistic regression was fit to the cellular detection fraction, 339 

using the total number of transcripts per cell as a predictor. Outliers from this curve are 340 

genes that are expressed in a lower fraction of cells than would be expected given the 341 

total number of transcripts mapping to that gene, that is, cell-type or state-specific 342 

genes. We used a threshold of deviance <−0.15, producing a set of 1910 variable 343 

genes.  344 

 345 

Dimensionality reduction by PCA and t-SNE  346 

 347 

We restricted the expression matrix to the subsets of variable genes and high-quality 348 

cells noted above, and values were log2-transformed, and then centered and scaled 349 

before input to PCA, which was implemented using the R function ‘prcomp’ from the 350 

‘stats’ package. After PCA, significant principal components were identified by 351 

inspection of the scree plot.  Only scores from the first 20 PCs were used as the input to 352 

further analysis. 353 

 354 

For visualization purposes only (and not for clustering), dimensionality was further 355 

reduced using the Barnes–Hut approximate version of t-SNE (Van Der Maaten, 2014; 356 

van der Maaten, 2008) (Figure 3b). This was implemented using the ‘Rtsne’ function 357 

from the ‘Rtsne’ R package.  358 

 359 
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To identify cell types within the data, unsupervised hierarchical clustering was used 360 

using the ‘Ward.D2’ metric in the ‘hclust’ R package. Pearson’s correlation was used as 361 

a distance metric. This produced 3 clusters, 2 were clearly identifiable as Basal and 362 

Club cells, based on disjoint expression of known markers Krt5 and Scgb1a1, 363 

respectively, while the third was distinguished by much lower technical quality (an 364 

average of 2373 genes detected per cell compared to 5193 for the Basal and 5480 for 365 

the club clusters respectively, p=0.0004, Mann-Whitney U-test). These low-quality cells 366 

were not used for DE testing. 367 

 368 

To identify the signature of moving vs non-moving basal cells (Figure 3c) we ran 369 

differential expression tests between cells in the Basal cluster between the two 370 

conditions (moving and non-moving), and selected genes that were differentially 371 

expressed (FDR<0.05). Differential expression tests were carried using a two part 372 

‘hurdle’ model to control for both technical quality and mouse-to-mouse variation. This 373 

was implemented using the R package MAST (Finak et al., 2015), and P values for 374 

differential expression were computed using the likelihood-ratio test. Multiple hypothesis 375 

testing correction was performed by controlling the false discovery rate using the R 376 

function ‘p.adjust’.  377 

 378 

Re-analysis of polidocanol injury dataset 379 

 380 

Previously published single-cell RNA sequencing data from mouse trachea injured 381 

using polidocanol(Plasschaert et al., 2018) was downloaded from the NCBI GEO 382 

(GSE102580). All available unique molecular identifier (UMI) counts tables from mice at 383 

24, 48, 72 and 168 hours after injury along with uninjured controls were downloaded. 384 

Cell-types were determined using the authors provided annotations. To determine the 385 

expression of migration-associated genes in the injury response, we scored the Basal 386 

cells for the set of genes (Figure 3c) both significantly up- (‘mover’) and down-regulated 387 

(‘non-mover’) (Figure 3d). Scoring cells was computed as described previously(Montoro 388 

et al., 2018). To obtain a score for a specific set of n genes in a given cell, a 389 

‘background’ gene set was defined to control for differences in sequencing coverage 390 

and library complexity. The background gene set was selected for similarity to the 391 

genes of interest in terms of expression level. Specifically, the 10n nearest neighbors in 392 

the 2D space defined by mean expression and detection frequency across all cells were 393 

selected. The signature score for that cell was then defined as the mean expression of 394 

the n signature genes in that cell, minus the mean expression of the 10n background 395 

genes in that cell. 396 

 397 

Unsupervised cluster analysis of polidocanol-injured basal cells 24 hours after injury 398 

was computed using default settings in Seurat. Briefly, variable genes were selected 399 

using the method ‘vst’, and then PCA was computed using only these genes. Shared-400 

nearest neighbor (SNN)-based clustering was implemented using the ‘FindClusters’ 401 

function (resolution parameter = 0.25) using the first 25 principal components as input, 402 

resulting in two clusters (Figure 3e). 403 

 404 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.31.478519doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478519
http://creativecommons.org/licenses/by/4.0/


10 

 

Statistical Analysis 405 

 406 

Data was compared among groups using the Student’s t-test (unpaired, two-tailed) 407 

unless otherwise specified in the Figure legends. Analysis was performed with 408 

Graphpad Prism software (version 9.1.0). 409 

 410 
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Figure 1. Platform for live imaging of airway tissue. (A) Behavioral transcriptomics workflow,  
starting with imaging, followed by image analysis to characterize cellular behavior over different  
time frames, leading to single cell applications. (B) Airway tissue (trachea) is explanted from a  
mouse and affixed to a custom platform for long-term air-liquid-interface (ALI) culture and  
imaging. The platform enables both time-lapse microscopy and downstream single-cell  
applications. (C) Imaging and image analysis of ciliary beating and mucociliary transport 1 μm  
spherical beads. (D) Intraepithelial dendritic cells (CD11cCre-MTMG) grow and retract dendrites  
in real time; scale bar = 5 μm (E) Selected snapshots of cell division during regeneration post  
SO2 injury. Epithelial cell divides along its long axis during regeneration (Hertwig’s rule); scale  
bar = 5 μm. (F) Long-term ALI culture enables imaging of tissue regeneration post SO2 injury  
over > 12 days. ALI culture enables regeneration of entire epithelial thickness; scale bar = 20  
μm. Green = membrane-GFP; red = nuclear-tdTomato.  
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Figure 1 – figure supplement 1. Platform for live imaging of airway tissue. (A) Detailed 1 
schematic of ALI platform for airway tissue imaging. The platform enables imaging of multiple 2 
tissue explants at a time in a controlled environment maintaining ALI, temperature, humidity, 3 
and CO2 content. (B) Representative images of airway epithelial cells using different transgenic 4 
mouse models including fluorescent reporters for ciliated, club, basal, neuroendocrine, ionocyte, 5 
and dendritic cells. Green = cell type-specific GFP reporter; magenta = membrane-tdTomato. 6 
Scale bar = 10 μm. (C) Representative two-photon images of the same airway tissue explanted 7 
from a membrane-GFP/H2B-mCherry transgenic mouse at day 1 and day 14 in ALI culture. 8 
Scale bar = 10 μm. (D) Registration of live imaging with post-fixation-staining imaging using in 9 
silico tissue flattening followed by non-rigid 3D registration. Ciliated cells identified by live 10 
imaging were found to have low CCSP expression, while cells with high CCSP expression 11 
tended to have no cilia. 12 
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Figure 2. Live imaging enables observation of movement of regenerating airway 
epithelial cells. (A) Experimental design: tracheas are explanted 24 hours post SO2 injury for 
continuous time-lapse imaging. (B) Two-photon imaging of trachea epithelium from membrane-
GFP, KRT5-H2B-mCherry transgenic mouse. Top image is a stitch of three areas. Bottom 
image shows displacement vectors over 10 minutes computed using particle imaging 
velocimetry (PIV). Scale bar = 50 μm. (C) Computed speed of epithelial cells measured at 
different time points post SO2 injury in 22 independent regions from a total of 5 mice at 4 
different time points (mouse origin is color-coded). A two-way ANOVA was run to examine the 
effect of time post SO2 injury and different mice on the mean speed determined by PIV. There 
were 22 ROIs analyzed from 5 mice over 4 time-points. There was a significant interaction 
between time and the mean speed, F(2.219,42.91)=16.12, p <0.0001, but no significant 
difference between mouse and mean speed, F(4,17)=2.193, p=0.113. A Tukey post-hoc test 
revealed significant pairwise differences between 26 and 50 hr, 26 and 62 hr, 38 and 50 hr, as 
well as 38 and 62 hr. ** p<0.01. (D) Frequency distribution of injury-induced cell movements 
measured at 26- and 38-hours after injury identifies “mover” and “non-mover” regions. 
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Figure 2 – figure supplement 1. Epithelial regeneration after sulfur dioxide injury ex vivo. 1 
(A) Quantification of cell density measured post SO2 injury using membrane-GFP/nuclear-2 
tdTomato mice. Scale bar = 20 μm. n=5, error bars indicate the standard deviation. (B) Long - 3 
term imaging of tissue regeneration post SO2 injury in a submerged culture condition. (C) 4 
Comparison of tissue regeneration between ALI and submerged culture. Compared to 5 
submerged culture, ALI culture enables regeneration of the full epithelial thickness. Green = 6 
membrane-GFP; red = nuclear tdTomato. Error bars indicate the 95% confidence intervals. **** 7 
p< 0.0001. 8 
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Figure 2 – figure supplement 2. Live imaging enables quantitative analysis of epithelial 1 
cell movement over time. (A) Quantification of key parameters quantified by time-lapse 2 
imaging of the regenerating epithelium, including speed, epithelial thickness, and cell density. 3 
(B) Nuclear segmentation of epithelial cells from KRT5rtTA-H2BmCherry transgenic mouse. (C) 4 
Speed of moving cells from time-lapse microscopy computed by particle-imaging-velocimetry 5 
(PIV) and single-cell tracking of segmented nuclei. There is no significant difference in the 6 
computed speed using different methods. 7 
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Figure 2 – figure supplement 3. Live imaging with high temporal resolution.  1 
(A) Quantification of cell division behaviors during regeneration. The axis of cell division was 2 
found to have minimal correlation (r=0.11) with local movement, (B) but a moderate correlation 3 
with the long axis of the cell (r=0.50). (C) Representative movement vectors computed from PIV 4 
analysis for a rapid “mover” and a slow “non-mover” region. (D) Cell movement vectors 5 
computed from PIV analysis were fit to a von Mises distribution to compute the circular variance. 6 
Fast moving cells had a low circular variance (directional), while slow moving cells had a high 7 
circular variance (no directional preference). **** p<0.0001. 8 
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Figure 3. Transcriptionally distinct moving (M) and non-moving (NM) cells coordinate early airway 
epithelial regeneration across multiple injury types. (a) Experimental design: tracheas are explanted 
24 hours post SO2 injury (24 hpi) for continuous time-lapse two-photon imaging. Distinct cellular 
phenotypes are observed and labeled by photo-conversion for subsequent isolation and transcriptional 
analysis by full-length single-cell RNA-sequencing. Scale bar = 100 μm (b) Unsupervised clustering of 
regenerating cells partitions mover and non-mover cell phenotypes. (c) Heatmap of transcriptional 
signatures of mover and non-mover cells.  
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Figure 4. Transcriptionally distinct moving (M) and non-moving (NM) cells coordinate 1 
early airway epithelial regeneration across multiple injury types. (A) Mover and non-mover 2 
transcriptional signatures are also enriched in early airway epithelial regeneration 24hours post-3 
injury of an independent murine airway injury induced by polidocanol administration. (B) Scoring 4 
for mover and non-mover transcriptional signatures in 24hpi regenerating cells following 5 
polidocanol treatment partitions cells into two populations. (C) Unsupervised clustering of 24 hpi 6 
regenerating cells yields two cell populations enriched in the expression of mover (cluster 0) or 7 
non-mover (cluster 1) signatures. P values from Mann-Whitney U test. 8 
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