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Core Ideas: 28 

A multi-parent advanced generation intercross (MAGIC) mapping population was 29 

developed from six founder Stiff Stalk maize inbreds with commercial relevance. 30 

Genetic mapping utilizing an update to R/qtl2 was demonstrated for flowering and plant 31 

height traits. 32 

Genetic mapping using maize inbred and hybrid information was compared and 33 

provided insight into trait expression in inbreds relative to heterotic testcross hybrids. 34 

 35 

Abbreviations: BSSS, Iowa Stiff Stalk Synthetic; BLUE, best linear unbiased estimator; 36 

DH, doubled haploid; ex-PVP, expired Plant Variety Protection; GWAS, genome wide 37 

association study; MAGIC, multi-parent advanced generation intercross population; 38 

PHG, Practical Haplotype Graph; PHI, Pioneer Hi-Bred, International; PVP, Plant 39 

Variety Protection; QTL, quantitative trait locus or loci; SS, Stiff Stalk  40 

 41 
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ABSTRACT 42 

The Stiff Stalk heterotic pool is a foundation of US maize seed parent germplasm and 43 

has been heavily utilized by both public and private maize breeders since its inception in 44 

the 1930’s. Flowering time and plant height are critical characteristics for both inbred 45 

parents and their test crossed hybrid progeny. To study these traits, a six parent 46 

multiparent advanced generation intercross (MAGIC) population was developed 47 

including maize inbred lines B73, B84, PHB47 (B37 type), LH145 (B14 type), PHJ40 48 

(novel early Stiff Stalk), and NKH8431 (B73/B14 type). A set of 779 doubled haploid 49 

lines were evaluated for flowering time and plant height in two field replicates in 2016 50 

and 2017, and a subset of 689 and 561 doubled haploid lines were crossed to two 51 

testers, respectively, and evaluated as hybrids in two locations in 2018 and 2019 using 52 

an incomplete block design. Markers were derived from a Practical Haplotype Graph 53 

built from the founder whole genome assemblies and genotype-by-sequencing and 54 

exome capture-based sequencing of the population. Genetic mapping utilizing an 55 

update to R/qtl2 revealed differing profiles of significant loci for both traits between 636 56 

of the DH lines and two sets of 571 and 472 derived hybrids. Genomic prediction was 57 

used to test the feasibility of predicting hybrid phenotypes based on the per se data. 58 

Predictive abilities were highest on direct models trained using the data they would 59 

predict (0.55 to 0.63), and indirect models trained using per se data to predict hybrid 60 

traits had slightly lower predictive abilities (0.49 to 0.55). Overall, this finding is 61 

consistent with the overlapping and non-overlapping significant QTL found within the 62 

per se and hybrid populations and suggests that selections for phenology traits can be 63 

made effectively on doubled haploid lines before hybrid data is available.  64 
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INTRODUCTION 65 

Multi-parent mapping populations are an effective tool for discovering quantitative trait 66 

loci (QTL) in plant and animal species. Multi-parent advanced generation intercross 67 

(MAGIC) populations offer a powerful QTL mapping structure because intercrossing 68 

more than two parents increases genetic diversity while managing minor allele 69 

frequency and reducing haplotype length through recombination (reviewed in Scott et 70 

al., 2020). MAGIC populations have been used to successfully dissect the genetic 71 

control of complex traits in various plant species, including Arabidopsis (Kover et al. 72 

2009), maize (Dell’Acqua et al. 2015), rice (Ogawa et al. 2018), barley (Sannemann et 73 

al. 2015), wheat (Gardner et al. 2016), sorghum (Ongom and Ejeta 2018), tomato 74 

(Pascual et al. 2015), and cowpea (Huynh et al. 2018). Multi-parent populations balance 75 

the advantages and disadvantages of biparental mapping populations and association 76 

panels. Geneticists often rely on the cross of two individuals with contrasting 77 

phenotypes to generate a population of segregating individuals and then perform 78 

linkage analysis to associate genetic loci with the trait of interest. Recently, increased 79 

marker density due to technological advancements and rapidly declining genotyping 80 

costs allowed researchers to evaluate diverse association panels to assay historical 81 

recombination to find associations between markers and phenotypes (reviewed in Tibbs 82 

Cortes et al. 2021). Despite the success of these methods, both techniques face 83 

intrinsic challenges. Biparental populations rely on the genetic diversity found in just two 84 

parents, which can limit the scope of discovered QTLs to the backgrounds studied. 85 

Association panels often contain rare alleles that do not meet the minor allele frequency 86 

threshold and are discarded due to low statistical power associated with such rarity. 87 
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Thus, MAGIC populations seek to balance these characteristics by incorporating more 88 

than two genetic backgrounds while balancing minor allele frequency and increasing 89 

mapping resolution.  90 

To study the genetic architecture of traits relevant to maize hybrid performance and 91 

adaptation, we developed a MAGIC population from six inbred lines spanning the 92 

diversity of the Stiff Stalk heterotic pool. The Stiff Stalk heterotic group was founded in 93 

the Iowa Stiff Stalk Synthetic (BSSS) breeding population, which was initiated during the 94 

1930’s by Dr. George Sprague to improve stalk quality, yield, and agronomic quality of 95 

maize inbreds (Troyer 2004). Several key inbreds were released out of BSSS, including 96 

B14 in 1953, B37 in 1958, B73 in 1972, and B84 in 1979 (Russell 1972; Russell 1979; 97 

Troyer 1999). Since their release, these founder BSSS inbreds have been used 98 

extensively by breeders in the public and private sectors in the United States, and the 99 

Stiff Stalk group has become the de facto source of seed parent germplasm for many 100 

hybrid breeding programs. It is estimated that B73, B14, and B37 contributed 101 

conservatively 16.4% to germplasm released by Monsanto Company, Pioneer Hi-Bred, 102 

International, and Syngenta between 2004-2008 (Mikel 2011). In a group of 1,506 lines 103 

released under Plant Variety Protection (PVP) certificates between the year 2000 and 104 

2019, researchers found that a third of the lines had kinship estimated Stiff Stalk 105 

admixture greater than 30%, and 15% of lines had Stiff Stalk admixture greater than 106 

50% (White et al. 2020). Thus, the Stiff Stalk heterotic group remains a vital source of 107 

commercial maize germplasm in North America. This research utilized six Stiff Stalk 108 

inbreds - B73, B84, NKH8431, LH145, PHB47, and PHJ40 – that represent key 109 

founders in commercial breeding programs. Recent work reported the genome 110 
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sequences of these inbreds (excluding B73) and found extensive genomic variation 111 

between B73 and the other five parents along with conservation of base BSSS 112 

haplotypes within each inbred (Bornowski et al. 2021). 113 

Throughout the process of developing new inbred lines and hybrid varieties, maize 114 

breeders balance selecting for hybrid yield with other traits needed for successful inbred 115 

and hybrid seed production. Traits such as flowering time and plant height are vital to 116 

the success of an inbred within the breeding program and as a parent to a successful 117 

hybrid variety.  Extensive research has been conducted on maize flowering time, 118 

including the discovery of a multitude of small to large effect QTL contributing to 119 

flowering time and photoperiod sensitivity variation in maize (Buckler et al. 2009; Xu et 120 

al. 2012; Wang et al. 2021) and the identification of several genes and regulatory 121 

elements involved in the pathway, including ID1, DLF1, ZmCCA1, ZmMADS1, 122 

ZmCOL3, Vgt1, ZCN8, ZmCCT, ZmCCT9, ZmCCT10, and ZmMADS69 (Colasanti et al. 123 

1998; Muszynski et al. 2006; Salvi et al. 2007; Wang et al. 2011; Hung et al. 2012; Alter 124 

et al. 2016; Jin et al. 2018; Huang et al. 2018; Guo et al. 2018; Liang et al. 2019; 125 

Stephenson et al. 2019). Flowering time and photoperiod sensitivity are determinants of 126 

maize yield because the combination leads to adaptation of maize lines to their intended 127 

environments, such that tropical lines with daylight sensitivity must undergo extensive 128 

selection for adaptation to succeed in northern regions that do not meet daylight needs 129 

of tropical plants (Xu et al. 2012). In addition, timing of flowering can influence the total 130 

length of time available for grain filling post flowering and the ability of a hybrid to 131 

mature within a frost-free seasonal interval. Within an environment, maize hybrids with 132 

full-season relative maturities often yield more than their shorter-season counterparts, 133 
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and timing of planting date to achieve flowering time before environment specific cutoffs 134 

is vital for maximizing yield potential (Baum et al. 2019). However, later-maturing 135 

varieties can face risk due to early frosts and susceptibility to seasonal drought effects 136 

(Duvick and Cassman 1999), therefore plant breeders need to carefully balance 137 

flowering time and total maturity to suit their target population of environments to 138 

maximize maize grain yield. In maize hybrid varieties, flowering time typically exhibits 139 

heterosis where the hybrid flowers sooner than the earlier of the two inbred parents, as 140 

demonstrated by a partial diallel of ex-PVP inbreds (Li et al. 2018) and an association 141 

panel of 302 diverse inbreds crossed to B73 (Flint-Garcia et al. 2009).  142 

Like flowering time, substantial efforts have been devoted to understanding the genetic 143 

underpinnings of maize plant and ear height. Major mutations in the gibberellin and 144 

brassinosteroid pathways affecting height have been identified in addition to numerous 145 

QTL (reviewed by Salas Fernandez et al., 2009). Despite its high heritability, QTL 146 

affecting height tend to have very small effects, with the largest effect in the maize US-147 

NAM population explaining 2.1 +- 0.9% of the variation, which suggests that maize 148 

height follows an infinitesimal model of inheritance (Peiffer et al. 2014). In addition, 149 

identification of QTL can depend on environmental conditions such as drought and 150 

nutrient stress, which may reduce the relative proportion of additive genetic variance 151 

compared to genotype by environment and error variance (Cai et al. 2012; Wallace et 152 

al. 2016). In general, taller plants can face increased root and stalk lodging pressure 153 

due to the proportionally higher placement of the ear on the stalk, which increases the 154 

ear’s leverage during wind events or disease pressure. During the Green Revolution, 155 

major yield gains were made in rice and wheat by decreasing overall plant height, which 156 
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reduced the risk of lodging under more intensive agricultural management (reviewed by 157 

Khush, 2001). Maize breeders consider height selection in both inbreds and hybrids, as 158 

lodging can make harvest difficult and inefficient for both seed parents and commercial 159 

varieties. Due to heterosis, the hybrid is usually taller than the taller of the two inbred 160 

parents, as shown in a partial diallel of ex-PVP inbreds (Li et al. 2018) and in an 161 

association panel of 302 diverse lines crossed to B73 (Flint-Garcia et al. 2009).  162 

The main objectives of this work are to: i) report a MAGIC population based on the Stiff 163 

Stalk heterotic group and its associated genetic and phenotypic resources, ii) dissect 164 

the genetic architecture of flowering time and plant height within the per se population of 165 

DH lines and two test cross populations, and iii) perform genomic prediction to 166 

investigate the relationship between per se and hybrid phenotypes.  167 

MATERIALS AND METHODS 168 

Population Development: Inbreds B73, B84, NKH8431, LH145, PHB47, and PHJ40 169 

were chosen to represent the primary Stiff Stalk sub-heterotic groups (Table 1) (White 170 

et al. 2020). Biographical information for each line was obtained from the Germplasm 171 

Resource Information Network (GRIN) database (npgsweb.ars-grin.gov). The inbreds 172 

B73 and B84 were released from the BSSS in cycles five and seven, respectively, and 173 

B84 contains resistance to Helminthosporium turcicum (“Ht” currently known as 174 

Setosphaeria turcica, common name Northern Corn Leaf Blight). Inbred LH145 was 175 

developed by Holden’s Foundation Seed, Inc. (acquired by Monsanto Company in 176 

1997) from the cross of A632Ht and CM105, both of which have B14 as a parent. Inbred 177 

NKH8431 was developed from one B73 derived line and two B14 derived lines by 178 

Northrup, King & Company. Inbreds PHB47 and PHJ40 were both released by Pioneer 179 
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Hi-Bred, International (PHI). Inbred PHB47 was made from a cross between B37 and 180 

SD105, with two backcrosses to B37 before inbred development. Inbred PHJ40 is an 181 

early flowering flint and Stiff Stalk line developed in Ontario, Canada, with previously 182 

demonstrated admixture with B37 (White et al., 2020). All inbred lines except B73 183 

previously underwent whole genome, reference guided assembly, which revealed 184 

extensive genetic and genomic diversity between the five lines and B73 (Bornowski et 185 

al. 2021). 186 

Table 1. Origins of Stiff Stalk inbred lines 187 

Line Originator Sub-heterotic 

group 

PI number 

B73 Iowa State University B73 PI 550473 

B84 Iowa State University B73 PI 608767 

LH145 Holden’s Foundation Seed, Inc. B14 PI 600959 

NKH8431 (alias H8431, 

NPH8431) 

Northrup, King & Company B14 PI 601610 

PHB47 (alias B47) Pioneer Hi-Bred International, Inc. B37 PI 601009 

PHJ40 Pioneer Hi-Bred International, Inc. Flint PI 601321 

Table 1 Sub-heterotic groupings from White et al., 2020 188 

The population, named WI-SS-MAGIC, was initiated at the University of Wisconsin 189 

during summer 2008. The six parents were crossed in a half diallel. Next, every possible 190 
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F1 hybrid combination cross was attempted, and seed was included in the subsequent 191 

balanced bulk to maintain equal representation of all parents and account for any failed 192 

crosses. In subsequent generations, plants from the population bulk were randomly 193 

intermated by designating each plant as a pollen parent or seed parent and using the 194 

individual only once for crossing. Balanced bulks were made after harvest of the first 195 

intermating and a subset of the population (hereafter “Subset A”) was sent for doubled 196 

haploid (DH) induction, provided as in-kind support by AgReliant Genetics. The 197 

remaining balanced bulk was randomly intermated for two additional generations and 198 

then sent for DH induction (hereafter “Subset B”). Individuals in Subset A were given 199 

coded names beginning with W10004 and numbered from 1 to N, where N is the 200 

number of individuals (i.e. W10004_0001 through W10004_04xx), and individuals in 201 

Subset B were named using W10004 and a number from 500 to 500+N, where N is the 202 

number of individuals returned (i.e. W10004_0500 through W10004_xxxx) (Table S1).  203 

Collection of Per Se DH Line Phenotypic Data: A set of 779 DH lines was planted 204 

during summers 2016 and 2017 at the West Madison Agricultural Research Station in 205 

Verona, WI (Table S1). Subset A and Subset B groups were organized as subblocks 206 

within a randomized complete block (RCB) design with two replications. Parents were 207 

included as checks in both subblocks. Both trials were planted in fields that followed 208 

soybeans in the previous year and were managed with standard agronomic practices. 209 

Detailed information about planting dates and densities, soil types, and nutrient and 210 

pesticide management is presented in Supplemental Table 2. Three representative 211 

plants per plot were measured for plant and ear height. Plant height was measured as 212 

the height from the ground, in centimeters, to the collar of the flag leaf, while ear height 213 
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was the height, in centimeters, from the ground to the base of the node subtending the 214 

uppermost ear. Growing degree units to anthesis and silking were measured on a whole 215 

plot basis (AnthGDU and SilkGDU, respectively). Anthesis and silking were measured 216 

as the number of days from planting it took to observe approximately 50% of the plants 217 

in the plot to reach pollen shed and silk extrusion, respectively. Dates were converted to 218 

growing degree units using a base temperature of 50º F and maximum temperature of 219 

86º F (Pope 2008) using temperature data obtained from the weather station located at 220 

the University of Wisconsin (UW) West Madison Agricultural Research Station to 221 

standardize for differential daily heat unit accumulation across years. Since lines 222 

developed through doubled haploidy are expected to be genetically uniform, lines with 223 

observable phenotypic segregation were discarded. Severely lodged plants were not 224 

evaluated for height characteristics. To remove outlier data points, individual plant 225 

measurements were discarded if the ear height to plant height measurement ratio was 226 

less than 0.25 or greater than 0.75, and whole plot ear or plant height measurements 227 

were discarded if the within plot variance was greater than 500 cm2. 228 

Generation of Hybrids and Collection of Phenotypic Data: Hybrid seed was 229 

produced by crossing the WI-SS-MAGIC population to PHJ89 and DKH3IIH6 (hereafter 230 

3IIH6). The hybrid populations were named SS-PHJ89 and SS-3IIH6. PHJ89 is an 231 

Oh43-type inbred line developed by Pioneer Hi-Bred (White et al. 2020). The inbred 232 

3IIH6 is an Iodent-type inbred line developed by DeKalb Genetics Corporation (acquired 233 

by Monsanto in 1998, now owned by Bayer AG) through selfing the F1 Hybrid PHI3737 234 

(Dekalb Plant Genetics 1994). PHJ89 and 3IIH6 are related by pedigree through their 235 

founder PHG47, which is one of the two parents of PHJ89 and one of the parents of 236 
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hybrid variety PH3737 from which 3IIH6 was generated through selfing, so they are 237 

expected to contain regions of identity by descent (Pioneer Hi-Bred International Inc. 238 

1992; Mikel 2011). Hybrids were grown during summers 2018 and 2019 at the UW 239 

West Madison Agricultural Research Station in Verona, Wisconsin and at the UW 240 

Arlington Research Station in Arlington, WI. Hybrids were blocked by tester, and each 241 

block included at least five replicates each of two commercial hybrids (DKC50-08RIB 242 

and DKC54-38RIB) and two replicates of each respective population parent-tester 243 

combination, when seed was available. All trials were incompletely replicated, where 244 

each hybrid genotype was grown at least once in each experiment with a consistent 245 

random subset replicated a second time. A total of 689 SS-3IIH6 hybrids were grown, of 246 

which 316 were replicated, while a total of 561 SS-PHJ89 hybrids were grown, of which 247 

377 were replicated (Table S1). The same set of replicated and unreplicated lines were 248 

grown across years and locations, with unique plot randomizations for each year-249 

location combination. Replicated hybrids were randomized among the unreplicated 250 

hybrids within their respective tester blocks. All trials were planted in fields that followed 251 

soybeans in the previous year and were managed with standard agronomic practices. 252 

Detailed information about planting dates and densities, soil types, and nutrient and 253 

pesticide management is presented in Table S2. Flowering time growing degree units 254 

were recorded in the same manner as previously described for the per se population 255 

using weather data obtained from each research station. Flowering time was recorded 256 

for all hybrid plots in West Madison and for approximately 36% and 33% percent of 257 

hybrid plots in Arlington in 2018 and 2019, respectively. Plant height and ear height 258 

were measured on three competitive plants per plot for all plots. Stand counts were 259 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.01.31.478539doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478539
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

recorded manually, and plots were discarded if they contained fewer than twenty plants. 260 

The 2019 West Madison trial experienced extremely wet and cold germination 261 

conditions, which led to low stand counts for the SS-3IIH6 block. Only 19% and 38% of 262 

the plots had stands greater than 50 and 40 plants, respectively, which prompted us to 263 

discard the height data due to inconsistent interplant competition but keep flowering 264 

time data due to good correlations with flowering time from the previous year. To 265 

remove outlier data points, individual plant measurements were discarded if the ear 266 

height to plant height measurement ratio was less than 0.25 or greater than 0.75, and 267 

whole plot height measurements were discarded if the within plot variance was greater 268 

than 500 cm2. Plot average height measurements and flowering GDU measurements 269 

that were more than three standard deviations away from the experiment wide mean 270 

were discarded.  271 

Analysis of Phenotypic Data: A two stage approach was taken to analyze plot mean 272 

phenotypic data (Table S3). In stage one, following the procedures of (Rogers et al. 273 

2021), linear mixed models were fit using R/ASReml version four (Butler et al. 2017; 274 

RCoreTeam 2018) for each population within each environment using genotype as a 275 

fixed effect and replicate as a random effect. Next, models were fit with all combinations 276 

of autoregressive first order (AR1) and IID residual covariance structures of the x and y 277 

grid coordinates of the plot locations to account for spatial variation. The model with the 278 

lowest Schwarz’s Bayesian Information Criterion (BIC) (Schwarz 1978) was chosen to 279 

represent the environment, and the BLUEs and standard errors were extracted from the 280 

model (Table S4). Due to our incomplete block structure, the residual spatial 281 

correlations were restricted to -0.6 < r < 0.6. Any models with correlation outside this 282 
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range were reset to using no residual covariance structure. In stage two, genotypes 283 

were fit as fixed effects and environment and genotype by environment interaction 284 

terms were set as random effects. To weight the second stage analysis, the reciprocals 285 

of the first stage BLUE standard errors were carried forward, which represent the 286 

genotype by replication interactions, and the units variance was constrained to one. 287 

Within each experiment, any phenotypic BLUE that fell outside 2.5 times the 288 

interquartile range (IQR) was discarded as an outlier. Following the data cleaning 289 

described in the previous sections and the post hoc cleaning based on IQR, BLUEs 290 

were calculated for 730 DH lines, 658 SS-3IIH6 hybrids, and 535 SS-PHJ89 hybrids. 291 

Parental check lines were included in the analysis because they constitute the same 292 

population as the experimental lines, while commercial check hybrids were not included 293 

in the analysis. To estimate variance components and calculate heritability, the same 294 

model was used except genotype was set as a random effect. Heritability was 295 

calculated as follows (Cullis et al. 2006): 296 

[1] ℎ஼௨௟௟௜௦ଶ = 1 − ܸܧܲ ⁄௚ଶߪ2  297 

using the prediction error variance (PEV) and genetic variance (σ̂ 2g) obtained from the 298 

stage two analysis. To compare phenotypic variances across populations, the squared 299 

coefficient of variation was calculated to correct for the differences in scale between per 300 

se and hybrid phenotypes (Falconer and Mackay 1989). Pearson correlations within and 301 

between phenotypes were calculated on trait BLUE values within and between the DH 302 

and two hybrid populations.  303 

Genetic Data 304 
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Sequencing Using Exome Capture: Exome capture sequencing was performed on 305 

701 DH lines from the WI-SS-MAGIC (Table S1) using a custom capture design 306 

acquired from Roche Diagnostics Corporation (Indianapolis, IN). Probes were designed 307 

to target the 5’ and 3’ ends of the untranslated regions (UTRs) of the maize 308 

B73_RefGen_v2 genic regions and presence absence variation (PAV) regions derived 309 

from alignment of whole genome sequencing reads of a core set of 32 inbreds to B73 310 

(Brohammer et al. 2018; Mazaheri et al. 2019). In total, 82,351 genic regions 311 

(approximately 26.5 Mb) and 492 PAV regions (approximately 2.8 Mb) of the maize 312 

genome were targeted using tiled, variable length probes, with an average probe size of 313 

75 nt (File S1). Any overlapping regions were collapsed into a single target. The target 314 

regions ranged in size from 50 to 49,777 nucleotides (nt), with a mean size of 353.6 nt 315 

(File S2). Briefly, DNA was extracted using seedling tissue using a modified CTAB 316 

method (Saghai-Maroof et al. 1984), sheared, and hybridized with adapters prior to 317 

SeqCap EZ solution capture, as previously described (Mascher et al. 2013) (File S3). 318 

DNA was then amplified, enrichment quality control performed, and libraries sequenced 319 

by the United States Department of Energy Joint Genome Institute (JGI) in paired end 320 

mode on the Illumina HiSeq 2500. Raw sequence quality was evaluated using FastQC 321 

v0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc) and MultiQC v1.0 322 

(Ewels et al. 2016). Reads were then trimmed, low quality bases removed, and 323 

adapters removed using Cutadapt v1.14 (Martin 2011) with the following parameters: --324 

length 150, -m 20, -q 20, 20, --times 2, and -g/-a/-G/-A along with their respective 325 

adapter sequences. After cleaning, read quality and adapter content were evaluated 326 

again using FastQC v.0.11.5 and MultiQC v1.0. 327 
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Genotyping By Sequencing: Additional genotyping was performed on 144 DH lines 328 

using Genotyping-by-Sequencing (GBS) at the University of Wisconsin Biotechnology 329 

Center (Table S1). Briefly, dual digest GBS was performed with restriction enzymes PstI 330 

and MspI on frozen seedling leaf tissue (Elshire et al. 2011; Poland et al. 2012). DNA 331 

was sequenced using an Illumina NovaSeq6000 in paired end mode 150 nt and 332 

analyzed using bcl2fastq v2.20.0.422 (San Diego, CA, USA). Read one was 333 

demultiplexed and barcodes were removed using Tassel-5-Standalone plugin 334 

“ConvertOldFastqToModernFormatPlugin” with parameters “-e PstI-MspI” and “-p R1” 335 

(Bradbury et al. 2007). Read two was not included in future analysis. 336 

Practical Haplotype Graph: A Practical Haplotype Graph (version 0.0.30) was built 337 

using B73 v5 as the reference (Bradbury et al. 2021, maizegdb.org). The B73 338 

RefGen_v5 annotation of genes (Zm-B73-REFERENCE-NAM-5.0_Zm00001eb.1.gff3, 339 

available at maizegdb.org) was used to make the initial reference ranges, which were 340 

supplied to the “CreateValidIntervalsFilePlugin” to collapse any overlapping ranges and 341 

format for input into PHG. B73 RefGen_v5 was loaded as the reference assembly using 342 

the “MakeInitialPHGDBPipelinePlugin”, followed by the other five parental de novo 343 

genome assemblies using the “AssemblyHaplotypesMultiThreadPlugin” (Bornowski et 344 

al. 2021). The “AssemblyHaplotypesMultiThreadPlugin” uses mummer4 to align each 345 

assembly to the reference by chromosome in parallel (Marçais et al. 2018). Next, B73 346 

was added to the graph using the “AddRefRangeAsAssemblyPlugin” which allows B73 347 

haplotypes to be included as potential parental sequences. 348 

A ranking file was generated by counting the number of haplotypes found within each 349 

assembly. The ranking file is necessary when two or more haplotypes are collapsed into 350 
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a consensus haplotype, where the sequence of the highest-ranking line will represent 351 

the group. Consensus haplotypes were made using the PHG shell script 352 

“CreateConsensi.sh” with parameters “mxDiv=0.0001” and “minTaxa=1”. All other 353 

parameters were left as default. The value of “mxDiv=0.0001” was chosen such that 354 

genic regions would only be collapsed if they were truly identical, since over 90% of 355 

maize gene models are shorter than 10,000 bp. After consensus haplotypes were 356 

generated, the “ImputePipelinePlugin” with parameter “-imputeTarget pathToVCF" was 357 

used to index the pangenome, map exome capture and GBS reads to the graph, use a 358 

Hidden Markov Model to find paths through the graph for each taxon, and call SNPs in 359 

the genic reference regions for the progeny population. Exome capture reads were 360 

aligned as paired end sequences, while the GBS reads were aligned as single end 361 

sequences. Parental assembly genic SNPs were extracted from the graph using the 362 

“FilterGraphPlugin” and “PathsToVCFPlugin”. Due to the expected homozygosity of the 363 

DH lines and parental assemblies, only homozygous SNPs were generated from the 364 

PHG.  365 

Markers were filtered and selected for mapping using Tassel-5-Standalone (Bradbury et 366 

al. 2007). The combined file of parental and population individuals (File S4) was filtered 367 

to remove any non-Stiff Stalk individuals that were included as checks, SNPs with any 368 

missing parental data were removed, minor SNP states were set to missing to remove 369 

third, fourth and other alleles, and the SNP was removed if the minor allele frequency 370 

was less than 0.05. To reduce correlation between SNPs and decrease QTL mapping 371 

computational time, 100,000 evenly spaced SNPs were selected across the ten 372 

chromosomes and converted to numerical major or minor alleles.  373 
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Population genetic characteristics: Multidimensional scaling (MDS) was performed 374 

using 1.8 million unfiltered genic SNPs to confirm lack of population structure. A 375 

distance matrix was calculated using the “DistanceMatrixPlugin” from Tassel-5-376 

Standalone with default parameters (Bradbury et al. 2007). In R, cmdscale() was used 377 

to calculate classical MDS on the distance matrix for the first two dimensions 378 

(RCoreTeam 2018). Allele frequencies were calculated on the set of 100,000 SNPs 379 

used for QTL mapping. 380 

QTL Mapping: Quality control analyses, single-marker QTL mapping, and SNP 381 

associations were performed using R/qtl2 with the cross-type corresponding to our 382 

mating design, “dh6” (Broman et al. 2019). Whenever individuals underwent both 383 

exome capture and GBS, the GBS reads were used to generate markers for QTL 384 

mapping. To prepare the data, a control file was created using the function 385 

write_control_file() from R/qtl2, which specifies the cross type for our population, the file 386 

names of the population and parental SNPs, the physical map coordinates for the 387 

SNPs, the phenotype file, the cross information file, which contains the number of 388 

meiosis used to generate each individual, and the parental alleles “AA” through “FF”. 389 

Due to the high density of markers, a genetic map was approximated by converting 390 

each SNP’s megabase pair position to centiMorgans using the B73 RefGen_v5 391 

chromosomal genome length of 2132 Mbp divided by the composite US-NAM genetic 392 

map length of 1456.68 cM (Li et al. 2015). The control file and all materials needed for 393 

mapping are provided as Supplemental File S5.  394 

Any line with segregating per se phenotypes had previously been removed from further 395 

analysis. To identify potential sample duplicates, the function compare_geno() was used 396 
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to calculate marker matching for all pairwise comparisons, and any pair of individuals 397 

with greater than 95% marker sharing was removed. Conditional genotype probabilities, 398 

or the true genotype underlying the observed markers, were calculated using a Hidden 399 

Markov Model (HMM) in the function calc_genoprob(), with an error probability of 0.01.  400 

(Broman and Sen 2009, Appendix D). After calculating genotype probabilities, the 401 

maximum marginal probability of the parental haplotypes was calculated and the total 402 

number of crossover events per individual was identified using the function count_xo(). 403 

Crossover locations were estimated using the function locate_xo(). Lines with unusually 404 

high numbers of total crossovers could be the result of sample contamination during 405 

population development or maintenance, as the HMM cannot accurately deduce the 406 

correct underlying parental haplotypes in non-parental regions, and instead frequently 407 

switches back and forth among the parent haplotypes.  Lines in Subset A with more 408 

than 150 crossovers or lines in Subset B with more than 250 crossovers were removed 409 

from further analysis. 410 

After quality control, 657 individuals remained with phenotypes and genotypes for 411 

mapping purposes (Table S1). The genotype probabilities were used to calculate a 412 

kinship matrix, so the analysis could account for the relatedness between individuals 413 

using the “leave one chromosome out” (LOCO) method, which uses a kinship matrix 414 

derived from all other chromosomes except the chromosome under study to allow for a 415 

random polygenic effect (Yang et al. 2014). Next, single marker analysis was performed 416 

using a linear mixed model with the kinship matrix as a covariate to find associations 417 

between genotype and phenotype. Log of odds (LOD) thresholds were determined as 418 

the 95th percentile LOD score after 1,000 permutations of the founder probabilities 419 
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using the function scan1perm() (Churchill and Doerge 1994; Cheng and Palmer 2013). 420 

Bayesian credible intervals for QTL peaks were calculated using the function 421 

find_peaks(), with LOD thresholds specific to each phenotype and probability of 0.95. 422 

To declare two QTL under one large peak, the LOD threshold was required to drop by 423 

at least five. Chromosome-wide QTL BLUP effects were calculated using the function 424 

scan1blup(), and single locus BLUP effects were estimated using fit1() with “blup=T”.  425 

In addition to single marker QTL mapping, we also performed SNP association using 426 

the R/qtl2 function scan1snps(), with the same kinship matrix as previously described 427 

provided to account for population structure. Finally, not all DH lines included in the per 428 

se mapping were used to make the hybrid populations. To account for this difference in 429 

sampling between the per se traits and the hybrid traits, the sets of DH lines included in 430 

each hybrid population were used to repeat the mapping and permutation procedures 431 

for each per se trait that corresponded to a hybrid trait.  432 

Genomic Prediction: To test the correlation between per se and hybrid phenotype 433 

based on the DH population per se genetics, we performed genomic prediction using 434 

the 100,000 SNP markers used for QTL mapping. We used the package R/rrBLUP to 435 

perform ridge regression on the marker effects, which is equivalent to calculating 436 

genomic estimated breeding values using a realized relationship matrix (Hayes et al. 437 

2009; Endelman 2011). We used fivefold cross validation to train and test the models 438 

predicting per se and hybrid traits. We partitioned the phenotypic data into five 439 

segments and used four segments for training the model and the remaining portion for 440 

testing the model. We predicted the phenotypes for each of the five testing segments 441 

and calculated the correlation between the predicted and observed phenotypes, which 442 
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comprised one replication. We repeated this process 100 times for each of the 443 

phenotypes. To indirectly predict the hybrid phenotypes from the parental per se 444 

phenotypes, we calculated the correlation between the testing set predicted per se 445 

phenotypes and the observed hybrid phenotypes.  446 

RESULTS 447 

Phenotypic variation: Plant height and AnthGDU in the per se and hybrid populations 448 

showed normal distributions, and heritability ranged from 0.83 for SS-3IIH6 AnthGDU to 449 

0.89 for SS-PHJ89 AnthGDU (Figure 1, Table S5). The genetic variance for per se, SS-450 

3IIH6, and SS-PHJ89 AnthGDU was 2781.6 GDU2, 1148.6 GDU2, and 944.3 GDU2, 451 

respectively, while the genetic variance for per se, SS-3IIH6, and SS-PHJ89 plant 452 

height was 386.3 cm2, 150.1 cm2, and 144.6 cm2, respectively. Similarly, the squared 453 

coefficient of variation for per se, SS-3IIH6, and SS-PHJ89 AnthGDU was 18.00, 9.24, 454 

and 7.33, while the squared coefficient of variation for per se, SS-3IIH6, and SS-PHJ89 455 

PH was 124.93, 26.79, and 22.35, respectively. All traits except per se and SS-PHJ89 456 

AnthGDU exhibit transgressive segregation, where one or more progeny DH lines have 457 

more extreme values than all the parents (Figure 1). The parental line PHJ40 was the 458 

earliest flowering individual in the per se and SS-PHJ89 experiment.  459 

Anthesis and silking are highly correlated within both DH lines and hybrids, ranging 460 

between Pearson r=0.83 for per se SilkGDU to per se AnthGDU to r=0.93 for SS-3IIH6 461 

SilkGDU to AnthGDU (data not shown). The correlations between per se AnthGDU and 462 

SS-3IIH6 AnthGDU is r=0.64 and per se AnthGDU to SS-PHJ89 AnthGDU is r= 0.66 463 

(Figure 2A and 2B). Correlation between AnthGDU for the two hybrid populations is 464 

higher at r=0.69 (Figure 2C). Plant height and ear height are also highly correlated 465 
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within DH lines and hybrids. Correlations between plant height and ear height are 466 

r=0.79 within both the per se and SS-3IIH6 populations and r=0.83 within the SS-PHJ89 467 

population (data not shown). Per se to hybrid plant height correlations are r=0.64 468 

between DH lines and SS-3IIH6 and r=0.71 between DH lines and SS- PHJ89 (Figure 469 

2D and 2E). Hybrid to hybrid plant height correlation is 0.72 (Figure 2F). The high 470 

correlation between hybrids is expected, due to both the highly additive nature of 471 

flowering time and height and the relatedness between testers 3IIH6 and PHJ89. 472 

On average, the SS-3IIH6 population is 71.5 cm taller and sheds pollen 90.2 GDU 473 

earlier than its DH counterparts, and the SS-PHJ89 population is 82.0 cm taller and 474 

sheds pollen 101.1 GDU earlier than its DH founders. Finally, height and flowering are 475 

also correlated within populations, where r=0.35, 0.41, and 0.59 for the per se, SS-476 

3IIH6, and SS-PHJ89 populations, respectively (Figure S1).  477 

Practical Haplotype Graph: The 39,035 B73 RefGen_v5 annotated gene models were 478 

used as initial reference ranges, and after collapsing overlapping ranges, 36,399 genic 479 

ranges remained, and 36,401 intergenic ranges were inserted between genic ranges for 480 

a total of 72,800 ranges. The average genic range width was 4755 bp, while the 481 

average intergenic range width was 53,811 bp. The theoretical maximum number of 482 

haplotypes per reference range is six, which represents either all inbreds having 483 

sequence that aligns to the reference (including reference to reference alignment), or 484 

five inbreds that have alignment with the reference and one with a missing haplotype. 485 

Not all assemblies have sequence that aligns to every range owing to structural 486 

variation between the parental genomes. Each parental assembly had different 487 

numbers of total haplotypes aligning to B73, from 51,070 haplotypes for PHJ40 to 488 
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66,890 for B84. PHJ40 is known to be more structurally diverse from the other founders 489 

(Bornowski et al. 2021), and the next lowest number of aligned haplotypes was 62,144 490 

for LH145. After collapsing haplotypes into consensus sequences, the average number 491 

of haplotypes per PHG reference range was reduced from 5.7 to 3.3 (Figure 3A). 492 

Identity by descent relationships are present between all of the lines due to their 493 

common heritage from the BSSS, and these relationships are strongest between B73 494 

and B84, B73 and NKH8431, and NKH8431 and LH145. Consensus parental and 495 

population haplotype identification numbers are presented in Table S6. 496 

Population genetic characteristics: Multidimensional scaling (MDS) confirmed the 497 

lack of population structure within our population (Figure 3B). The parental inbred lines 498 

fall on the perimeter of the point cloud, with no discernable clustering of progeny 499 

individuals. Allele frequency distributions for the major and minor alleles appear as 500 

expected, with peaks near 1/6 and 2/6, corresponding to private and two-way sharing of 501 

alleles within the parents, respectively (Figure 3C). The founder probabilities and the 502 

total number of observable crossovers were calculated using R/qtl2. The two population 503 

subsets have overlapping distributions for the total number of crossovers per individual. 504 

While examining the locations and total numbers of crossovers present within 505 

individuals, we found some areas of the genome in certain individuals contained 506 

unusually high numbers of crossovers. Such areas indicate that the Hidden Markov 507 

Model fails to choose a single founder for the area, and instead rapidly switches 508 

between founders. While some individuals had high total genome wide incidence of 509 

crossovers, which indicates a sample mix-up, some lines had isolated areas of high 510 

crossover in only a few regions. Small areas of high crossover could be caused by 511 
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several factors, including residual heterozygosity in the founder inbreds, introgression 512 

from the DH inducer (Li et al. 2009), contamination during population development from 513 

an inbred closely related to one of the founders, or technical issues during the SNP 514 

calling pipeline. In addition, using a PHG with imputation to generate SNPs for the 515 

population forces each individual to have haplotypes only from the population founders 516 

which complicates identifying areas of inducer introgression or contamination. Most 517 

importantly, QTL mapping results did not change significantly between the raw, full set 518 

of lines and the cleaned, reduced set of lines filtered for high total crossovers (150 519 

crossovers for Subset A, 250 crossovers for Subset B), indicating that our results are 520 

robust to this low level of uncertainty.  521 

After removing individuals with high numbers of total crossovers, the Subset A (three 522 

total meioses to generate DH lines) has an average of 60 crossovers, while Subset B 523 

(five total meioses to generate DH lines) has an average of 101 crossovers (Figure 3D). 524 

The parental haplotypes for a set of eight population individuals reveal a mosaic of the 525 

founder genotypes (Figure S2). The top row of individuals belongs to the Subset A and 526 

show longer parental haplotypes than the bottom row of individuals, which belong to 527 

Subset B. In many individuals, there are chromosome sections plotted in white, which 528 

correspond to areas where the founder probabilities do not rise above 0.5. This is 529 

expected, due to the related nature of the population founders and the segments of 530 

identity by descent between them. For example, large stretches of identity by descent 531 

between B73 and B84 due to their selection out of the BSSS would make assigning 532 

population haplotypes to either of the parents difficult, and this issue is compounded by 533 

the presence of BSSS lines in the pedigrees of the other population parents. After 534 
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removing individuals with high crossovers, some regions of local high crossover 535 

frequency remain, potentially due to introgression from the DH inducer which has been 536 

previously observed (Li et al. 2009) or possible factors such as residual heterozygosity 537 

in founder inbreds. 538 

QTL Mapping  539 

QTL Mapping and SNP Association: To analyze flowering time and plant height, we 540 

took both a linkage mapping and SNP association approach. Linkage mapping relies on 541 

linear regression of the phenotypes on the matrix of founder probabilities, while SNP 542 

association regresses the phenotypes on the biallelic marker states. We found high 543 

concordance between linkage mapping and association analysis, where the most 544 

significant loci were identified for all traits by both approaches (Figures S3 and S4). 545 

Thus, we will refer to the linkage mapping results to represent our findings.  546 

Flowering Time: Mapping for AnthGDU revealed several significant peaks across the 547 

ten chromosomes in the WI-SS-MAGIC DH population (Figure 4A, Figure S5). The most 548 

significant peaks appear on chromosome three at 156.3 and 163.1 Mbp and 549 

chromosome eight at 127.9 Mbp (Table S7). Peaks for anthesis and silking highly 550 

colocalized, which is expected due to the high correlation of the phenotypic values at 551 

r=0.83 (Figure S3). Several of the significant loci are near the location of other known 552 

flowering time genes. For example, chromosome three contains ZmMADS69, also 553 

known as Zmm22, and chromosome eight contains ZmRap2.7 and ZCN8, as noted on 554 

Figure 4A.  All three genes are known to regulate flowering time (Guo et al. 2018; Liang 555 

et al. 2019). Despite the high correlations between per se and hybrid flowering, several 556 

QTL that are significant in the per se population lose their significance in one or both 557 
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hybrid populations. The large peak on chromosome eight containing ZmRap2.7 and 558 

ZCN8 is not significant in the SS-PHJ89 population, despite retaining its significance in 559 

the group of DH lines used to make the hybrid population (Figure 4C). The same locus 560 

remains significant in the SS-3IIH6 population, albeit with a smaller LOD score (Figure 561 

4B). Loss of significance indicates a loss in variation, such that the tester may have a 562 

dominant allele that masks the variation within the DH population. This suggests that 563 

there are contrasting loci present between the two testers, where PHJ89 has a 564 

dominant locus relative to the per se population while 3IIH6 does not.  565 

We calculated BLUP QTL effects for per se AnthGDU on chromosomes three and eight 566 

and found allelic series at the significant loci on both chromosomes (Figure 5). On 567 

chromosome three, PHB47 provides the early flowering allele and LH145 provides the 568 

late flowering allele, while on chromosome eight PHJ40 provides the early allele, and 569 

B73 and B84 provide later alleles. It is notable that LH145 is the second earliest parent 570 

of the population and PHB47 flowers near the mean of the population, demonstrating 571 

that alleles for early and late flowering segregate within the parents. Using a single QTL 572 

model to fit the BLUP effects for the chromosome three peak at 163,105,981 bp, the 573 

most extreme alleles from the parents show a -27.2 +/- 8.8 GDU effect for PHB47 and 574 

+22.6 +/- 8.9 GDU effect for LH145. For the peak on chromosome eight at 127,898,534 575 

bp, the most extreme effects are -24.5 +/- 8.9 GDU from PHJ40 and +17.1 +/- 8.9 GDU 576 

from B73.  577 

Plant Height: Like flowering time, many significant peaks were also found for plant and 578 

ear height, such as on chromosomes one, two, three, and ten (Figure 6A, Figure S5, 579 

and Table S7). The most significant locus on chromosome one is located at 225.4 Mbp 580 
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and it contains brd1, a gene which is involved in the brassinosteroid pathway and for 581 

which a mutant allele causes severe dwarfism (Makarevitch et al. 2012). Likewise, the 582 

most significant locus on chromosome three at 8.9 Mbp contains another gene 583 

discovered through mutational studies, DWARF1 (d1), which is involved in the 584 

gibberellin pathway (Chen et al. 2014). Fewer loci colocalized for plant and ear height 585 

compared to AnthGDU and SilkGDU (Figure S4). Most interestingly, a peak on 586 

chromosome six at 105.8 Mbp appears for plant height in the SS-3IIH6 population, but 587 

not in the SS-PHJ89 population (Figure 5B). This peak is near ubi3, previously found to 588 

be associated with height traits (Ding et al. 2016). Previous studies have identified an 589 

epistatic interaction between ubi3 and br2 (Xiao et al. 2021), so we investigated the 590 

parental effects of the peak on chromosome six at 105,826,214 bp for both hybrid 591 

populations and found that the LH145 allele had an effect of +3.5 +/- 1.7 cm, while the 592 

B73 allele had an effect of -4.7 +/- 2.0 cm in the SS-3IIH6 population (Figure S6). Here 593 

again, per se B73 is the tallest of the parents while per se LH145 is the second shortest 594 

and their allelic effects are opposite of their overall phenotypes, but their hybrid 595 

phenotypes are both closer to the population mean. For comparison, the insignificant 596 

chromosome six locus in the per se and SS-PHJ89 populations shows no such 597 

differentiation between the parents (Figure S5). The genetic variance for plant height in 598 

the SS-3IIH6 population was 151.1 cm2, so the allelic effects here are a small proportion 599 

of the total variance.  600 

Genomic Prediction: Because information on the DH lines was available before hybrid 601 

test crosses were made, we tested the predictive abilities of several direct and indirect 602 

genomic prediction models (Figure 7). As expected, the most successful models were 603 
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those that were trained on the data that was most directly related to the predicted set, 604 

such as prediction within the hybrid SS-PHJ89 set and within the SS-3IIH6 set for plant 605 

height (r=0.63 and r=0.60, respectively) and prediction within the per se set for anthesis 606 

(r=0.61). Predictive abilities between test cross populations were moderate, with 607 

AnthGDU predictive abilities for SS-3IIH6 to SS-PHJ89 and vice versa of r=0.55 and 608 

0.54, and plant height at 0.57 and 0.53, respectively. The correlations of the indirect 609 

predictions of per se to hybrid phenotypes were lower, but still greater than r=0.48. It is 610 

important to note that correlations do not consider the difference in scale between the 611 

per se and hybrid populations and cannot account for the population mean heterotic 612 

effect on both flowering time and plant height between the populations. Finally, we 613 

wanted to test the feasibility of using predicted per se data to discard DH lines from our 614 

breeding program that either are too tall or flower too late for our environment. We 615 

compared the predicted per se AnthGDU and per se plant height values to their 616 

observed values, and colored DH lines based on their status in the top 15th percentile 617 

for either the predicted or observed value (Figure S7). We maintained this color scheme 618 

when plotting the DH line’s observed hybrid values to assess the combination of 619 

genomic prediction ability and tester response. Overall, we found that the DH lines in 620 

the top 15th percentile for the predicted trait but not for the observed trait tended to be 621 

the DH lines that would make hybrids that are satisfactory to our breeding program’s 622 

needs, while DH lines that were in the top 15th percentile of observed values tended to 623 

have higher hybrid values. These results are expected, especially considering the high 624 

correlations between per se and hybrid phenotypes and the lower predictive ability of 625 

the per se to hybrid models.  626 
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DISCUSSION 627 

QTL mapping in multi-parent populations: Several multi-parent populations have 628 

been developed in maize, including MAGIC populations from Italy and Spain 629 

(Dell’Acqua et al. 2015; Jiménez-Galindo et al. 2019), four-parent populations from 630 

China and the US (Ding et al. 2015; Mahan et al. 2018), and nested association 631 

mapping populations from the US, China, and Europe (Yu et al. 2008; Li et al. 2013; 632 

Bauer et al. 2013; Giraud et al. 2017). The existing MAGIC, US-NAM, and CN-NAM 633 

populations use a variety of inbreds that sample the diversity of maize genetics, and the 634 

European NAM populations focus on the Dent and Flint heterotic groups in addition to 635 

factorial crosses made between recombinant inbred lines. Our population concentrates 636 

the founders within the Stiff Stalk heterotic group. An advantage to focusing on the Stiff 637 

Stalk group is that maize breeding relies on recycling genetics within heterotic groups to 638 

make new parents and crossing parents between groups to make hybrids. In a factorial 639 

mating design between Flint and Dent multiparent populations, it was discovered that 640 

the majority of general combining ability QTL were specific to one heterotic group 641 

(Giraud et al. 2017; Seye et al. 2019). Thus, blending the genomes of parents within a 642 

single heterotic group versus across the diversity of maize creates a more applicable 643 

population to study the subset of alleles present within Stiff Stalk seed parent 644 

germplasm released in North America. Breeding based on heterotic groups is expected 645 

to drive diverging allele frequencies between groups and constraining our mapping 646 

population to a single heterotic group allows us to examine the effects of these alleles 647 

on agronomic and yield related traits within their intended context. Mixing multiple 648 

founders takes advantage of historical recombination in addition to recombination 649 
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introduced through population development. Multiple founders within a single population 650 

allows the study of allelic series at loci of interest, such as for AnthGDU on 651 

chromosomes eight and three (Figure 5).  652 

QTL mapping in the WI-SS-MAGIC: Large efforts have been made by the plant 653 

research community to elucidate the control of complex traits such as flowering time 654 

and height. Our results confirm the previous findings of numerous authors, especially 655 

the candidate genes highlighted in Figures 4 and 6. Similar loci were found within the 656 

per se and hybrid populations, but there was variation between the populations, 657 

indicating that non-additive variation impacts the hybrid phenotypes (Supplemental 658 

Figure 5). For flowering time, the loss of significance of the QTL on chromosome eight 659 

indicates the PHJ89 tester has a completely dominant locus compared to the per se 660 

population and compared to the other tester, 3IIH6. Our results demonstrate that QTL 661 

detection depends on the genetics of the tester when mapping in hybrid populations. 662 

While it is possible that the absence of a signal in the hybrid population could be due to 663 

environmental or genotype by environment effects, the high heritabilities support the 664 

large role of genetic variation.   665 

For plant height, a significant locus exists within the hybrid SS-3IIH6 population that is 666 

absent in the per se population, which could indicate an epistatic interaction between 667 

the tester and population genotypes. This locus has been previously described in the 668 

context of both inbred and hybrid populations (Ding et al. 2016; Xiao et al. 2021). Ding 669 

et al. (2016), used a near isogenic line from the US-NAM family B73 × Tzi8 crossed to 670 

B73 to finemap the QTL to 95-96 Mbp on chromosome six. Like our study, Xiao et al. 671 

(2021), found a plant height QTL near 95.8 Mbp on chromosome six within one test 672 
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cross population but not in the inbred population, and provides a schematic outlining the 673 

epistatic derepression uncovered by this locus. In theory, there is the potential to study 674 

epistasis between more than two founders within a MAGIC population. For the WI-SS-675 

MAGIC population, comparing the founder states for two loci results in 36 total digenic 676 

classes. We separated our population into these classes for the two most significant loci 677 

for per se AnthGDU and found the mean number of individuals per class was 16.5, with 678 

a range of seven to 44 individuals (Supplementary Figure 8). Smaller population size in 679 

some of the sets exacerbates this issue of power. We repeated the procedure for the 680 

SS-3IIH6 plant height loci on chromosome one and six and found a mean of 11.0 681 

individuals per class, with a range of zero to 27, and nine classes have fewer than five 682 

observed individuals (Supplementary Figure 9). The limited number of observations per 683 

digenic class restricts the ability to statistically evaluate interaction between loci.  684 

QTL mapping in DH lines and hybrids: Previous work in mapping QTL across testers 685 

has found high concordance between plant height QTL discovered in different test cross 686 

populations and minimal digenic epistasis, despite evidence for epistasis under 687 

generation means analysis (Lübberstedt et al. 1997; Melchinger et al. 1998). Tester 688 

relatedness also influences the ability to discover QTL, where a tester unrelated to the 689 

population uncovers QTL for additive traits more effectively than related testers 690 

(Frascaroli et al. 2009). Another study of a biparental RIL population crossed to four 691 

testers found that mapping the mean test cross height was sufficient to identify shared 692 

loci between testers (Austin et al. 2001). Recent work by Xiao et al. (2021), examining 693 

heterosis for over 42,000 hybrids generated by crossing 1428 multi-parent lines with 30 694 

testers found that epistasis plays a role in generating heterosis, contradicting previous 695 
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work demonstrating the low impact of epistasis (Hinze and Lamkey 2003; Mihaljevic et 696 

al. 2005).   697 

We documented our population’s response to two testers to better understand the 698 

heterotic effect of Iodent (3IIH6) and Oh43 (PHJ89) type testers on the WI-SS-MAGIC 699 

population. Understanding per se phenotypes requires mapping in an inbred population, 700 

while understanding an inbred’s response to a tester requires evaluating and mapping 701 

traits in the hybrid population. We found the hybrid populations to have less than half 702 

the variation of the per se population, which could indicate that non-additive gene action 703 

is affecting the phenotypes. The interplay of dominant and recessive loci only manifests 704 

in the hybrid population, either creating or concealing phenotypic variation depending on 705 

the gene action of the trait. Our study found evidence for contrasting allelic states 706 

between the two testers in several regions of the genome based on disappearance and 707 

appearance of QTL, including a dominant locus for flowering time on chromosome eight 708 

in PHJ89 compared to 3IIH6, and a putatively epistatic locus revealed for plant height in 709 

3IIH6. Despite the strong positive correlation between the hybrid phenotypes, several 710 

loci were found in only one of the hybrid populations (Supplementary Figure 5). Perfect 711 

correlation between the test cross phenotypes would lead to the discovery of the same 712 

QTL between the two populations, yet the deviation from a one-to-one relationship 713 

between the test cross phenotypes leads to the discovery of unique QTL in the hybrid 714 

populations. Choice of tester influences hybrid performance and QTL mapping results, 715 

as evidenced by studies previously described and our findings. Despite the high 716 

correlation between the phenotypes of the hybrid populations and the expected identity 717 
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by descent between the two testers, unique QTL were discovered for each trait in each 718 

population.  719 

Genomic prediction of hybrid phenotypes: In maize breeding programs, per se 720 

phenotypes are often available before hybrid varieties can be tested. Using per se and 721 

hybrid data from our study, we investigated the association between per se and hybrid 722 

flowering and height traits. We wanted to test the feasibility of predicting correlations of 723 

hybrid flowering time and height based on DH line measurements for the purposes of 724 

discarding lines that flower too late or are too tall for our breeding program. We also 725 

wanted to evaluate the predictive ability between the two hybrid populations as breeding 726 

programs often use multiple testers as materials advance through selection pipelines.  727 

We found that the hybrids flowered earlier and were taller than their maternal DH 728 

parents, confirming heterotic relationships for flowering and height found in other 729 

studies (Flint-Garcia et al. 2009; Li et al. 2018). Previous studies have found increased 730 

predictive abilities when incorporating parental inbred information (Liang et al. 2018; 731 

Jarquin et al. 2020), and we also found moderate prediction abilities for hybrid flowering 732 

time and plant height when the models were trained using the per se data. As expected, 733 

the models with the highest predictive abilities were those that were trained on the data 734 

they were designed to predict, although we achieved predictive abilities between r=0.49 735 

and r=0.55 for models predicting hybrid traits that were trained with per se data. 736 

Correlations between per se and hybrid populations do not consider the difference in 737 

magnitude between them, such as the average difference between per se and hybrid 738 

flowering of 90 GDU or difference in height of 71 cm. Heterosis due to small genome-739 

wide effects produces a relatively uniform incremental decrease in flowering time and 740 
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increase in height across all lines, while variation within inbreds and within hybrids is 741 

largely due to similar large effect QTL likely in combination with undetected small effect 742 

loci. These findings are consistent with the overlapping and non-overlapping QTL that 743 

were found between the per se and hybrid populations because the difference between 744 

the predictive abilities for direct and per se to hybrid models cannot account for the 745 

dominance or epistatic effect of the tester at individual loci. In addition, the masking of 746 

per se QTLs within either of the hybrid populations is conceptually consistent with the 747 

lowered predictive ability of using per se data to predict hybrids. We also found that the 748 

errors between predicted and observed per se phenotypes were a source of selection 749 

error that led to discarding DH lines that would have generated acceptable hybrids. 750 

Finally, we also used the highest associated SNP from each LOD peak as fixed effects 751 

in the genomic prediction model but found that including the fixed marker effects 752 

lowered the predictive ability compared to using only the realized relationship matrix 753 

(data not shown). This finding supports previously simulated results demonstrating that 754 

known genes are only beneficial to models when they are few in number and explain 755 

large proportions of the variance (Bernardo 2014).  756 

Relevance to maize breeding: This method has applications in maize breeding 757 

because genomic prediction could be used to make selections prior to generating test 758 

cross seed for an entire population. Alternatively, a smaller subset of an inbred 759 

population could be grown as a model training set with several testers prior to 760 

generating larger hybrid populations. Genomic prediction could then be used to discard 761 

the poorest performing lines, which would increase genetic gain by increasing the 762 

selection intensity on the population. Overall, our results indicate that plant breeders 763 
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should be less aggressive when using predicted per se data to predict hybrid 764 

performance because the errors in genomic prediction can lead to discarding hybrid 765 

lines incorrectly. Plant breeders must balance their selection for maize yield with the 766 

adaptation requirements and architectural risk for root or stalk lodging when developing 767 

new inbred lines, as demonstrated by including information for flowering time and plant 768 

height in this study. Flowering time and moisture at harvest are also indications of 769 

overall relative maturity, which is an important characteristic that plant breeders use to 770 

place varieties across geographies and that farmers use to balance risk and make 771 

planting time and cultivar decisions. Our results indicate that flowering time and height 772 

have high correlations between DH lines and hybrids within these DH line-tester 773 

combinations yet experience different profiles of QTL significance across the genome.  774 

While the goal of maize breeding efforts is to increase or protect hybrid yield, most 775 

genetic research efforts focus on using inbreds to study complex traits. Understanding 776 

how traits manifest in a parental inbred versus its hybrid progeny is a critical area of 777 

maize breeding and quantitative genetics research. For example, parental per se 778 

measures of grain yield have been previously used to increase prediction ability of 779 

hybrid performance (Schrag et al. 2010). Deviations from the purely additive relationship 780 

of inbred flowering time or plant height to hybrid phenotype can be investigated to add 781 

to the underlying understanding of the gene action that supports genomic prediction.  782 

CONCLUSIONS 783 

In conclusion, several known loci were uncovered in different combinations within the 784 

per se and test cross sets of a MAGIC population. Dominance of one tester over the 785 

population caused the loss of a highly significant peak for anthesis, while the presence 786 
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of the other tester revealed putative epistatic variation for plant height. The six parents 787 

of the population are all members of the Stiff Stalk heterotic group, which is the 788 

canonical source of seed parent germplasm in the United States. These lines represent 789 

the diversity of both the sub-heterotic groups within the Stiff Stalk pool and the major 790 

plant breeding entities operating in the 1970’s and 1980’s and are no longer under 791 

intellectual property protection. In addition to dissecting the genetic architecture of these 792 

complex traits, this study provides a description of a new population resource available 793 

to maize researchers. Multi-parent populations are a unique mapping resource to study 794 

the effect of more than two parental alleles on quantitative traits, and they are a means 795 

to increase the diversity of alleles under study while managing minor allele frequency. 796 

Further, the genome assemblies of the six parents with annotation from a five-tissue 797 

transcriptome atlas (Li et al. 2021; Bornowski et al. 2021) are available for study, which 798 

increases the variety of opportunities for maize researchers. This population could be 799 

used to assay the effect of the alleles present within the population on combining ability, 800 

adaptation, genotype by environment interaction, stability, and provide a new paradigm 801 

for studying traditional and genomic selection. The practicality of leveraging linkage 802 

mapping of highly polygenic traits to make selections within breeding programs has 803 

been limited in the past, especially for traits that follow an infinitesimal model such as 804 

maize height (Peiffer et al. 2014). Nevertheless, further study of individual loci can 805 

impact plant breeding through mutational studies made possible by gene editing, in 806 

addition to current efforts in commercial plant breeding accomplished through genomic 807 

selection.  808 

 809 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.01.31.478539doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478539
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

Data Availability 810 
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contains the exome capture probe coordinates, supplemental file S3 contains 813 

supplemental methods, supplemental file S4 is contains the unfiltered 1.8 million SNPs 814 

data, and supplemental file S5 contains the control folder for mapping in R/qtl2, 815 

including marker maps, genotypes, phenotypes, and cross information. Supplemental 816 

table ST1 contains descriptions of the lines in the study, ST2 contains details about the 817 

field experiments, ST3 contains plot-based data, ST4 contains information about the 818 

stage one models used for calculating BLUE phenotypes, ST5 contains the BLUE 819 

phenotypes, ST6 contains the reference range haplotype IDs, and ST7 contains all 820 
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 1167 

Figure Captions 1168 

Figure 1: Distributions of phenotypic BLUEs and heritabilities 1169 

Distributions for anthesis growing degree units (GDU) and plant height for the UW-1170 

MAGIC-SS per se population, SS-3IIH6 hybrid population, and SS-PHJ89 hybrid 1171 

population. Trait heritabilities are in the upper left of each plot. Population parent BLUEs 1172 

are plotted as colored lines behind each distribution.   1173 

Figure 2: Phenotypic correlations between populations 1174 

Scatterplots of BLUEs demonstrate the positive correlation within traits, between 1175 

populations. Pearson correlations are shown in the lower right.  1176 
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Figure 3: Population genetic characteristics 1177 

 (A) Distribution of the number of consensus haplotypes found per reference range. (B) 1178 

Multidimensional scale plot using 1.8 million genic SNPs, with the population parents 1179 

plotted in red. (C) Distribution of the minor allele frequencies for 100,000 filtered 1180 

numeric SNPs, with vertical lines plotted at expected peaks of 1/6 and 2/6. (D) 1181 

Histogram of the number of crossovers per individual for the two population subsets 1182 

prior to filtering lines with high total crossovers. Six lines with more than 600 crossovers 1183 

are not included. Vertical lines indicate the thresholds used for discarding lines at 150 1184 

crossovers for subset A (generated using three meioses) and 250 crossovers for subset 1185 

B (generated using five meioses). 1186 

Figure 4: Anthesis GDU QTL mapping 1187 

Population specific LOD scores are plotted for each panel. Dashed vertical lines show 1188 

known flowering time genes. (A) QTL peaks for the per se population for each of the ten 1189 

chromosomes. (B) QTL peaks for chromosome eight of the SS-3IIH6 population and the 1190 

DH lines that were used to generate the population. (C) QTL peaks for chromosome 1191 

eight of the SS-PHJ89 population and the DH lines that were used to generate the 1192 

population.  1193 

Figure 5: Founder anthesis GDU QTL BLUP effects  1194 

BLUP effects for each parental contribution are plotted for the two chromosomes 1195 

containing the most significant peaks for flowering time. Vertical lines are plotted 1196 

denoting three major flowering time loci.   1197 

Figure 6: Plant height QTL mapping 1198 
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Population specific LOD scores are plotted for each panel. Dashed vertical lines show 1199 

known height genes. (A) QTL peaks for the per se population for each of the ten 1200 

chromosomes. (B) QTL peaks for three chromosomes of the SS-3IIH6 population and 1201 

the DH lines that were used to generate the population. (C) QTL peaks for three 1202 

chromosomes of the SS-PHJ89 population and the DH lines that were used to generate 1203 

the population.  1204 

Figure 7: Predictive abilities for direct and indirect genomic prediction models 1205 

Legend: Predictive abilities for 100 replications of each model. Direct models were 1206 

trained using the population phenotype they would predict, while indirect models were 1207 

trained with the per se or opposite hybrid population and used to predict each 1208 

phenotype.  1209 

Supplemental Figure 1: Phenotypic correlations between traits 1210 

Scatterplots of BLUEs demonstrate the positive correlation between traits, within 1211 

populations. Pearson correlations are shown in the upper left. 1212 

Supplemental Figure 2: Haplotypes for six representative UW-SS-MAGIC lines 1213 

Lines in the top row are from Subset A, and each have 60 crossovers. Lines in the 1214 

bottom row are from Subset B, and each have 103 crossovers. Genomic areas plotted 1215 

in white did not have a founder probability rise above 50% in that region.   1216 

Supplemental Figure 3: QTL linkage mapping and GWAS for flowering time  1217 

(A) Anthesis GDU QTL peaks and SNP association results in the per se population. (B) 1218 

Silking GDU QTL peaks and SNP association results in the per se population.  1219 
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Supplemental Figure 4: QTL linkage mapping and GWAS for plant and ear height 1220 

(A) Plant height QTL peaks and SNP association results in the per se population. (B) 1221 

Ear height QTL peaks and SNP association results in the per se population.  1222 

Supplemental Figure 5: All significant QTL identified for flowering time and plant height 1223 

Significant loci are plotted for flowering and height traits for the per se population, SS-1224 

3IIH6 hybrid population, and SS-PHJ89 hybrid populations. Previously characterized 1225 

flowering and height loci are plotted as dashed vertical lines. To declare two significant 1226 

loci under one large QTL peak, the LOD score was required to drop by at least five.  1227 

Supplemental Figure 6: Founder plant height BLUP effects  1228 

QTL BLUP effects with +/- 2 standard errors at the most significant locus for SS-3IIH6 1229 

plant height in the per se, SS-3IIH6, and SS-PHJ89 populations on chromosomes six. 1230 

This QTL was not significant in the per se or SS-PHJ89 populations.  1231 

Supplemental Figure 7: Observed vs predicted phenotypes and discard accuracy 1232 

(A) Scatterplot of observed vs predicted anthesis GDU for the per se population. To 1233 

select for adaptation to Wisconsin, our breeding program discards the latest lines of a 1234 

population. Lines in the top 15% of both observed and predicted anthesis values (i.e. 1235 

flower the latest) are colored in green, lines that flower in the latest 15% of predicted 1236 

values are plotted in pink, and lines that flower in the latest 15% of observed values are 1237 

plotted in blue. Color is recorded for each DH line name. (B) Using the DH line color 1238 

scheme from A, the hybrid phenotypes are plotted for SS-3IIH6 and SS-PHJ89. (C) 1239 

Scatterplot of observed vs predicted plant height for the per se population. Our breeding 1240 
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program discards the tallest members of the population. Lines are colored in the same 1241 

manner as Panel A. (D) Using the DH line color scheme from C, the hybrid phenotypes 1242 

are plotted for SS-3IIH6 and SS-PHJ89.    1243 

Supplemental Figure 8: Box plots for each per se digenic class for two flowering time 1244 

loci 1245 

The study of epistasis is difficult due to low sample sizes of each digenic class. Each 1246 

panel represents a digenic class for the two most significant per se anthesis GDU loci 1247 

on chromosomes three and eight. The population wide mean is plotted as a red dot on 1248 

each panel. Sample size for each class is in the lower left corner.  1249 

Supplemental Figure 9: Bar plots for each SS-3IIH6 digenic class for two plant height 1250 

loci 1251 

The study of epistasis is difficult due to low sample sizes of each digenic class. Each 1252 

panel represents a digenic class for two significant SS-3IIH6 plant height loci on 1253 

chromosomes one and six. The population wide mean is plotted as a red dot on each 1254 

panel. Sample size for each class is in the lower left corner. Some digenic classes have 1255 

no observed individuals.  1256 
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