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ABSTRACT 13 

Background. Long-read shotgun metagenomic sequencing is gaining in popularity and offers 14 

many advantages over short-read sequencing. The higher information content in long reads is 15 

useful for a variety of metagenomics analyses, including taxonomic classification and profiling. 16 

The development of long-read specific tools for taxonomic classification is accelerating, yet 17 

there is a lack of information regarding their relative performance. Here, we perform a critical 18 

benchmarking study using 11 methods, including five methods designed specifically for long 19 

reads. We applied these tools to several mock community datasets generated using Pacific 20 

Biosciences (PacBio) HiFi or Oxford Nanopore Technology (ONT) sequencing, and evaluated 21 

their performance based on read utilization, detection metrics, and relative abundance estimates.  22 

 23 

Results. Our results show that long-read classifiers generally performed best. Several short-read 24 

classification and profiling methods produced many false positives (particularly at lower 25 

abundances), required heavy filtering to achieve acceptable precision (at the cost of reduced 26 

recall), and produced inaccurate abundance estimates. By contrast, two long-read methods 27 

(BugSeq, MEGAN-LR & DIAMOND) and one generalized method (sourmash) displayed high 28 

precision and recall without any filtering required. Furthermore, in the PacBio HiFi datasets 29 

these methods detected all species down to the 0.1% abundance level with high precision. Some 30 

long-read methods, such as MetaMaps and MMseqs2, required moderate filtering to reduce false 31 

positives to resemble the precision and recall of the top-performing methods. We found read 32 

quality affected performance for methods relying on protein prediction or exact k-mer matching, 33 

and these methods performed better with PacBio HiFi datasets. We also found that long-read 34 

datasets with a large proportion of shorter reads (<2kb length) resulted in lower precision and 35 
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worse abundance estimates, relative to length-filtered datasets. Finally, for classification 36 

methods, we found that the long-read datasets produced significantly better results than short-37 

read datasets, demonstrating clear advantages for long-read metagenomic sequencing.  38 

 39 

Conclusions. Our critical assessment of available methods provides best-practice 40 

recommendations for current research using long reads and establishes a baseline for future 41 

benchmarking studies. 42 

 43 

Keywords. metagenomics, taxonomic classifier, taxonomic profiler, long reads, PacBio, 44 

Nanopore, mock community, benchmarking, sourmash 45 

 46 

 47 

INTRODUCTION 48 

The identification of microbial species in environmental communities is an essential task in 49 

microbiology. Shotgun metagenomic sequencing (or metagenomics) can provide relatively 50 

unbiased sampling of the species in such communities, which can include bacteria, archaea, 51 

viruses, and eukaryotes. Whereas selective amplification (e.g., 16S, ITS) targets specific gene 52 

regions, the goal of metagenomics is to sequence complete genomic DNA for all species in a 53 

sample. Consequently, the set of tools used to predict the identities and relative abundances of 54 

microbial species differs greatly between these approaches. In particular, the difficulty of 55 

performing this task for complex shotgun sequencing data has led to the development of many 56 

taxonomic profiling methods, particularly for second-generation/short-read technologies 57 

(reviewed in [1]). The rapid expansion of short-read taxonomic classification and profiling tools 58 
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led to recognition of the importance of methods comparisons, benchmarking, and standardized 59 

test datasets [1-10]. These benchmarking studies have been critical for understanding the relative 60 

performance of taxonomic profiling methods for different use-cases, which can vary greatly 61 

among microbiologists.  62 

 Though much of metagenomics has focused on short-read sequencing, there is rising 63 

awareness of the new opportunities offered by third-generation sequencing technologies which 64 

produce longer sequencing reads. Whereas short reads typically contain a single gene fragment, 65 

long reads often span multiple genes and intergenic regions which can be used for alignment 66 

algorithms and sequence matching. Among the most popular long-read sequencing platforms are 67 

those produced by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). 68 

While long reads have historically been accompanied by higher error rates, continual 69 

improvements in library preparation, sequencing chemistries and post-processing have 70 

dramatically reduced the error rates associated with longer reads. For example, the most recent 71 

combination of ONT “Q20” chemistry and the Bonito basecaller (v0.3.5+) is reported to produce 72 

modal read accuracies of 99% (~Q20), and the development of PacBio HiFi sequencing allows 73 

for highly accurate consensus reads (>Q20, median Q30) that are 10–20 kb in length [11]. As a 74 

result of these improvements, both PacBio HiFi and ONT long reads offer new potential for 75 

metagenomic analyses, including metagenome assembly, functional annotation, and taxonomic 76 

profiling.  77 

Until recently, few studies have evaluated the performance of taxonomic classification 78 

and profiling methods for long reads, in part because few tailored methods were available. 79 

However, the rate of development for long-read taxonomic classification methods appears to be 80 

increasing. For example, MetaMaps [12] and MEGAN-LR [13] were among the first long-read 81 
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methods, and they became available over the course of several years. By contrast, multiple 82 

methods have appeared in the beginning of 2021, including MMseqs2 taxonomy [14] and 83 

BugSeq [15]. Prior long-read benchmarking studies applied short-read methods to long reads [3, 84 

16] or compared the potential of long reads to short reads [17], yet only one study has included a 85 

comparison of long-read methods [18]. Given the dramatic decreases in long read error rates and 86 

the proliferation of long read classification methods, there is a pressing need to assess the 87 

performance of taxonomic profiling using long reads.  88 

 Here, we perform a critical benchmarking study to evaluate the performance of 89 

taxonomic classification and profiling methods for long-read datasets. We evaluate 11 methods, 90 

including five methods designed for long reads. We include both taxonomic classifiers and 91 

taxonomic profilers in our study. Taxonomic sequence classifiers are used to classify all input 92 

reads by aligning or matching the information content in reads to databases consisting of 93 

comprehensive nucleotide, protein, or whole genome datasets. The resulting matches or 94 

alignments are interpreted to provide taxonomic annotations per reads. When aggregated, the 95 

per-read classifications can be used to produce a taxonomic profile with relative abundance 96 

estimates (often based on read counts). We note that classifiers can also be used with contigs 97 

(versus reads), and this approach is generally referred to as taxonomic binning. However, 98 

taxonomic binning precludes relative abundance estimation unless additional steps are included. 99 

By contrast, taxonomic profilers are not intended to classify all input reads. Rather, they are 100 

designed to output a taxonomic profile with relative abundance estimates. Several profilers rely 101 

on smaller marker-specific databases, with contents selected to represent the unique signatures of 102 

species. For these marker-based profiling methods, it is expected that only a subset of reads will 103 

map successfully. However, profiling methods are not inherently restricted to marker-specific 104 
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databases, and some methods can use comprehensive databases (see Materials and Methods). We 105 

also note that some methods may not be easily categorized as a classifier or profiler. Finally, we 106 

distinguish long-read methods from short-read methods as those which utilize the long-range 107 

information contained across a long read (often using multiple genes for classification). 108 

We propose the ideal taxonomic classifier and profiler should display high precision and 109 

recall (e.g., low numbers of false positives and false negatives), and accurately estimate the 110 

relative abundances of taxa [1, 3-4, 7-10]. Furthermore, taxonomic classifiers should ideally 111 

assign all assignable reads (e.g., those with database representation). Given the design of marker-112 

based profiling methods, read assignment is not as relevant as a metric of performance. We 113 

evaluate the relative performance of methods based on these criteria, using publicly available 114 

datasets. These datasets are generated from mock communities of known compositions, which 115 

were sequenced using PacBio HiFi or ONT. Mock communities are considered simplistic 116 

relative to environmental samples, but they allow a clear assessment of detection metrics (such 117 

as precision, recall, and F-scores) and are therefore highly informative for benchmarking. In 118 

order to tease apart the impacts of error profile and read length on performance, we also include 119 

comparisons using Illumina short-read datasets for two of the mock communities. Our main 120 

goals are to 1) identify which methods perform best for long-read datasets, 2) understand if long 121 

reads provide more accurate taxonomic profiles or abundance estimates relative to short reads, 122 

and 3) identify if differences in long read quality have any effects on performance. Overall, we 123 

provide a baseline assessment of available methods using reproducible analyses, which can 124 

inform current research and establish a foundation for future benchmarking studies.  125 

 126 

MATERIALS AND METHODS 127 
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 128 

Mock Community Datasets 129 

We obtained two PacBio HiFi datasets and two ONT datasets from publicly available sources. 130 

We chose empirical datasets versus simulated datasets because simulations do not capture true 131 

variation in error profiles, read length heterogeneity, and the effects of DNA extraction, library 132 

preparation, and sequencing. Furthermore, pseudo-mock communities (e.g., those created from 133 

multiple isolate sequencing datasets) may combine older and newer sequencing 134 

chemistries/platforms for a given technology, creating additional confounding effects. 135 

The two PacBio datasets are available on NCBI (Table 1). The first PacBio HiFi dataset 136 

is for the ATCC MSA-1003 mock community (PRJNA546278: SRX6095783, released June 137 

2019). The ATCC MSA-1003 mock community contains 20 bacteria species in staggered 138 

abundances (5 species at 18%, 1.8%, 0.18% and 0.02% abundance levels, respectively). The 139 

PacBio ATCC dataset was generated using the Sequel II System and contains 2.4 million HiFi 140 

reads with a median length of 8.3 kb, for a total of 20.54 Gb of data (Fig. 1, Table 1). We refer to 141 

this dataset as HiFi ATCC MSA-1003. The second PacBio HiFi dataset is for the 142 

ZymoBIOMICS Gut Microbiome Standard D6331 (PRJNA680590: SRX9569057, released 143 

November 2020). The Zymo D6331 mock community contains 17 species (including 14 bacteria, 144 

1 archaea, and 2 yeasts) in staggered abundances. Five species occur at 14% abundance, four at 145 

6%, four at 1.5%, and one species per 0.1%, 0.01%, 0.001%, and 0.0001% abundance level. 146 

There are five strains of E. coli contained in this community (each at 2.8% abundance), which 147 

we treat here as one species at 14% abundance. The PacBio Zymo D6331 dataset was generated 148 

using the Sequel II System and contains 1.9 million HiFi reads with a median length of 8.1 kb, 149 

for a total of 17.99 Gb of data (Fig. 1, Table 1). We refer to this dataset as HiFi Zymo D6331. 150 
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 We obtained two ONT datasets for the ZymoBIOMICS D6300 microbial community 151 

standard. The Zymo D6300 standard is simpler in design and contains 10 species in even 152 

abundances, including 8 bacteria at 12% abundance and two yeasts at 2% abundance. The two 153 

ONT datasets contained a broader distribution of read lengths which included a large tail of 154 

shorter reads (<2kb in length). Our initial work indicated these shorter reads may have an 155 

adverse effect on taxonomic profiling, a result also supported by [19]. We therefore included two 156 

variations of each ONT dataset. The primary datasets are the focus of our methods comparison 157 

and resulted from length filtering to remove all short reads (<2kb) and ultra-long reads (>50kb). 158 

We found ultra-long reads caused compatibility issues with some taxonomic profiling programs 159 

(particularly the short-read methods). To investigate the potential effects of shorter reads, we 160 

created secondary datasets which contained a large proportion of shorter long reads. The first 161 

ONT dataset comes from a continually updated resource produced by [20]. We downloaded the 162 

R10.3 chemistry data release (February 2020) which was produced from two flowcells on an 163 

ONT GridION, resulting in 1.16 million reads (4.64 Gb data). We used NanoFilt [21] to remove 164 

all short (<2kb) and ultra-long reads (>50kb). Length-filtering resulted in the removal of 873,079 165 

short reads and 12,129 ultra-long reads (1.33 Gb total; 75% and 0.01% of total reads, 166 

respectively), and the retention of 275,318 ONT reads (23% of total reads). The resulting length 167 

filtered ONT reads have a median length of 6.6 kb, for a total of 3.31 Gb of data (Fig. 1, Table 168 

1). We refer to this primary dataset as ONT R10 Zymo D6300. The secondary version of this 169 

dataset uses all reads <50kb in length. It contains 3.86 Gb data (1,148,397 reads) with a median 170 

read length of 660 bp and mean read length of 3.3 kb, and is referred to as ONT R10 Short 171 

(Supplementary Figure S1). The second ONT dataset was obtained from the European 172 

Nucleotide Archive (PRJEB43406: ERR5396170, released March 2021) and represents the ‘Q20 173 
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chemistry’ release for the Zymo D6300 standard (described at: 174 

https://github.com/Kirk3gaard/2020-05-20_ZymoMock_Q20EA). It was generated using a 175 

PromethION, resulting in 5.4 million reads (17.95 Gb data). We again used NanoFilt to remove 176 

short reads (<2 kb) and ultra-long reads (>50 kb), which resulted in the elimination of 2.13 177 

million (39%) and 819 (<0.001%) of the total reads, respectively. From the remaining ~3.2 178 

million reads, we subsampled to obtain 2 million reads (a number comparable to the HiFi 179 

datasets). This produced a length filtered ONT dataset of 2 million reads with a median length of 180 

4.2 kb, for a total of 9.6 Gb of data (Fig. 1, Table 1). We refer to this primary dataset as ONT 181 

Q20 Zymo D6300. The secondary version of this dataset contains a comparable number of 182 

shorter long reads. We used NanoFilt to remove all reads >3kb in length and subsampled the 183 

remaining reads to obtain 2 million reads. We refer to this as ONT Q20 Short, and this dataset 184 

contains 2.72 Gb data with a median read length of 1.2 kb and mean read length of 1.3 kb 185 

(Supplementary Figure S1). The read names required to reconstitute the ONT R10 Zymo D6300 186 

and ONT Q20 Zymo D6300 datasets are available on the Open Science Framework project page 187 

for this paper (https://osf.io/bqtdu/). 188 

 As a final comparison to the long-read datasets, we included short-read sequence data for 189 

two of the mock communities (Table 1). We downloaded Illumina sequence data for ATCC 190 

MSA-1003 (PRJNA510527: SRX5169925, released December 2018), which included a total of 191 

~10 million 150 bp paired-end reads produced by a HiSeq2500 (but available pre-trimmed to 125 192 

bp). We also obtained Illumina sequence data for the Zymo D6300 community (PRJNA648136: 193 

SRX8824472, released July 2020). These data were produced using a NovaSeq 6000 and include 194 

~100 million 150bp PE reads. Given the large difference in read numbers between these datasets, 195 

we subsampled the Zymo Illumina data to obtain 20 million total reads. We refer to these 196 
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datasets as Illumina ATCC MSA-1003 and Illumina Zymo D6300, respectively. A variety of 197 

factors, including different DNA extraction methods, can affect the final composition of DNA 198 

sequenced for metagenomic samples and potentially bias relative abundance estimates [21]. 199 

Additionally, variation in error profiles across sequencing technologies could also cause potential 200 

differences in results. To control for these potential confounding effects in the Illumina datasets, 201 

we also “simulated” short-read data from our long-read datasets. Each long read was divided into 202 

150 bp non-overlapping segments, and 10 segments were randomly selected to create a 203 

“simulated” short-read dataset. We chose this subsampling strategy (versus retaining all available 204 

segments) to create a consistent number of short reads per long read, which varied in length. This 205 

strategy generated ~21 million 150 bp “reads” from the HiFi ATCC MSA-1003 dataset, and 20 206 

million 150 bp “reads” from the ONT Q20 Zymo D6300 dataset. We refer to these datasets as 207 

SR-Sim ATCC MSA-1003 and SR-Sim ZymoD6300, respectively. 208 

 209 

  210 

Taxonomic Classification and Profiling Methods 211 

We evaluated the performance of 11 methods on the long-read mock community datasets. 212 

We included five methods developed specifically for long reads, five popular short-read 213 

methods, and one generalized method (Table 2), which we summarize here. We ran all methods 214 

for the primary long-read datasets and secondary ONT datasets, and used only short-read 215 

methods for the short-read datasets. 216 

The short-read methods include Kraken2 [23-24], Bracken [25], Centrifuge [26], 217 

MetaPhlAn3 [27], and mOTUs2 [28]. Among these methods, Kraken2 and Centrifuge are 218 

taxonomic sequence classifiers, Bracken is a type of taxonomic profiler, and MetaPhlAn3 and 219 
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mOTUs2 are both marker-based taxonomic profilers. Kraken2 is a k-mer-based read classifier, 220 

which is often paired with Bracken for profiling. Following Kraken2 analyses, Bracken is used 221 

for Bayesian re-estimation of abundances. Centrifuge uses a Burrows-Wheeler transform and 222 

Ferragina-Manzini index for storing and mapping sequences. We include two variations of 223 

Centrifuge analyses, one using the default settings suitable for short reads (referred to as 224 

Centrifuge-h22), and another with settings for long reads (referred to as Centrifuge-h500; see 225 

details below). MetaPhlAn3 uses coverage scores to calculate the relative abundances of taxa, 226 

based on read mapping to a unique clade-specific marker database. Similarly, mOTUs2 maps 227 

reads to a unique marker specific database. Specifically, it uses a database composed of single 228 

copy phylogenetic marker genes for operational taxonomic units (mOTUs). Recently, a “long 229 

read” option was introduced for mOTUs2, which divides each long read into multiple short read 230 

segments (highly similar to our SR-Sim datasets) and uses these outputs to run the typical short 231 

read workflow. We used the “long read” option for our analyses as recommended by the authors, 232 

but note that it should not be considered a true long-read method. The resulting artificial short 233 

read datasets contained 25–35x more reads than the initial long read datasets.  234 

The long-read methods include MetaMaps [12], MEGAN-LR [13, 29], MMseqs2 [14], 235 

and BugSeq [15]. All long-read methods described here are considered taxonomic sequence 236 

classifiers. MetaMaps was among the first methods designed specifically for long reads, and it 237 

uses approximate mapping with probabilistic scoring to estimate sample composition. MEGAN-238 

LR was developed from MEGAN6 and was designed to interpret translation alignments of long 239 

nucleotide sequences to a protein reference database. These alignments can be made using any 240 

program capable of translation alignment (e.g., blastx mode), but here we specifically use 241 

DIAMOND [30] due to its favorable long-read options (e.g., range-culling and frameshift-aware 242 
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alignment; [31]). MEGAN-LR assigns reads to taxa using a novel interval-union lowest common 243 

ancestor (LCA) algorithm, in combination with other relevant features (e.g., lcaCoveragePercent, 244 

minSupportPercent, minPercentReadCover). MEGAN-LR can likewise interpret alignments to 245 

nucleotide databases using similar options, such as those created with minimap2 [32]. For this 246 

experiment, we created alignments based on protein references (using DIAMOND) and 247 

nucleotide references (using minimap2), and subsequently used MEGAN-LR for taxonomic 248 

classification. To distinguish between these methods, we refer to them as MEGAN-LR-prot and 249 

MEGAN-LR-nuc. Furthermore, we tested settings in minimap2 that were specific to HiFi or 250 

ONT data (see below) and ran both settings on all mock communities. We refer to these analyses 251 

as MEGAN-LR-nuc-HiFi and MEGAN-LR-nuc-ONT. Thus, we include three analyses that 252 

involve MEGAN-LR: MEGAN-LR-prot, MEGAN-LR-nuc-HiFi, and MEGAN-LR-nuc-ONT. 253 

We note that MEGAN-LR-prot is unique from all other methods in that it also simultaneously 254 

assigns functional annotations to genes on reads, providing a taxonomic and functional profile 255 

for a sample. The MMseqs2 taxonomy tool extracts all possible protein fragments in six frames 256 

from the long reads, pre-filters the protein sequences, aligns the retained protein sequences to the 257 

reference protein database, and ultimately assigns reads to taxa using a novel LCA algorithm 258 

(“approximate 2bLCA”). The published BugSeq algorithm (V1) performs minimap2 alignments 259 

using a nucleotide database, followed by Bayesian reassignment and LCA identification [15]. 260 

Following initial development, a BugSeq V2 method was developed which includes minimap2 261 

alignment of sequences to a nucleotide database followed by LCA identification and abundance 262 

calculation (S. Chorlton, personal communication). BugSeq V2 performs better for longer reads 263 

(>1kb), higher sequencing depth, and shotgun metagenomics (vs. cDNA sequencing 264 
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experiments). An auto-detect feature selects the V1 or V2 version based on the dataset uploaded 265 

to the online platform, and in our experiment BugSeq V2 was selected for all long-read datasets.  266 

In addition to methods which are generalized to short or long reads, we also ran sourmash 267 

[33, 34], which is a k-mer-based sequence analysis tool that can be used for taxonomic profiling. 268 

Sourmash uses a fractional scaling (‘FracMinHash’) approach to representatively subsample both 269 

metagenome and reference datasets in a way that supports accurate sequence similarity 270 

comparisons [35]; this allows rapid search of large databases. Sourmash can be used with any 271 

type of sequencing data, but its taxonomic profiling (sourmash gather + sourmash taxonomy) has 272 

thus far been primarily applied to short reads datasets. Sourmash profiling differs from the k-mer 273 

methods above in that it uses combinatorial observations of k-mers to find the minimum set of 274 

reference genomes that cover all information (k-mers) in the metagenome query, and then 275 

aggregates the taxonomic information from these genomes using an LCA approach [35]. Long 276 

nucleotide k-mer exact matching is more stringent than alignment-approaches, with stringency 277 

increasing as k-mer length increases. As a result, long k-mer searches may miss some reference 278 

matches if sufficient nucleotide divergence exists between the metagenome sequence and the 279 

strain available in the reference database [36]. Sourmash uses a k-mer length of 31 for species-280 

level matching (default), and suggests 51 for strain-level resolution; we test both here. We use 281 

the default fractional scaling (1/1000) for all analyses. 282 

A standardized output format was required to facilitate comparisons of the results across 283 

methods. We selected kraken-report (kreport) format because it contains cumulative counts and 284 

level counts across the complete hierarchical taxonomy for each taxon assigned. The level count 285 

is the number of reads specifically assigned to a taxon, whereas the cumulative count is the sum 286 

of the level counts for a taxon plus its descendants. For example, the cumulative count of a genus 287 
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is the level count for that genus plus the level counts of all species and strains contained in that 288 

genus. This output format is readily available for Kraken2, Bracken, MMseqs2, and BugSeq. We 289 

created conversion tools for all other methods (MetaPhlAn3, MetaMaps, MEGAN-LR), which 290 

are available on github: https://github.com/PacificBiosciences/pb-metagenomics-tools. The 291 

kreport output format was recently added to sourmash and is available in sourmash v4.5.1. 292 

 293 

Comparative Analyses 294 

We evaluated method performance using several criteria. We assessed read utilization, detection 295 

metrics at the species and genus level, and relative abundance estimates. We provide details for 296 

each of these categories below.  297 

 298 

Read Utilization. We evaluated read utilization for each profiling method in two ways. First, we 299 

simply calculated the total percent of reads that received a taxonomic assignment. For sourmash, 300 

we use the total percent of the dataset with an assignment, as it does not assign taxonomy to 301 

specific reads. Second, we calculated the percentage of reads (dataset) that were assigned to 302 

specific taxonomic levels. We performed this for the following ranks: class, order, family, genus, 303 

species, and subspecies/strain. Values were obtained by summing the level counts of all taxa 304 

within a given rank. In general, we expected methods that utilize LCA algorithms to display read 305 

assignments across multiple taxonomic levels, relative to methods that do not. The exception is 306 

sourmash, which makes non-overlapping k-mer assignments to specific genomes (~strain level) 307 

and only uses LCA to aggregate genome matches to higher taxonomic ranks. We expected 308 

marker-based profilers (MetaPhlAn3, mOTUs2) to display relatively low read assignments, and 309 

mainly used read utilization to evaluate performance among the remaining methods. 310 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.01.31.478527doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478527
http://creativecommons.org/licenses/by-nd/4.0/


15 

 

 311 

Detection Metrics. The species compositions of the mock communities are known, allowing for a 312 

complete evaluation of detection metrics. For each profiling method, we scored the 313 

presence/absence of a taxon based on whether or not the cumulative read count for that taxon 314 

exceeded a minimum percent threshold of the total reads. We used a minimum percent threshold 315 

(versus a fixed number of reads) because our datasets contained different numbers of total reads. 316 

We recognize that setting a minimum detection threshold in this way penalizes methods that 317 

assign a smaller proportion of the total reads available. However, setting a threshold based on the 318 

number of reads assigned in a given analysis could produce misleading results (for example, a 319 

method could assign only 10% of total reads but achieve perfect precision). We evaluated three 320 

minimum read thresholds, including 0.001% (mild filtering, mainly for removing singleton count 321 

taxa for short-read methods), 0.1% (moderate filtering), and 1% (heavy filtering) of the total 322 

number of reads per dataset (Table 3). The threshold filtering was mainly used to explore the 323 

effects on precision (particularly the impact on false positives) across the four primary datasets. 324 

However, we also used filtering to investigate the effects on the staggered abundance 325 

communities (ATCC MSA-1003 and Zymo D6331). These two mock communities contained 326 

several taxa in low abundances, and we explored how filtering might cause detection dropout for 327 

different abundance levels. We performed our evaluations at the species level and the genus 328 

level. We expected detection to be more difficult at the species level and easier at the genus 329 

level. This is because assignments to multiple non-target species within a genus would be 330 

considered incorrect at the species level, but correct at the genus level. 331 

 We calculated several detection metrics (precision, recall, F-scores) which are based on 332 

the number of true positives, false positives, and false negatives. In this context, we define a true 333 
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positive as the detection of a mock community taxon (based on a read count exceeding the 334 

minimum read threshold). We define a false positive as the detection of taxon that is not present 335 

in the mock community. We define a false negative as the failure to detect a taxon in the mock 336 

community (based on a zero count or count below the minimum threshold). The formulas for 337 

precision, recall and F-scores are as follows: 338 

Precision = true positives / (true positives + false positives) 339 

Recall = true positives / (true positives + false negatives) 340 

F1 = (2 * precision * recall) / (precision + recall) 341 

F0.5 = ((1 + 0.52) * precision * recall) / ((0.52 * precision) + recall) 342 

The values for the above metrics each range from 0 to 1. For precision, a score of 1 indicates 343 

only mock community taxa were detected, whereas lower scores indicate detection of additional 344 

taxa (e.g., false positives). For recall, a score of 1 indicates all taxa in the mock community were 345 

detected, whereas a lower score indicates some taxa were not detected. The F-scores provide a 346 

useful way to summarize the information from precision and recall. The F1 score is the harmonic 347 

mean of precision and recall (both measures are weighted equally), whereas the F0.5 score gives 348 

more weight to precision (placing more importance on minimizing false positives). A value of 1 349 

for either F-score indicates perfect precision and recall. 350 

 We controlled for two issues that can negatively impact these metrics. First, we observed 351 

and accounted for differences in taxonomy, particularly as it relates to synonymies. In the case of 352 

a species synonomy, we used the sum of cumulative counts for the species and all synonyms as 353 

the read count for the taxon. This included two species in ATCC MSA-1003 (Luteovulum 354 

sphaeroides = Rhodobacter sphaeroides, Cereibacter sphaeroides; Phocaeicola vulgatus = 355 

Bacteroides vulgatus), one species in Zymo D6300 (Limosilactobacillus fermentum = 356 
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Lactobacillus fermentum), and three species in Zymo D6331 (Limosilactobacillus fermentum = 357 

Lactobacillus fermentum; Bacillus subtilis = Bacillus spizizenii; Faecalibacterium sp. AF28-358 

13AC = Faecalibacterium prausnitzii). Most of these synonomies are related to changes in 359 

taxonomy, but for Faecalibacterium prausnitzii we observed that Faecalibacterium sp. AF28-360 

13AC contained a genome sequence identical to F. prausnitzii in the NCBI database. Second, we 361 

observed that sequences and/or taxonomy information was lacking for two species (Zymo 362 

D6331: Veillonella rogosae, Prevotella corporis) in multiple databases (“PlusPF”, Refseq 363 

ABVF, MiniSeq+H, NCBI nt). To remedy this issue, we excluded the two species from the set of 364 

taxa used to calculate detection metrics at the species-level for all methods. However, we 365 

observed that many reads were assigned to alternate species in the same genus, so we included 366 

the two genera in the genus-level analysis. 367 

 We calculated detection metrics for each dataset. To understand the performance of each 368 

method across all datasets, we took an average of precision, recall, F1 and F0.5. We also took the 369 

average of these values for the HiFi datasets and ONT datasets separately, to see if any methods 370 

performed differently across the technologies. 371 

 372 

Relative abundance estimates. We attempted to obtain relative abundances for each method, but 373 

acknowledge several potential issues. First, there are clear differences in intended outputs among 374 

methods. For example, profiling methods provide taxonomic abundances whereas classifiers 375 

provide sequence abundances (which must be transformed into taxonomic abundances). Second, 376 

the read counts obtained from classifiers do not account for the length heterogeneity of reads in 377 

long read datasets, and counts are not weighted by total base pairs. Although some methods offer 378 

this type of correction (MEGAN-LR), it is not available across all methods and difficult to 379 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.01.31.478527doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478527
http://creativecommons.org/licenses/by-nd/4.0/


18 

 

implement. Third, DNA extraction methods can affect the final composition of DNA sequenced 380 

for metagenomic samples [21], which could lead to systematically skewed abundance estimates. 381 

Despite these caveats, relative abundances are of interest to the research community and are 382 

therefore included here. 383 

 We used the read counts output directly from Kraken, Bracken, Centrifuge, mOTUs2, 384 

MetaMaps, MMSeqs2, all MEGAN-LR methods, and BugSeq. The output of sourmash is 385 

abundance-projected base pair estimates, which is a projection of the number of base pairs that 386 

the percent of matched k-mers represents. To estimate the “read counts” for this method, we 387 

obtained a total from the base pair estimates across species plus all unassigned base pairs, and 388 

divided the base pair estimates from all species by this total. For MetaPhlAn3, we multiplied the 389 

percent abundance of each taxon by the total number of mapped reads. We note that for 390 

mOTUs2, the read counts are based on the artificial short reads generated, and not the initial long 391 

reads. These numbers therefore represent an overestimate. However, given the low read counts 392 

recovered using this method (<1%; see Results), we did not attempt to transform these read 393 

counts.  394 

Relative abundances were estimated for each profiling method at the species and genus 395 

level. We obtained cumulative counts for the mock community species or genera and the sum of 396 

cumulative counts for all false positives at the species or genus level (classified as “Other”). 397 

These data were normalized to obtain the percent abundance of each taxon. We corrected for the 398 

absence of two species from multiple databases (Veillonella rogosae, Prevotella corporis) in 399 

HiFi Zymo D6331. For methods affected by these databases, we observed many reads were 400 

assigned to other species in these two genera. Rather than scoring these as “Other”, we allowed 401 

all species-level assignments within these genera to contribute to the read counts for these two 402 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.01.31.478527doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478527
http://creativecommons.org/licenses/by-nd/4.0/


19 

 

species. To be consistent, we allowed this for all methods for HiFi Zymo D6331. In other words, 403 

genus-level counts for Veillonella rogosae and Prevotella corporis were used for the species 404 

abundances, rather than exclude these two taxa. 405 

For each method, we calculated an L1 distance (following [9]) and performed a chi-406 

squared goodness of fit test to determine if the estimated abundances were significantly different 407 

from the theoretical abundances. The theoretical abundances were obtained from the 408 

manufacturer’s specifications, which are based on genomic DNA (versus cell counts). We 409 

calculated L1 distance by summing the absolute error between the theoretical and empirical 410 

estimate per species per community. We included the false positives lumped in the “Other” 411 

category in this calculation and compared them against a theoretical abundance of zero for this 412 

category. We compared the chi-squared statistic to the critical value obtained at the 95% 413 

significance level and obtained a corresponding P-value. For this test, larger chi-squared statistic 414 

values indicate greater differences between the observed and expected values. We applied a 415 

Bonferroni correction for multiple testing (n = 11) per dataset, for which αaltered = 0.05/11 = 416 

0.0045. A P-value < 0.0045 allows rejection of the null hypothesis, and indicates the observed 417 

distribution is significantly different from the theoretical distribution.  418 

 419 

Reference Databases 420 

The choice of reference database directly affects the outcome of taxonomic profiling. For 421 

example, the use of a complete reference database versus a subset of that database can result in 422 

drastically different assignments if the same profiling method is run with otherwise identical 423 

settings. Under ideal conditions, all profiling methods would use an identical reference database. 424 

This would control for differences in information content and taxonomy, allowing observed 425 
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differences in assignment results to be attributed to the profiling methods. However, differences 426 

in method design and matching algorithms required the use of multiple reference databases. We 427 

therefore provide a brief description and comparison of these databases below. 428 

 The databases used for Kraken2, Bracken, and Centrifuge are highly similar. For 429 

Kraken2 and Bracken, we used a pre-built database that includes all RefSeq sequences for 430 

archaea, bacteria, viruses, plasmid, human, protozoa, and fungi (“PlusPF”, released 1/27/2021, 431 

available from: https://benlangmead.github.io/aws-indexes/k2). The Centrifuge database was 432 

built from RefSeq sequences for archaea, bacteria, viruses, and fungi (downloaded 4/2021). The 433 

Centrifuge database used can be considered a subset of the PlusPF database, but with complete 434 

overlap for several target groups (archaea, bacteria, fungi).  435 

The marker-based profilers each used a specific database. MetaPhlAn3 uses a highly 436 

distinct reference database which is composed of ~1.1 million unique clade-specific markers 437 

from ~99,500 bacteria/archaea reference genomes and ~500 eukaryotic reference genomes. We 438 

used the mpa_v30_CHOCOPhlAn_201901 database release. mOTUs2 also uses a highly distinct 439 

database, which is composed of single copy phylogenetic marker genes for operational 440 

taxonomic units (mOTUs). We used database version 3.0.3, which contains ~12,000 reference 441 

based mOTUs, ~2,300 mOTUs obtained from metagenomic samples, and ~19,400 MAG-based 442 

mOTUs.  443 

MetaMaps provides a pre-built database composed of 12,058 complete RefSeq genomes 444 

(215 archaeal, 5774 bacterial, 6059 viral/viroidal, 7 fungi, 1 human), which is referred to as 445 

MiniSeq+H. The option to create a custom database (such as NCBI nt) was initially developed 446 

for MetaMaps, but this feature is currently not functional. The MiniSeq+H database was 447 
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therefore the only option available for running MetaMaps in our experiment, and it represents the 448 

smallest and most incomplete database across the methods used.  449 

 We used the NCBI non-redundant protein database (NCBI nr) for MMseqs2 and 450 

MEGAN-LR-prot, and the NCBI nucleotide database (NCBI nt) for MEGAN-LR-nuc and 451 

BugSeq v2 (both databases downloaded April 2021). We used a more recent version of the NCBI 452 

nucleotide database for sourmash (downloaded March 2022), which was added in our revision to 453 

this manuscript.  These pre-built sourmash databases consist of 47952 viral, 8750 archaeal, 1193 454 

protozoa, 10286 fungi, and 1148011 bacterial GenBank genomes and were constructed using 455 

FracMinHash 1/1000 fractional scaling (~1.3million genomes, ~40G size all together; available 456 

at https://sourmash.readthedocs.io/en/latest/databases.html). Sourmash provides a corresponding 457 

lineages file with taxonomic information for each database. The NCBI nt databases represent the 458 

most complete reference databases across the methods. We note that the RefSeq databases for 459 

Kraken2, Bracken, and Centrifuge are contained in NCBI nt.  460 

 461 

Profiling Method Commands  462 

To facilitate reproducible results, we provide the general commands or instructions to run each 463 

method. 464 

 465 

Kraken2. We ran Kraken version 2.1.1 for each sample. We used the pre-built PlusPF database 466 

described above, and used the following command: 467 

kraken2 --db PlusPF --threads 24 –report SAMPLE.kreport.txt 468 

SAMPLE.fasta > SAMPLE.kraken 469 

 470 
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Bracken. We ran Bracken version 2.6.0 for each sample, using the kreport outputs from 471 

Kraken2. We used the pre-built PlusPF database described above, and the following command to 472 

obtain abundances at the species level (-l S): 473 

bracken -d PlusPF -i SAMPLE.kreport.txt -o SAMPLE.bracken -r 50 474 

-l S -t 10 475 

 476 

Centrifuge. We ran Centrifuge version 1.0.4. We were unable to use centrifuge-download to 477 

obtain the RefSeq sequences required to build the database. We instead used kraken2-build to 478 

obtain the relevant RefSeq sequences and taxonomy files. The kraken headers were removed 479 

from the fasta sequences, and the database was built using the following command: 480 

centrifuge-build -p 24 --conversion-table centrifuge-481 

seqid2taxid.map --taxonomy-tree /taxonomy/nodes.dmp --name-table 482 

/taxonomy/names.dmp arc-bac-vir-fungi.fna abvf 483 

 484 

Centrifuge offers the option to specify the minimum length of partial hits required for 485 

classification (--min-hitlen). We used two values for this option. We used the default value of 22, 486 

which is suitable for short read analysis, and used a value of 500 which is suitable for long reads 487 

(labeled as Centrifuge-h22 and Centrifuge-h500, respectively).  488 

 489 

We ran Centrifuge-h22 for each sample using the following command: 490 

centrifuge -f --min-hitlen 22 -k 20 -t -p 24 -x abvf -U 491 

SAMPLE.fasta -S SAMPLE-h22.txt --report-file SAMPLE-492 

h22.centrifuge_report.tsv 493 

 494 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.01.31.478527doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478527
http://creativecommons.org/licenses/by-nd/4.0/


23 

 

We ran Centrifuge-h500 for each sample using the following command: 495 

centrifuge -f --min-hitlen 500 -k 20 -t -p 24 -x abvf -U 496 

SAMPLE.fasta -S SAMPLE-h500.txt --report-file SAMPLE-497 

h500.centrifuge_report.tsv 498 

 499 

Outputs were converted to kreport format using the centrifuge-kreport module. 500 

 501 

MetaPhlAn3. Analyses were run using MetaPhlAn v3.0.7. The settings used in MetaPhlAn3 to 502 

run Bowtie2 will fail for long reads, so we first created alignments externally using Bowtie2: 503 

bowtie2 -p 12 -f --local --no-head --no-sq --no-unal -S 504 

SAMPLE.sam -x /metaphlan/mpa_v30_CHOCOPhlAn_201901 -U 505 

SAMPLE.fasta 506 

 507 

After alignments were created, we ran MetaPhlAn3 with the following settings (adjusting the 508 

number of reads per dataset, --neads): 509 

metaphlan SAMPLE.sam --nproc 24 --input_type sam --nreads 510 

READ_NUMBER -o SAMPLE.profiled_metagenome.txt --index 511 

mpa_v30_CHOCOPhlAn_201901 --bowtie2db /metaphlan 512 

 513 

 514 

mOTUs2. Analyses were run using mOTUs2 v3.0.3. Each long-read dataset was converted into a 515 

short read dataset and then run through the typical profiling algorithm using the following set of 516 

commands: 517 

motus prep_long -i SAMPLE.fastq.gz -o SAMPLE_mOTUs.fastq -no_gz 518 
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 519 

gzip SAMPLE_mOTUs.fastq 520 

 521 

motus profile -s SAMPLE_mOTUs.fastq.gz -o 522 

SAMPLE_mOTUs.counts.txt -c -t 48 523 

 524 

Sourmash. Analyses were run using sourmash version 4.5.1. A streamlined workflow for 525 

sourmash is available (Taxonomic-Profiling-Sourmash) at: 526 

https://github.com/PacificBiosciences/pb-metagenomics-tools. The pipeline is provided as a 527 

configurable snakemake workflow. 528 

 529 

Read datasets were sketched in the same manner as sourmash pre-prepared databases, using a 530 

fractional scaling of 1/1000: 531 

sourmash sketch dna SAMPLE.fna.gz -p k=31,k=51,scaled=1000,abund 532 

–name SAMPLE -o SAMPLE.sig.zip 533 

 534 

The database search was performed separately for each k-mer size using sourmash gather. This 535 

analysis took 3-7 hours on a single thread, requiring 40-100G of memory (depending on dataset): 536 

sourmash gather SAMPLE.sig.zip genbank-2022.03-bacteria-k31.zip 537 

genbank-2022.03-archaea-k31.zip genbank-2022.03-viral-k31.zip 538 

genbank-2022.03-protozoa-k31.zip genbank-2022.03-fungi-k31.zip  539 

-k 31 -o SAMPLE.gather.k31.csv  540 

 541 
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After searching with sourmash defaults, we also ran gather at its most sensitive, allowing 542 

detection of even a single shared hash in the database (by adding --threshold-bp 0 to the 543 

command). For each dataset and ksize, taxonomic aggregation of genome-level matches was 544 

performed using the sourmash taxonomy module, with kreport output, e.g. k31: 545 

sourmash tax metagenome -g SAMPLE.gather.k31.csv -t genbank-546 

2022.03-*.lineages.csv.gz -o SAMPLE.gather.k31 -F kreport 547 

 548 

Note that sourmash gather outputs initial k-mer assignments to individual genomes, which is 549 

~strain-level profiling; we did not evaluate these in our results. 550 

 551 

MetaMaps. We used MetaMaps v0.1 to run analyses with the following set of commands: 552 

metamaps mapDirectly --all -r /databases/miniSeq-H/DB.fa -q 553 

SAMPLE.fasta --maxmemory 35 -t 24 -o SAMPLE_results 554 

 555 

metamaps classify -t 12 --mappings SAMPLE_results --DB 556 

/databases/miniSeq-H 557 

 558 

The conversion from MetaMaps output format to kreport format was performed at the species 559 

level, but we note that MetaMaps can produce a large number of strain assignments that are not 560 

represented in our results. 561 

 562 

MMseqs2. We used MMseqs2 v13.45111 to run all analyses. We first built the database for 563 

NCBI nr using the following command: 564 

mmseqs databases NR /mmseqs-database/NR_db /scratch --threads 24 565 
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 566 

We then used the easy-taxonomy module to run analyses for each sample, using the following 567 

general command: 568 

mmseqs easy-taxonomy SAMPLE.fasta /mmseqs-database/NR_db SAMPLE 569 

/scratch --threads 48 --split-memory-limit 120G 570 

 571 

MEGAN-LR-prot. A streamlined workflow for MEGAN-LR-prot is available (Taxonomic- 572 

Profiling-Diamond-Megan) at: https://github.com/PacificBiosciences/pb-metagenomics-tools. 573 

The pipeline is provided as a configurable snakemake workflow. To use the workflows, we first 574 

downloaded the NCBI nr database and created a DIAMOND index using the following 575 

command: 576 

diamond makedb --in nr.gz --db diamond_nr_db --threads 24 577 

 578 

We downloaded MEGAN6 community edition to obtain the executable tools required for these 579 

workflows (sam2rma, rma2info), as well as the required MEGAN protein mapping file (megan-580 

map-Jan2021.db). We then ran the Taxonomic-Functional-Profiling-Protein pipeline. The 581 

locations of the nr index, sam2rma, and the mapping file were specified in the main 582 

configuration file for the analysis (config.yaml), and we used all other default settings (see 583 

documentation). The information for the sample fasta files was added to the sample 584 

configuration file (Sample-Config.yaml), and the snakemake (Snakefile-taxprot) was executed. 585 

Details for the usage of each program are provided in the online documentation.  586 

 587 

Analyses resulted in RMA output files, which were used as inputs for the MEGAN-RMA-588 

Summary pipeline. The location of rma2info was specified in the main configuration file for the 589 
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analysis (config.yaml), information for the sample fasta files was added to the sample 590 

configuration file (Sample-Config-protein.yaml), and we created the required sample-read-591 

counts file. This snakemake (Snakefile-summarizeProteinRMA) was run using all other default 592 

settings, and kreport files were included in the outputs.  593 

 594 

MEGAN-LR-nuc. A streamlined workflow for MEGAN-LR-nuc is available (Taxonomic-595 

Profiling-Minimap-Megan) at: https://github.com/PacificBiosciences/pb-metagenomics-tools. 596 

The pipeline is provided as a configurable snakemake workflow. To use the workflow, we first 597 

downloaded the NCBI nt database and indexed it with minimap2 using the following command: 598 

minimap2 -k 19 -w 10 -I 10G -d mm_nt_db.mmi nt.gz 599 

 600 

We downloaded MEGAN6 community edition to obtain the executable tools required for these 601 

workflows (sam2rma, rma2info), as well as the required MEGAN nucleotide mapping file 602 

(megan-nucl-Jan201.db). We then ran the Taxonomic-Profiling-Nucleotide pipeline. The 603 

locations of the minimap2 nt index, sam2rma, and the mapping file were specified in the main 604 

configuration file for the analysis (config.yaml), and we also changed the maximum number of 605 

secondary alignments from 20 to 5. The information for the sample fasta files was added to the 606 

sample configuration file (Sample-Config.yaml), and the snakemake (Snakefile-taxnuc) was 607 

executed. Details for the usage of each program are provided in the online documentation.  608 

 609 

Analyses resulted in RMA output files, which were used as inputs for the MEGAN-RMA-610 

Summary pipeline. The location of rma2info was specified in the main configuration file for the 611 

analysis (config.yaml), information for the sample fasta files was added to the sample 612 
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configuration file (Sample-Config-nucleotide.yaml), and we created the required sample-read-613 

counts file. This snakemake (Snakefile-summarizeNucleotideRMA) was run using all other 614 

default settings, and kreport files were included in the outputs.  615 

 616 

The above instructions are for the MEGAN-LR-nuc-HiFi analysis. Running the MEGAN-LR-617 

nuc-ONT analysis required some changes. Specifically, we indexed the database with minimap2 618 

using the following command: 619 

minimap2 -k 15 -w 10 -I 10G -d mm_nt_db_ONT.mmi nt.gz 620 

 621 

We then edited the minimap2 command in the snakemake file to include the ONT recommended 622 

settings:  623 

minimap2 -ax map-ont 624 

 625 

BugSeq. We uploaded datasets to the BugSeq online platform: https://bugseq.com. For each 626 

dataset, we selected the NCBI nt reference database option, and submitted the analysis. After 627 

successful completion all results were available for download. 628 

 629 

 630 

RESULTS  631 

 632 

The kreport files produced from all taxonomic classification and profiling methods, and the 633 

Jupyter notebooks used to generate the following results, are freely available on the Open 634 

Science Framework project page for this paper (https://osf.io/bqtdu/). These files can be used to 635 

replicate all results reported below. 636 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.01.31.478527doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478527
http://creativecommons.org/licenses/by-nd/4.0/


29 

 

 637 

Comparative Analyses 638 

Read Utilization. Total read assignment differed drastically across methods (Fig. 2). In terms of 639 

short-read methods, Kraken, Bracken, and Centrifuge-h22 assigned the greatest number of reads 640 

(93–100% for HiFi, 81–99% for ONT). Centrifuge-h500, which required a minimum total length 641 

of 500 for partial hits, assigned far fewer reads across datasets (1–53%), with the exception of 642 

HiFi ATCC MSA-1003 (which had 98% read assignment). Read assignment was exceptionally 643 

low for Centrifuge-h500 in ONT R10 Zymo D6300 (~1%; Fig. 2). As expected, both marker-644 

based profilers assigned the fewest reads ( MetaPhlAn3: 23–39%; mOTUs2: 0.2–1%; Fig. 2). 645 

Slightly more of the dataset was assigned by sourmash-k51 versus k31 (4–15% difference; Fig. 646 

2). However, the greatest difference in sourmash assignment occurred between HiFi and ONT 647 

datasets, with far more of the dataset assigned in HiFi (81–90%) versus ONT (26–41% for ONT 648 

R10.3, 59–68% for ONT Q20).  649 

There was considerable variation in read assignments across the long-read methods and 650 

across different sequencing technologies (Fig. 2). Total read assignment in the HiFi datasets 651 

ranged from 71–99% (average = 85%) across all long-read methods, and for ONT ranged from 652 

46–97% (average = 71%). For the ONT datasets, MetaMaps and BugSeq-V2 assigned the 653 

greatest number of reads (95–97%), with all other methods assigning fewer reads (46–67%). 654 

Methods that rely on translation alignments to protein references assigned more reads in the HiFi 655 

datasets versus ONT datasets, including MMseqs2 (HiFi: 94–99%; ONT: 46–67%) and 656 

MEGAN-LR-prot (HiFi: 71–74%; ONT: 60–62%) (Fig. 2). There were no clear differences in 657 

total read assignment for MEGAN-LR-nuc-HiFi and MEGAN-LR-nuc-ONT within the ONT 658 

datasets or the HiFi datasets, suggesting read assignment was not sensitive to different minimap2 659 
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settings. The MEGAN-LR-nuc methods resulted in a higher number of reads assigned in HiFi 660 

datasets (81–90%) versus ONT datasets (54–60%). BugSeq-V2 assigned more reads in the ONT 661 

datasets (95–96%) versus HiFi datasets (82–93%). As expected, methods using LCA algorithms 662 

during assignment (MMseq2, all three MEGAN-LR workflows, BugSeq-V2) displayed a 663 

significant proportion of annotations to taxonomic ranks above the strain and species level (Fig. 664 

2). However, the MEGAN-LR-nuc methods showed a smaller proportion of reads assigned to 665 

higher ranks, relative to the protein-alignment methods. 666 

 667 

Detection Metrics. The complete set of read counts per dataset used in the species and genus-668 

level analyses are provided in Supplementary Tables S1–S8. Detection at different thresholds 669 

follows the minimum read counts in Table 3. Species and genus level results are provided for 670 

each dataset in Figures 3 and 5 and Table 4. Averaged results per method across all datasets are 671 

shown in Figures 4 and 6, and technology specific results are shown in Supplementary Figures 672 

S2 and S3.  673 

The species-level detection results based on the minimum threshold of 0.001% of the 674 

total reads are summarized in Figures 3 and 4 and Table 4. The clearest difference in 675 

performance occurs between short-read and long-read/generalized methods (including 676 

sourmash). The short-read methods display very low precision and relatively high recall, and 677 

consequently very low F-scores (Figs. 3, 4). These results for precision and F-scores are driven 678 

by the large number of false positives detected (40–300) despite the presence of few false 679 

negatives (Table 4). We note that Bracken did not significantly improve the results of Kraken2, 680 

based on these measures (Figs. 3, 4). The Centrifuge-h500 analysis, which required longer 681 

matches, resulted in a lower number of false positives and consequently higher precision (Fig. 3, 682 
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Table 4), though this improvement varied considerably across datasets (Fig. 4). MetaPhlAn3 683 

displayed values that were intermediate between Centrifuge-h500 and the other short-read 684 

methods. An exception to this rule occurs with mOTUs2, which displays high precision and 685 

moderate recall (Figs. 3, 4). By precision and F-scores, mOTUs2 outperforms all other short read 686 

methods by a considerable margin.  687 

The long-read methods and sourmash outperformed the short-read methods in terms of 688 

precision, recall, and F-scores (Fig. 3, Table 4), but they also displayed variation in performance. 689 

Some methods did not show consistent results and performed better for a particular dataset. For 690 

example, MetaMaps and MMseqs2 performed quite well for HiFi ATCC MSA-1003. However, 691 

these two methods performed worse for the other three datasets and more closely resembled the 692 

results for the short-read methods (e.g., very low precision, higher recall; Fig. 3, Table 4). 693 

Interestingly, sourmash displayed high precision and recall for HiFi datasets (highest in k51), 694 

outperforming most long-read methods (Fig. 3, Supplementary Fig. S2). However, its 695 

performance decreased for the ONT datasets; this is particularly noticeable for ONT R10 (Fig. 3, 696 

Supplementary Fig. S3). Across all four datasets, MEGAN-LR-prot, MEGAN-LR-nuc-HiFi, 697 

MEGAN-LR-nuc-ONT, and BugSeq-V2 consistently displayed the best performance (Figs. 3, 4). 698 

These four methods detected most species in the communities (e.g., low false negatives) and 699 

rarely called any false positives (0–2). Consequently, they display high precision, moderate to 700 

high recall, and the highest F-scores (Fig. 3). The moderate recall scores for the HiFi datasets 701 

resulted from the failure to detect species at lower abundances, particularly for the 0.02% to 702 

0.0001% abundance levels (Supplementary Table S9). Sourmash (k31 and k51) displayed 703 

exceptional recall for these challenging HiFi datasets, detecting all species at 0.02% and 0.001% 704 

relative abundance (Supplementary Table S9). For the ONT datasets, the species in Zymo D6300 705 
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had comparatively high abundances (12% and 2%), and this was reflected in perfect recall for 706 

nearly all long-read methods as well as sourmash (Fig. 3, Table 4). We did not observe any 707 

difference in performance between MEGAN-LR-nuc-HiFi and MEGAN-LR-nuc-ONT for the 708 

ONT datasets or HiFi datasets, suggesting the profiling analyses are not sensitive to minimap2 709 

alignment settings. 710 

The genus-level analysis based on the minimum threshold of 0.001% of the total reads 711 

largely mirrored the species-level results, but with expected improvements in precision, recall, 712 

and F-scores (Figs. 5, 6, Supplementary Table S10). Improvements were nearly guaranteed 713 

because reads assigned to multiple species within a genus are all considered correct at the genus 714 

level, and consequently the number of false positives (and potentially false negatives) decreased. 715 

Despite improvements in precision, recall, and F-scores across all methods at the genus level, the 716 

long-read methods still outperformed most short-read methods by a considerable margin (Fig. 4, 717 

Supplementary Table S10). We observed perfect precision in mOTUs2, but it displayed lower 718 

recall relative to long-read methods (Fig. 6). Sourmash (k31 and k51) displayed perfect recall 719 

and precision was comparable to the long-read methods (particularly for HiFi datasets, Figs. 5, 6, 720 

Supplementary Figure S2).  721 

Requiring a moderate minimum threshold for detection (0.1% of total reads) for the 722 

species-level analysis had an overall positive effect on precision, but negative effect on recall 723 

(Supplementary Fig. S4, Supplementary Table S11). These changes were most dramatic for the 724 

short-read methods, in which the number of false positives was reduced from several hundred to 725 

~10 or fewer, thereby increasing precision considerably (Supplementary Table S11). However, 726 

despite this improvement the long-read methods still performed better in terms of precision and 727 

F-scores (Supplementary Fig. S4). Precision increased for some long-read methods (MetaMaps, 728 
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MMseqs2), but others were unaffected as they were already high at the lower detection 729 

threshold. As expected, this increase in minimum detection threshold most strongly impacted 730 

recall in the communities with staggered abundances (HiFi datasets) versus communities with 731 

even abundances (ONT datasets). In the HiFi datasets, the long-read methods displayed more 732 

false negatives which resulted in lower recall (Supplementary Fig. S8). At the 0.1% total reads 733 

detection threshold, all methods (long and short) failed to detect species with <0.02% abundance 734 

and missed several species with 0.1–1.8% abundance (Supplementary Table S12). Surprisingly, 735 

this detection threshold also reduced the recall of some methods for the ONT datasets, with a 736 

more noticeable reduction in recall values for ONT R10 Zymo D6300 (Supplementary Fig. S4, 737 

Supplementary Table S11). The patterns for the genus-level analysis using the 0.1% total reads 738 

detection threshold mirrored the species-level results (Supplementary Fig. S5). Precision 739 

increased in the short-read methods across all datasets, and recall was lowered in the staggered 740 

abundance communities (Supplementary Table S13).  741 

The highest minimum threshold for detection used in our experiment (1% of total reads) 742 

exacerbated the effects described for the 0.1% detection threshold. The most noticeable effects 743 

were for the communities with staggered abundances: all methods displayed perfect precision 744 

(with one exception), but recall was drastically lowered (<0.6; Supplementary Fig. S6, 745 

Supplementary Table S14). In other words, false positives were completely eliminated, but at the 746 

cost of vastly increased false negatives. Using 1% of total reads as the minimum detection 747 

threshold for HiFi ATCC MSA-1003 and Zymo D6331, all methods (long and short) failed to 748 

detect species with <1.8% relative abundance, and some species were not detected in the 1.5% 749 

and 6% abundance levels (Supplementary Table S15). This higher threshold for detection also 750 

impacted results for the even abundance communities (ONT R10 and Q20 for Zymo D6300). 751 
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Precision increased primarily for the short-read methods, yet perfect precision was not achieved 752 

by all methods (Supplementary Fig. S6, Supplementary Table S14). This higher detection 753 

threshold also caused recall to drop (<0.8) in these datasets for all methods except Kraken2, 754 

Bracken, and one instance of BugSeq V2, each of which maintained perfect recall 755 

(Supplementary Fig. S6). This indicates that multiple methods failed to detect several species at 756 

the 2% and 12% abundance levels in Zymo D6300. These effects were mirrored in the genus-757 

level analysis with the 0.1% detection threshold (Supplementary Fig. S7, Supplementary Table 758 

S16). 759 

 760 

Relative Abundance Estimates. The species-level and genus-level relative abundances are shown 761 

in Figures 7 and 8, respectively. The results of the chi-squared goodness of fit tests (GOF) are 762 

reported in Supplementary Tables S17 and S18 and highlighted in Figures 7 and 8. The L1 763 

scores are reported in Table 4 and Supplementary Tables S10, S19, S23, and S27. At the species 764 

level, abundance estimates by the long-read methods and sourmash were more accurate than 765 

those produced by short-read methods across all datasets (based on L1 distances and chi-squared 766 

test statistic values). For HiFi ATCC MSA-1003, MetaMaps, MMseqs2, MEGAN-LR-prot, and 767 

BugSeq-V2 all passed the GOF, and BugSeq-V2 had the lowest error. All methods failed the 768 

GOF for HiFi Zymo D6331 at the species level (which had two species missing from most 769 

databases, see methods), but MEGAN-LR-prot and BugSeq-V2 resulted in the lowest error. For 770 

ONT R10 Zymo D6300, mOTUs2, sourmash-k51, and BugSeq-V2 passed the GOF. Both 771 

BugSeq-V2 and MEGAN-LR-prot passed the GOF for ONT Q20 Zymo D6300. At the genus 772 

level we generally found more methods passed GOF for each dataset, except for HiFi Zymo 773 

D6331 for which only sourmash (k31 and k51) and BugSeq-V2 passed (Supplementary Table 774 
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S18). All methods that accurately estimated abundances at the species level also passed the GOF 775 

at the genus level (Figs. 7, 8). We additionally found Centrifuge (h22 and/or h500) and 776 

MetaMaps passed GOF at the genus level in some datasets in which they failed at the species 777 

level (Figs. 7, 8). Across all datasets and levels, we generally found that BugSeq-V2 had the 778 

lowest abundance error, followed closely by MEGAN-LR-prot (Supplementary Tables S17, 779 

S18). Across datasets, the proportion of reads assigned to false positives (‘Other’, Figs. 7, 8) was 780 

generally highest for MetaPhlAn3, followed by Kraken2 and Bracken. 781 

 782 

Analyses of Shorter ONT Reads. Comparisons of the length-filtered variations of each ONT 783 

dataset revealed that shorter reads (< 2kb) negatively impacted taxonomic profiling analyses. For 784 

each ONT dataset, we created a primary dataset which contained only longer reads (> 2kb) and a 785 

secondary dataset which had a large proportion of shorter reads (< 2kb; see methods). In the 786 

primary datasets, precision and F-scores were very high for long-read methods and low for short-787 

read methods at the 0.001% reads detection threshold. In the secondary datasets, precision and F-788 

scores were comparatively lower for the long-read methods and were similarly low for the short-789 

read methods (Supplementary Fig. S8, Tables S19, S20). Based on Wilcoxon Signed-Rank tests, 790 

the observed differences in precision and F-scores between the primary and secondary datasets 791 

were not statistically significant. However, at the 0.1% reads detection threshold we found 792 

precision and F-scores were substantially lower in the secondary datasets at both the species and 793 

genus level, across all methods (Supplementary Fig. S8, Tables S19, S20). These differences in 794 

precision and F-scores were statistically significant (p < 0.01 for all comparisons). In contrast to 795 

most methods, BugSeq produced relatively consistent results in precision and F-scores between 796 

the primary and secondary datasets across the different filtering thresholds.  797 
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Relative abundance estimates appeared heavily skewed in the secondary datasets, and 798 

most methods greatly overestimated the abundance of Limosilactobacillus fermentum in the 799 

community (Supplementary Fig. S9). Interestingly, in the secondary datasets the abundance error 800 

at the species level decreased for the short-read methods but increased in the long-read methods. 801 

At the genus level, abundance error appeared to increase across all methods in the secondary 802 

datasets. Based on Wilcoxon Signed-Rank tests, we did not find a significant difference in 803 

abundance error between the primary and secondary datasets at the species level, but at the genus 804 

level abundance error was significantly higher in the secondary datasets (p < 0.05 for the R10 805 

and Q20 comparison). In the secondary datasets, nearly every method failed the chi-squared 806 

goodness of fit test at the species level (21 of 22) and genus level (20 of 22; Supplementary 807 

Tables S21, S22). We found BugSeq and Centrifuge-h22 passed the GOF for the species level of 808 

ONT R10 Short, and BugSeq passed the GOF for ONT R10 Short at the genus level 809 

(Supplementary Tables S21, S22). No methods passed the GOF for ONT Q20 Short at the 810 

species or genus level.  811 

 812 

Analyses of Illumina and Artificial Short Reads. We evaluated the performance of Kraken2, 813 

Bracken, Centrifuge-h22, MetaPhlAn3, mOTUs2, and sourmash (k31 and k51) for two types of 814 

short-read datasets for the ATCC MSA-1003 and Zymo D6300 mock communities. We found 815 

detection and abundance results were highly similar between the Illumina short-read datasets and 816 

the “simulated” short-read datasets (SR-Sim; which were derived from the long reads). This 817 

indicates that for short-read methods, the differences in results between the long-read datasets 818 

and the Illumina short-read datasets are unlikely to be driven by platform-specific or 819 

confounding effects (such as DNA extraction methods or error profiles). However, the fraction 820 
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of dataset assigned using sourmash was quite different between the Illumina (94–96%) and the 821 

SR-Sim ONT dataset (62.9–72.6%) for Zymo D6300. The SR-Sim ONT was created from the 822 

ONT Q20 long reads, and we note sourmash also assigned a comparable fraction of reads in the 823 

full length ONT Q20 dataset (59–68%). These results suggest that error profile impacts sourmash 824 

profiling performance. 825 

The precision, recall, and F-score values obtained from the short-read datasets strongly 826 

resembled those obtained from long reads for both communities (Figs. 9, 10, Table 4, 827 

Supplementary Figure S10, Supplementary Tables S23–24, S27–28). This overall pattern 828 

included low precision and high recall for Kraken2, Bracken, and Centrifuge-h22. MetaPhlAn3 829 

improved in performance, with high precision and moderate recall, comparable to mOTUs2. 830 

Sourmash was the top performer in the short-reads datasets with perfect recall and high precision 831 

(Figs. 9, 10). More stringent filtering (0.1% or 1% of total reads) dramatically reduced false 832 

positives for Kraken2, Bracken, and Centrifuge-h22, but also negatively impacted recall 833 

(Supplementary Table S23), and in many cases produced scores that were worse than the long-834 

read scores for these method and filtering combinations (Supplementary Table S11, S14). The 835 

same patterns were present for the genus-level analyses of the short-read datasets of ATCC 836 

MSA-1003 (Supplementary Table S24) and the less complex ZymoD6300 community (10 837 

species).  838 

The short-read datasets failed to produce accurate relative abundance estimates (Fig. 9, 839 

Supplementary Figures S11–12, Supplementary Tables S25–26, S29–30). All short-read methods 840 

failed the chi-squared goodness of fit test at the species level in both communities, and at the 841 

genus level only sourmash-k51 passed the goodness of fit test across multiple datasets 842 

(Supplementary Figure S12).  843 
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 844 

DISCUSSION 845 

 846 

With decreasing error rates in long reads and the recent introduction of new long-read read 847 

profiling methods, long reads are increasingly utilized for metagenomic applications. We used 848 

publicly available mock community datasets to perform a critical assessment of taxonomic 849 

profiling methods for long-read datasets, including five long-read methods, five short-read 850 

methods, and one generalized method. While all methods displayed some trade-offs between 851 

precision and recall, our results suggest that generalized methods (e.g., sourmash) and methods 852 

designed for long reads performed best. 853 

 In our study, we included a mix of short-read classifiers (Kraken2, Centrifuge), short-854 

read profilers (Bracken, MetaPhlAn3, mOTUs2), a generalized profiler (sourmash), and several 855 

long-read classifiers (MetaMaps, MMSeqs2, BugSeq, MEGAN-LR-prot, MEGAN-LR-nuc-HiFi, 856 

and MEGAN-LR-nuc-ONT). The ideal taxonomic classifier or profiler should display high 857 

precision and recall. We found that the methods examined here tended to fall into three broad 858 

categories: 1) high precision and moderate recall, 2) moderate precision and high recall, and 3) 859 

low precision and high recall (Fig. 3A). The first two categories provide the best tradeoffs, with 860 

the third category displaying undesirable properties. Overall, we find that BugSeq, MEGAN-LR-861 

prot, and MEGAN-LR-nuc provide the best tradeoffs for all long-read metagenomics data. In 862 

addition to these three, sourmash was also a top-performing method for HiFi datasets. Below, we 863 

discuss our findings for short-read, long-read, and generalized methods, including tradeoffs, best 864 

practices, and the impact of shorter reads. Finally, we briefly summarize the effects of read 865 

accuracy on method performance. 866 
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 867 

Short-read methods. A majority of short-read methods (Kraken2, Bracken, Centrifuge-h22) 868 

assigned a high proportion of reads and displayed high recall, but they produced poor abundance 869 

estimates. They also recovered a very high number of false positives (15–300 species) and 870 

consequently had very low precision and F-scores (Figs. 2–4). False positives were not a trivial 871 

proportion of assigned reads; they comprised up to 25% of the reads assigned at the species level 872 

(Fig. 7). We attempted to apply long-read settings to Centrifuge (Centrifuge-h500) to improve 873 

detection results. Unfortunately, this setting reduced total read assignment and had unpredictable 874 

outcomes on precision, recall, and F-scores across the datasets (Figs. 2–4). The marker-based 875 

profilers had variable performance. MetaPhlAn3 displayed low precision and moderate recall, 876 

whereas mOTUs2 displayed high precision with comparable recall (Fig. 4). Both methods 877 

assigned a low percentage of reads, which is typical for marker-based mapping methods. 878 

Previous studies have shown similar results for these methods with short-read datasets [3, 8, 9], 879 

but here we demonstrate the use of long reads does not significantly change these trade-offs.  880 

We attempted to improve the results from short-read methods using various levels of 881 

filtering. Specifically, we applied different minimum thresholds for detection (0.001%, 0.1%, 882 

and 1% of the total reads) in an effort to reduce false positives and improve precision. A 883 

moderate detection threshold (0.1% total reads) successfully reduced the false positive count of 884 

species from hundreds to fewer than 15, and without significantly reducing recall. However, 885 

precision in these methods was still below scores produced by the long-read methods without 886 

any filtering. A stringent detection threshold (1% total reads) greatly improved precision for 887 

many short-read methods, but severely impacted recall by eliminating detection of many species 888 

at lower abundance levels (<2% abundance). Overall, we found that filtering was necessary to 889 
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reduce false positives and improve precision in the short-read methods. However, none of the 890 

filtering strategies successfully balanced precision and recall to produce results similar to the 891 

long-read methods.  892 

We analyzed short read Illumina datasets for two of the mock communities to evaluate if 893 

any short-read methods performed differently. We found consistent results across short and long-894 

read datasets for Kraken2, Bracken, and Centrifuge (high false positives, low precision). For 895 

these methods, the outcomes appear to be driven by characteristics of the methods themselves, 896 

rather than read type. However, we observed an improvement in MetaPhlAn3 (higher precision), 897 

indicating this method is potentially sensitive to the read type. We could not appropriately 898 

evaluate differences mOTUs2 because the “long read” analyses consisted of short reads derived 899 

from the long reads, meaning the inputs for both the short and long-read analyses were highly 900 

similar.  901 

 902 

Long-read and generalized methods. Several long-read profiling methods showed consistent and 903 

favorable characteristics across all datasets. These include MEGAN-LR-prot, MEGAN-LR-nuc 904 

(both mapping settings), and BugSeq, which displayed medium to high read assignment and very 905 

high precision (Figs. 2, 5, Table 4). Recall values from these methods differed between the 906 

staggered abundance and even abundance communities (0.7–0.8 and 1, respectively). This 907 

difference is explained by the failure to detect species with <0.02% abundance in the staggered 908 

community. In contrast to the short-read methods, several long-read methods estimated accurate 909 

species abundances for the complex communities (particularly ATCC MSA-1003; Fig. 7). 910 

Across all communities, we generally found BugSeq displayed the lowest abundance error of any 911 

method, followed by MEGAN-LR-prot. Though abundance error was higher for Metamaps, 912 
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MMseqs2, and MEGAN-LR-nuc, these methods still performed better than most short-read 913 

methods in most cases. We found that MetaMaps and MMseqs2 showed high read assignment 914 

and precision for one dataset (HiFi ATCC MSA-1003), but for all other datasets showed 915 

unfavorable qualities which resembled many short-read methods (e.g., high false positives and 916 

low precision, high recall). This contrasts with a recent study by Marić et al. (2020), who found 917 

MetaMaps performed better than MEGAN-LR. However, Marić et al. (2020) produced 918 

alignments for MEGAN-LR using a different method (LAST) and a reduced database, which 919 

may explain these differences. Several long-read methods displayed high or perfect precision 920 

(MEGAN-LR-prot, MEGAN-LR-nuc, BugSeq), and this did not change after applying a 921 

moderate detection threshold (0.1% of total reads). However, we observed a dramatic 922 

improvement in precision for MMseqs2 and MetaMaps (Supplementary Fig. S6). This was 923 

accompanied by a slight reduction in recall, suggesting this filtering strategy is beneficial for 924 

these methods. A more stringent detection threshold (1% total reads) resulted in perfect precision 925 

but severely reduced recall for all long-read methods, and is not advised. Overall, we found that 926 

filtering was not required for many long-read methods (MEGAN-LR-prot, MEGAN-LR-nuc, 927 

BugSeq), and that moderate filtering could be used to balance precision and recall for methods 928 

with higher false positive rates (MetaMaps, MMseqs2).  929 

The generalized method, sourmash, also performed consistently well on most datasets, 930 

with nearly perfect recall and precision similar to the top performing long-read classifiers. 931 

Sourmash k31 only had one false negative in any dataset: Clostridium perfringens, which had a 932 

theoretical abundance of 0.0001% in Zymo D6331. When sourmash gather was run with default 933 

fractional scaling (1/1000 k-mers) but without a detection threshold (any k-mer match is 934 

reported), matches were found to 651 Clostridium perfringens genomes, with the most k-mer 935 
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matches to GCA_902166105.1 (Clostridium perfringens strain=4928STDY7387913; 220 k-936 

mers, representing approximately 22,000 bp sequence). This finding suggests that the fractional 937 

scaling was sufficient for detection, but the match was eliminated during the greedy minimum-938 

set-cover assignment to best-match genomes. Disambiguating extremely low-abundance 939 

genomes from similar genomes truly present in the community represents a challenge for 940 

sourmash’s greedy assignment algorithm: most k-mer matches to genomes in the genus 941 

Clostridium were shared with the Clostridioides difficile genome match (1.5% of Zymo D6331), 942 

leaving < 10kb of detected sequence that uniquely matched Clostridium perfringens genomes, 943 

far below the default threshold for sourmash gather (50kb). While zero-threshold gather is too 944 

sensitive (yielding many false positives), setting a moderately lowered detection threshold may 945 

improve recall of very low-abundance genomes in long-read datasets, particularly as sequencing 946 

depth tends to be lower than typical short-read datasets, which sourmash has primarily been 947 

tested on.  948 

Sourmash displayed high precision, comparable to long-read classification methods. The 949 

majority of species-level false positives results represented different species in the same genus. 950 

As k-mer matching is less tolerant of sequence mismatch than alignment methods, these FP 951 

matches may represent genomic sequence shared across these species, but with sequence 952 

mismatches in the sequenced metagenome compared with the reference species in GenBank. 953 

In terms of dataset utilization, sourmash performed less well for ONT data compared 954 

with datasets from other platforms, regardless of read length. This, with the observed improved 955 

performance on ONT Q20 compared with R10.3, suggests that the error profile may reduce exact 956 

matching of k31 and k51 k-mers to reference genomes. However, sourmash still performed well 957 

on ONT community composition and relative abundance, suggesting that ONT datasets provide 958 
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sufficient non-erroneous k-mers for assignment via the minimum-set-cover approach, and that 959 

the error profile does not result in profiling bias across taxa.  960 

 961 

Best Practices and Detection limits. Our findings demonstrate the important trade-offs between 962 

precision, recall, and detection limits. Taxonomic profiling methods which have high recall (e.g., 963 

they find all the species present in a community) also tend to have low precision (e.g., they 964 

recover many false positives). In our experiment, methods with these characteristics include 965 

many short-read methods (Kraken2, Bracken, Centrifuge-h22, MetaPhlAn3), and several long-966 

read methods (MetaMaps, MMseqs2). There is one clear exception to this rule – sourmash 967 

displays near perfect recall and high precision, particularly in the HiFi datasets (Fig. 3, 968 

Supplementary Fig. S2). Sourmash is k-mer-based, similar to Kraken2, Bracken, and Centrifuge, 969 

but uses k-mers from across the entire dataset, rather than individual reads, to find best-match 970 

genomes. In this way, it is able to leverage longer-range information present in a dataset, though 971 

not across reads themselves. By contrast, most other methods which have high precision (e.g., no 972 

false positives) tend to have lower recall (e.g., not all species are detected). In our experiment, 973 

this was represented by several long-read methods, including MEGAN-LR-prot, MEGAN-LR-974 

nuc, and BugSeq. These three methods involve mapping reads to whole-reference databases, and 975 

subsequently interpreting alignments across the entire length of reads. This strongly suggests that 976 

top-performing methods are those that can utilize long-range information available in long reads. 977 

Although mOTUs2 displays high precision, its current implementation breaks long reads into 978 

artificial short reads and eliminates all long-range information, making it less desirable for long-979 

read metagenomics.  980 
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If precision is the most important aspect of a long-read metagenomics experiment, we 981 

suggest using MEGAN-LR-prot, MEGAN-LR-nuc, or BugSeq, which do not require any 982 

additional post-processing or filtering. The choice among them could depend on which 983 

references will be used (proteins: MEGAN-LR-prot; nucleotide sequences: BugSeq, MEGAN-984 

LR-nuc), computational skills/resource availability (BugSeq is an online service platform; the 985 

MEGAN-LR workflows require high resources and bioinformatics experience), and abundance 986 

estimation (BugSeq and MEGAN-LR-prot are considerably more accurate than MEGAN-LR-987 

nuc). One additional advantage of MEGAN-LR-prot is that it simultaneously assigns functional 988 

annotations to genes on reads, providing both taxonomic and functional profiles.   989 

There may also be cases where recall is more important for an experiment. For these use-990 

cases we recommend using sourmash, which had the highest recall without reduced precision. 991 

With sourmash, we detected all species down to 0.001% relative abundance in the HiFi datasets, 992 

with only 2–3 false positives (Table 4, Supplementary Table S9). While this method appears to 993 

have reduced precision with ONT data (Supplementary Fig. S3), the genome-level assignments 994 

produced during rapid sourmash profiling could be used as candidate genomes for detailed, 995 

alignment-based analysis to confirm results and reduce false positives [35]. Other long-read 996 

methods with high precision (MEGAN-LR-prot, MEGAN-LR-nuc, BugSeq) had excellent recall 997 

for species with higher abundances. These three methods confidently detected species with 0.1% 998 

and greater abundance in all the mock communities, with no false positives detected at these 999 

higher abundance levels. However, the lower detection limit for these three methods appears to 1000 

be somewhere between 0.1% and 0.02% relative abundance. An important caveat is that these 1001 

detection limits are based on results from the PacBio HiFi staggered communities, which consist 1002 

of 2–2.5 million reads and a minimum detection count of 20–25 reads (Table 3).  1003 
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Finally, it is important to consider the impact of novel sequences on performance. All 1004 

species in our study have suitable representation in the databases used (but see caveats for Zymo 1005 

D6331), and we therefore did not investigate this topic explicitly. However, we propose three 1006 

features may be important for working with novel diversity in empirical samples. First, the LCA 1007 

algorithm provides beneficial behavior in ambiguous cases, preventing mis-assignments at the 1008 

species level by making assignments to higher taxa. Second, protein-based alignments may be 1009 

more advantageous than nucleotide alignments or k-mer matches for highly distant sequences. 1010 

Finally, methods which utilize large, comprehensive databases should provide advantages over 1011 

smaller or marker-specific databases. For example, utilizing NCBI nt or nr allows for the 1012 

inclusion of new sequences that are continuously deposited in public databases. We propose the 1013 

effects of novel sequences would be a useful topic for future study, particularly for long-read 1014 

datasets. 1015 

 1016 

Effects of Shorter Reads. Our comparisons of length-filtered datasets strongly suggest that 1017 

including shorter long reads (< 2kb) can have an adverse effect on taxonomic profiling. We 1018 

found that datasets with many shorter reads had significantly lower precision and F-scores 1019 

compared to datasets containing only longer reads. We also found that the inclusion of shorter 1020 

reads heavily skewed relative abundance estimates, which are based on read counts in our 1021 

experiment. We acknowledge that calculating abundance estimates from the total number of 1022 

aligned bases could potentially mitigate this effect. More importantly, we found that precision, F-1023 

scores, and relative abundances were affected across all methods, suggesting these shorter read 1024 

lengths may be a “gray” zone for both classes of methods. For example, some long-read methods 1025 

require the presence of multiple genes for the LCA algorithm to function well (MMSeqs2, 1026 
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MEGAN-LR-prot). Reads that are <2kb are unlikely to satisfy this criterion. Therefore, we 1027 

strongly recommend filtering these shorter long reads before attempting taxonomic 1028 

classification. This can be achieved bioinformatically after sequencing, but performing size 1029 

selection during library preparation can also greatly reduce the number of shorter fragments that 1030 

are sequenced. 1031 

 1032 

Effects of Read Accuracy. We included mock community datasets sequenced with PacBio HiFi 1033 

and ONT, allowing for limited comparisons of methods across sequencing technologies. One 1034 

noticeable difference occurs in read utilization for methods that perform translation alignments to 1035 

protein references and exact k-mer matching. For example, more reads were assigned in HiFi 1036 

versus ONT datasets for MMseqs2 (94–99% vs. 46–67%) and to a lesser extent MEGAN-LR-1037 

prot (71–74% vs. 60–62%). This result could be related to differences in the mock communities 1038 

sequenced, however the species in all three mock communities are expected to have adequate 1039 

representation in the databases (except two species in HiFi Zymo D6331). It is more likely that 1040 

differences in error profiles explain these results, as even slightly higher error rates are expected 1041 

to negatively impact translation alignment (broken reading frames, premature stop codons). This 1042 

is idea is supported by two observations. First, this effect was more pronounced for MMseqs2, 1043 

which uses Prodigal for translation rather than a frameshift-aware method such as DIAMOND. 1044 

Second, the ONT data include an R10.3 dataset with Guppy basecalling (mean = Q10.5; reported 1045 

at data source) and the newest “Q20” chemistry release with Bonito v0.3.5 basecalling (expected 1046 

modal quality ~Q20), and we found fewer reads were assigned in the R10.3 dataset versus the 1047 

Q20 dataset for MMSeqs2 (46% vs. 67%, respectively). We note the same pattern was present 1048 

for Centrifuge-500, which requires 500 matched k-mer bases to the reference; read assignment 1049 
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improved dramatically from ONT R10.3 to Q20 (1% vs. 53%, respectively). This result also 1050 

occurred for sourmash, another k-mer-based method. Here, read assignment improved from ONT 1051 

R10.3 to Q20 (41% vs. 68% for sourmash-k31; 26% vs. 59% for sourmash-k51). However, 1052 

despite the improvement in accuracy for the ONT Q20 dataset, it still had lower read assignment 1053 

for protein alignment methods and sourmash as compared to both HiFi datasets (Fig. 2). The 1054 

HiFi ATCC and Zymo datasets are more accurate; all reads are >Q20 and the median scores are 1055 

Q36 and Q40. Together, these results suggest that read quality remains critical for high-quality 1056 

taxonomic profiling with long-read methods.  1057 

Different mock communities were available for PacBio HiFi (ATCC MSA-1003, Zymo 1058 

D6331) and ONT (Zymo D6300), which prevents a direct comparison of detection metrics 1059 

(precision, recall, and F-scores) and detection limits across sequencing technologies. The mock 1060 

community sequenced with ONT is simpler than the HiFi mock communities in terms of the total 1061 

number of species (10 vs. 17/20) and relative abundances (even vs. staggered). The simpler 1062 

mock community design also prevented us from estimating recall and detection limits for lower 1063 

abundance species with ONT data; our conclusions about detection power at low abundances are 1064 

based exclusively on PacBio HiFi data. In their study, Marić et al. [17] found that ONT pseudo-1065 

mock datasets displayed lower classification accuracy, higher false positives, and higher relative 1066 

abundance error relative to PacBio pseudo-mock datasets. However, the pseudo-mock datasets 1067 

for ONT and PacBio included in their study contained different numbers of species and 1068 

abundance designs, meaning they were not direct comparisons. We caution against this type of 1069 

approach, and instead propose that an objective comparison of detection metrics should be 1070 

performed by sequencing the same mock community standard using both technologies. We also 1071 
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propose that a mock standard with high species diversity and staggered abundances will provide 1072 

the most meaningful information for future benchmarking studies. 1073 

 1074 

CONCLUSION 1075 

 1076 

With increasing quality and prevalence of long-read datasets, it is critical to assess the utility of 1077 

these data for taxonomic profiling of metagenomic samples. Here, we evaluated several profiling 1078 

and classification methods for mock communities sequenced with PacBio HiFi and ONT. We 1079 

also included Illumina short read data for these communities as a comparison. Our results 1080 

demonstrate there are clear precision and recall trade-offs associated with each method. We 1081 

found that several popular short-read methods (Kraken2, Bracken, Centrifuge) resulted in many 1082 

false positives, particularly at lower abundance levels. Filtering can increase precision for these 1083 

methods, but comes at the cost of severely reducing recall. Importantly, we determined this 1084 

pattern of low precision and high recall occurred for these methods using both long-read and 1085 

short-read datasets. This suggests the methods themselves, rather than differences in read lengths 1086 

or platform, are driving these outcomes. By contrast, we found sourmash and several long-read 1087 

classifiers displayed high precision and recall without any filtering necessary. These long-read 1088 

classifiers are alignment-based, and include BugSeq (nucleotide alignments), and MEGAN-LR 1089 

using translation alignments (DIAMOND to NCBI nr) or nucleotide alignments (minimap2 to 1090 

NCBI nt). Sourmash has the highest detection power, finding all species down to 0.001% relative 1091 

abundance with minimal false positives. Our comparisons between long-read sequencing 1092 

technologies indicate that read quality remains critical for taxonomic profiling performance. We 1093 

found that read accuracy impacts the success of methods relying on protein predictions or exact 1094 
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k-mer matches. We also found a high proportion of shorter long reads (<2kb) can result in lower 1095 

precision and inaccurate abundance estimates, relative to length-filtered datasets. However, we 1096 

emphasize that for any given mock community, the long-read dataset (analyzed with sourmash or 1097 

any long-read method) produced significantly better results than the short-read datasets. Methods 1098 

which utilize long-range information present in long-read datasets provide clear improvements in 1099 

taxonomic profiling and abundance estimation, and demonstrate a clear advantage over short-1100 

read methods. To continue studying these effects, we propose that cross-platform sequencing of 1101 

more complex standardized mock communities would be useful for future benchmarking studies.  1102 

 1103 

  1104 
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Figure 1. Violin plots showing the read length distributions for the four mock community 1267 

datasets included in this study, after length-filtering was applied to remove shorter reads (see 1268 

methods). Interiors of plots contain white dots representing median values, black bars represent 1269 

interquartile values, and black lines represent minimum and maximum range values. Read sizes 1270 

range up to 50,000 bp in length, but the plot is clipped at 25,000 bp to show the core size 1271 

distributions. 1272 
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Figure 2. Read utilization for (A) HiFi ATCC MSA-1003, (B) HiFi Zymo D6331, (C) ONT R10 1274 

Zymo D6300, and (D) ONT Q20 Zymo D6300. The stacked barplots show the total percent of 1275 

reads that were assigned to taxonomy. Different colors show the percentage of reads assigned to 1276 

specific taxonomic ranks.  1277 
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Figure 3. Precision, recall and F-scores for the species-level analysis based on a minimum threshold of 0.001% of the total reads for 

(A) HiFi ATCC MSA-1003, (B) HiFi Zymo D6331, (C) ONT R10 Zymo D6300, and (D) ONT Q20 Zymo D6300. 
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Figure 4.  The average values for (A) precision and recall, (B) F1 scores, and (C) F0.5 scores for the species-level analysis based on a 

minimum threshold of 0.001% of the total reads. Methods to the right of the vertical line in (B) and (C) are the long-read classifiers.  
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Figure 5. Precision, recall and F-scores for the genus-level analysis based on a minimum threshold of 0.001% of the total reads for 

(A) HiFi ATCC MSA-1003, (B) HiFi Zymo D6331, (C) ONT R10 Zymo D6300, and (D) ONT Q20 Zymo D6300. 
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Figure 6.  The average values for (A) precision and recall, (B) F1 scores, and (C) F0.5 scores for the genus-level analysis based on a 

minimum threshold of 0.001% of the total reads. Methods to the right of the vertical line in (B) and (C) are the long-read classifiers.  
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Figure 7. Species-level relative abundance estimates for (A) HiFi ATCC MSA-1003, (B) HiFi 

Zymo D6331, (C) ONT R10 Zymo D6300, and (D) ONT Q20 Zymo D6300. The theoretical 

distributions are shown on the left and are based on the manufacturer’s specifications. The read 

counts for all species-level false positives were grouped in a category labeled ‘Other’. For HiFi 

Zymo D6331, all species assignments within the genera Prevotella and Veillonella were counted 

towards Prevotella corporis and Veillonella rogosae, due to the absence of these species from 

several databases (see methods). Asterisks signify methods that failed the chi-squared goodness 

of fit test (e.g., the abundance estimates were significantly different from the theoretical values).  
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Figure 8. Genus-level relative abundance estimates for (A) HiFi ATCC MSA-1003, (B) HiFi 

Zymo D6331, (C) ONT R10 Zymo D6300, and (D) ONT Q20 Zymo D6300. The theoretical 

distributions are shown on the left and are based on the manufacturer’s specifications. The read 

counts for all genus-level false positives were grouped in a category labeled ‘Other’. Asterisks 

signify methods that failed the chi-squared goodness of fit test (e.g., the abundance estimates 

were significantly different from the theoretical values).  
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Figure 9. Results for the two Illumina short-read datasets. Precision, recall and F-scores for the 

species-level analysis based on a minimum threshold of 0.001% of the total reads for (A) 

Illumina ATCC MSA-1003 and (B) Illumina Zymo D6300. Species-level relative abundance 

estimates for (C) Illumina ATCC MSA-1003 and (D) Illumina Zymo D6300. The theoretical 

distributions are shown on the left and are based on the manufacturer’s specifications. The read 

counts for all species-level false positives were grouped in a category labeled ‘Other’. Asterisks 

signify methods that failed the chi-squared goodness of fit test. 
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Figure 10.  Results for the two Illumina short-read datasets. The average values for (A) precision and recall, (B) F1 scores, and (C) 

F0.5 scores for the species-level analysis based on a minimum threshold of 0.001% of the total reads. 

 

 

  

.
C

C
-B

Y
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted N
ovem

ber 15, 2022. 
; 

https://doi.org/10.1101/2022.01.31.478527
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2022.01.31.478527
http://creativecommons.org/licenses/by-nd/4.0/


68 

 

Table 1. Description of the publicly available mock community datasets used for this experiment. 

Label Technology Mock 
Community 

Species Abundances Reads Used Median 
Length 

Mean 
Length 

Total 
Bases 

Median 
QV 

Release 
Date 

Source 

HiFi ATCC MSA-1003 PacBio HiFi ATCC  
MSA-1003 

20 a Staggered 
(14–0.02%) 

2,419,037 8,310 8,492 20.54 Gb 36 6/4/19 NCBI: 
SRX6095783 

HiFi Zymo D6331 PacBio HiFi ZymoBIOMICS 
D6331 

17 b Staggered 
(18–0.0001%) 

1,978,852 8,077 9,092 17.99 Gb 40 11/25/20 NCBI: 
SRX9569057 

ONT R10 Zymo D6300 Oxford 
Nanopore 
Technologies 

ZymoBIOMICS 
D6300 

10 c Even  
(12%, 2%) 

275,318d 6,664 12,022 3.31 Gb 10 2/7/20 https://lomanlab.g
ithub.io/mockcom
munity/r10.html 

ONT Q20 Zymo D6300 Oxford 
Nanopore 
Technologies 

ZymoBIOMICS 
D6300 

10 c Even  
(12%, 2%) 

2,000,000d 4,160 4,805 9.61 Gb N/A 3/23/21 ENA: 
ERR5396170 

Illumina ATCC MSA-
1003 

Illumina ATCC  
MSA-1003 

20 a Staggered 
(14–0.02%) 

10,038,314 125 125 1.25 Gb 37 12/2018 NCBI: 
SRX5169925 

Illumina Zymo D6300 Illumina ZymoBIOMICS 
D6300 

10 c Even  
(12%, 2%) 

20,000,000e 150 150 2.99 Gb 37 7/2020 NCBI: 
SRX8824472 

a: 20 bacteria; b: 14 bacteria, 1 archaea, 2 yeasts; c: 8 bacteria (at 12% abundance), 2 yeasts (at 2% abundance); d: length-filtered to 
eliminate reads < 2 kb and > 50 kb from starting set of 1.16 million reads (ONT R10) and 5.4 million reads (ONT Q20); e: 
subsampled from ~103 million available reads. 
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Table 2. Overview of taxonomic profiling methods used in this experiment. 

Intended Use Method Variations Reference Database Strategy 
Short reads Kraken2 - “PlusPF” K-mer-based 
 Bracken - “PlusPF” Bayesian Refinement 
 Centrifuge h22, h500 Refseq ABVF BW transform, FM-index 
 MetaPhlAn3 - mpa_v30_CHOCOPhlAn_201901 Read mapping, coverage scores 
 mOTUs2 - V3.0.3 Read mapping 
General sourmash k31, k51  GenBank K-mer min-set-cov; LCA algorithm 
Long reads MetaMaps - MiniSeq+H  Approximate mapping 
 MMseqs2 - NCBI nr Translation alignment, LCA algorithm 
 MEGAN-LR-prot - NCBI nr Translation alignment, LCA algorithm 
 MEGAN-LR-nuc HiFi, ONT NCBI nt Nucleotide alignment, LCA algorithm 
 BugSeq-V2 - NCBI nt Nucleotide alignment, LCA algorithm 
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Table 3. Minimum detection thresholds used to score the presence/absence of mock community 

taxa at the species or genus level. 

Dataset Number of 
Reads 

0.001% 
Threshold 

0.1% 
Threshold 

1% 
Threshold 

HiFi ATCC MSA-1003 2,419,037 24 2,419 24,190 
HiFi Zymo D6331 1,978,852 19 1,978 19,788 
ONT R10 Zymo D6300 275,318 2 275 2,753 
ONT Q20 Zymo D6300 2,000,000 20 2,000 20,000 
Illumina ATCC MSA1003 10,038,314 100 10,038 100,383 
Illumina Zymo D6300 20,000,000 200 20,000 200,000 
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Table 4. Species-level detection results based on the minimum 0.001% of total reads threshold. 

Dataset Method 
Type 

Profiling Method True 
Positives 

False 
Positives 

False 
Negatives Precision Recall F1 F0.5 L1 

HiFi ATCC MSA1003 Short read Kraken2 20 96 0 0.17 1.00 0.29 0.21 50.7 

(20 species, staggered)  Bracken 20 112 0 0.15 1.00 0.26 0.18 53.3 

  Centrifuge-h22 20 16 0 0.56 1.00 0.71 0.61 55.1 

  Centrifuge-h500 19 9 1 0.68 0.95 0.79 0.72 54.5 

  MetaPhlAn3 13 38 7 0.26 0.65 0.37 0.29 45.2 

  mOTUs 12 1 8 0.92 0.60 0.73 0.83 50.2 

 General Sourmash-k31 20 5 0 0.80 1.00 0.89 0.83 68.6 

  Sourmash-k51 20 3 0 0.87 1.00 0.93 0.89 67.0 

 Long read MetaMaps 19 10 1 0.66 0.95 0.78 0.70 53.1 

  MMseqs2 19 4 1 0.83 0.95 0.88 0.85 48.8 

  MEGAN-LR-Prot 15 0 5 1.00 0.75 0.85 0.94 37.0 

  MEGAN-LR-Nuc-HiFi 14 0 6 1.00 0.70 0.82 0.92 62.1 

  MEGAN-LR-Nuc-ONT 14 0 6 1.00 0.70 0.82 0.92 62.7 

  BugSeq-V2 16 0 4 1.00 0.80 0.89 0.95 44.4 

Illumina ATCC MSA1003  Short read Kraken2 20 77 0 0.21 1.00 0.34 0.24 44.8 

(20 species, staggered)  Bracken 20 113 0 0.15 1.00 0.26 0.18 36.4 

  Centrifuge-h22 20 57 0 0.26 1.00 0.41 0.31 54.2 

  MetaPhlAn3 12 1 8 0.92 0.60 0.73 0.83 12.7 

  mOTUs 4 1 16 0.80 0.20 0.32 0.50 51.6 

 General Sourmash-k31 20 7 0 0.74 1.00 0.85 0.78 57.2 

  Sourmash-k51 20 5 0 0.80 1.00 0.89 0.83 55.4 

HiFi Zymo D6331 Short read Kraken2* 14 196 1 0.07 0.93 0.13 0.08 51.9 

(17 species, staggered)  Bracken* 14 204 1 0.06 0.93 0.12 0.08 51.0 

  Centrifuge-h22* 12 307 3 0.04 0.80 0.07 0.05 52.9 

  Centrifuge-h500* 11 21 4 0.34 0.73 0.47 0.38 88.7 
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  MetaPhlAn3* 12 22 3 0.35 0.80 0.49 0.40 53.8 

  mOTUs 9 0 6 1.00 0.60 0.75 0.88 63.6 

 General Sourmash-k31 14 1 1 0.93 0.93 0.93 0.93 52.0 

  Sourmash-k51 14 2 1 0.88 0.93 0.90 0.89 55.2 

 Long read MetaMaps* 11 50 4 0.18 0.73 0.29 0.21 74.9 

  MMseqs2* 13 24 2 0.35 0.87 0.50 0.40 90.0 

  MEGAN-LR-Prot* 12 1 3 0.92 0.80 0.86 0.90 68.3 

  MEGAN-LR-Nuc-HiFi* 11 2 4 0.85 0.73 0.79 0.82 83.8 

  MEGAN-LR-Nuc-ONT* 11 1 4 0.92 0.73 0.81 0.87 81.8 

  BugSeq-V2* 12 0 3 1.00 0.80 0.89 0.95 74.5 

ONT R10 Zymo D6300 Short read Kraken2 10 156 0 0.06 1.00 0.11 0.07 22.3 

(10 species, even)  Bracken 10 44 0 0.19 1.00 0.31 0.22 21.5 

  Centrifuge-h22 8 65 2 0.11 0.80 0.19 0.13 34.9 

  Centrifuge-h500 8 0 2 1.00 0.80 0.89 0.95 79.7 

  MetaPhlAn3 8 19 2 0.30 0.80 0.43 0.34 67.1 

  mOTUs 8 0 2 1 0.80 0.89 0.95 20.3 

 General Sourmash-k31 10 11 0 0.47 1.00 0.64 0.53 47.7 

  Sourmash-k51 10 3 0 0.76 1.00 0.87 0.81 28.3 

 Long read MetaMaps 9 41 1 0.18 0.90 0.30 0.21 22.8 

  MMseqs2 10 38 0 0.21 1.00 0.34 0.25 68.2 

  MEGAN-LR-Prot 10 0 0 1.00 1.00 1.00 1.00 61.6 

  MEGAN-LR-Nuc-HiFi 10 0 0 1.00 1.00 1.00 1.00 80.6 

  MEGAN-LR-Nuc-ONT 10 0 0 1.00 1.00 1.00 1.00 81.0 

  BugSeq-V2 10 1 0 0.91 1.00 0.95 0.93 19.4 

ONT Q20 Zymo D6300 Short read Kraken2 10 166 0 0.06 1.00 0.11 0.07 16.7 

(10 species, even)  Bracken 10 184 0 0.05 1.00 0.10 0.06 17.0 

  Centrifuge-h22 8 45 2 0.15 0.80 0.25 0.18 30.7 

  Centrifuge-h500 8 12 2 0.40 0.80 0.53 0.44 43.0 

  MetaPhlAn3 8 34 2 0.19 0.80 0.31 0.22 61.5 
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  mOTUs 8 0 2 1.00 0.80 0.89 0.95 65.1 

 General Sourmash-k31 10 4 0 0.71 1.00 0.83 0.76 55.3 

  Sourmash-k51 10 4 0 0.71 1.00 0.83 0.76 41.5 

 Long read MetaMaps 9 45 1 0.17 0.90 0.28 0.20 14.2 

  MMseqs2 10 13 0 0.44 1.00 0.61 0.49 63.9 

  MEGAN-LR-Prot 10 0 0 1.00 1.00 1.00 1.00 32.7 

  MEGAN-LR-Nuc-HiFi 10 0 0 1.00 1.00 1.00 1.00 80.0 

  MEGAN-LR-Nuc-ONT 10 0 0 1.00 1.00 1.00 1.00 80.5 

  BugSeq-V2 10 1 0 0.91 1.00 0.95 0.93 12.6 

Illumina Zymo D6300 Short read Kraken2 10 62 0 0.14 1.00 0.24 0.17 59.7 

(10 species, even)  Bracken 10 96 0 0.09 1.00 0.17 0.11 80.0 

  Centrifuge-h22 8 27 2 0.23 0.80 0.36 0.27 81.7 

  MetaPhlAn3 7 1 3 0.88 0.70 0.78 0.83 82.7 

  mOTUs 7 0 3 1.00 0.70 0.82 0.92 55.2 

  Sourmash-k31 10 2 0 0.83 1.00 0.91 0.86 99.3 

  Sourmash-k51 9 2 1 0.82 0.90 0.86 0.83 82.3 

*Two species were unavailable in several reference databases for HiFi Zymo D6331, and the set of taxa was adjusted to 15 species to calculate the species 
metrics (see methods). 
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