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Abstract

Plankton community models are critical tools for understanding the pro-
cesses that shape marine plankton communities, how plankton communities
impact biogeochemical cycles, and the feedbacks between community struc-
ture and function. Here, using the flexible Marine Biogeochemistry Library
(MARBL), we present the Size-based Plankton Ecological TRAits (MARBL-
SPECTRA) model, which is designed to represent a diverse plankton com-
munity while remaining computationally tractable. MARBL-SPECTRA is
composed of nine phytoplankton and six zooplankton size classes represented
using allometric scaling relationships for physiological traits and interactions
within multiple functional types. MARBL-SPECTRA is embedded within
the global ocean component of the Community Earth System Model (CESM)
and simulates large-scale, emergent patterns in phytoplankton growth limi-
tation, plankton phenology, plankton generation time, and trophic transfer
efficiency. The model qualitatively reproduces observed global patterns of
surface nutrients, chlorophyll biomass, net primary production, and the bio-
geographies of a range of plankton size classes. In addition, the model simu-
lates how predator:prey dynamics and trophic efficiency vary across gradients
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in total ecosystem productivity. Shorter food chains that export proportion-
ally more carbon from the surface to the ocean interior occur in productive
regions, whereas in oligotrophic regions, the food chains are relatively long
and export less organic matter from the surface. The union of functional
type modelling with size-resolved, trait-based modelling approaches allows
MARBL-SPECTRA to capture both large-scale elemental cycles and the
structure of planktonic food webs affecting trophic transfer efficiency.

Keywords: plankton communities, trait-based models, phytoplankton,
zooplankton, Earth system modelling

1. Introduction1

Phytoplankton account for roughly half of the annual net primary pro-2

ductivity on Earth (Field et al., 1998), and marine net primary production is3

a fundamental constraint on total ecosystem production in the ocean. Phy-4

toplankton are an extremely diverse set of microorganisms, ranging broadly5

in cell volume, cell morphology, and biogeochemical functions. The structure6

of plankton communities is shaped by variable physical, chemical, and preda-7

tory environments (Margalef, 1978). Marine plankton communities play key8

roles in biogeochemical cycling, which includes the export of carbon to the9

deep ocean (Henson et al., 2012) and the transfer of energy and organic10

matter to higher trophic levels (Ryther, 1969). Plankton community com-11

position is important in regulating the efficiency of nutrient utilization and12

the character and quantity of exported organic matter on a regional and13

seasonal basis (Tréguer et al., 2018; Stemmann and Boss, 2012). Mechanis-14

tic representations of the distribution of plankton diversity, biogeography,15

and phenology over the global ocean are essential to predict the function of16

oceanic ecosystems and global biogeochemical cycles.17

Coupled physical-biogeochemical models have long been used to bet-18

ter understand the processes that shape phytoplankton communities in the19

ocean. Historically, many marine plankton community models were con-20

structed from a common nutrient-phytoplankton-zooplankton-detritus (NPZD)21

structure (Evans and Parslow, 1985; Fasham et al., 1990; Franks, 2002). Al-22

though these models ignore substantial biological complexity, when coupled23

to ocean circulation models, they provided large-scale estimates of biologically-24

mediated carbon fluxes (Six and Maier-Reimer, 1996). Modern day ’inter-25

mediate complexity’ marine ecosystem models (Stock et al., 2014a; Moore26
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et al., 2004b, 2013b; Aumont et al., 2015; Yool et al., 2013) coupled into27

Earth system models have been successful at simulating large-scale biogeo-28

graphical variation in the efficiency of the biological pump and climate effects.29

Some have exhibited predictive capabilities for fisheries within Large Marine30

Ecosystems (Park et al., 2019) essential to sustain marine resources subject31

to climate-driven fluctuations and change. These marine ecosystem models32

typically include a minimum number of plankton functional types adequate33

for simulating broad plankton biogeography and biogeochemical interactions34

such as variations in export efficiency. However, they lack sufficient ecological35

resolution in the form of size-based differentiation within each plankton func-36

tional type to simulate the great diversity and complex interactions within37

plankton communities that are important to represent changes in community38

structure under climate change.39

Trait-based models are a promising approach for increasing model diver-40

sity and ecological realism (Ward et al., 2012; Bruggeman and Kooijman,41

2007; Follows et al., 2007; Dutkiewicz et al., 2019). Instead of simulating a42

few species or generic types of plankton, trait-based models resolve a higher43

diversity of organisms with distinct physiological and interaction traits, as44

well as trade-offs between these traits (Litchman et al., 2007). Trait-based45

models have been used to study the mechanisms shaping plankton biogeog-46

raphy, size structure, and diversity (Barton et al., 2010; Ward et al., 2012;47

Banas, 2011; Acevedo-Trejos et al., 2015; Monteiro et al., 2011; Follows et al.,48

2007). However, due to their higher complexity and greater computational49

cost, trait-based models are more difficult to embed in general circulation50

models (GCM) and implement in climate-timescale simulations.51

Here we describe a new size-structured modelling framework, called MARBL-52

SPECTRA, that leverages advances in trait-based modelling while remain-53

ing computationally tractable within coupled climate simulations. Using the54

Marine Biogeochemistry Library (MARBL) (Long et al., 2021), a config-55

urable ocean biogeochemical model that has been coupled to the Commu-56

nity Earth System Model (CESM), we implement the Size-based Plankton57

Ecological TRAits (SPECTRA) model, leveraging MARBL’s capacity for58

flexible ecosystem configuration. SPECTRA builds on the MARBL-CESM59

version 2.1 default ecosystem by expanding the number of groups within each60

phytoplankton and zooplankton functional type, using allometric scaling re-61

lationships to reduce the number of free parameters. MARBL-SPECTRA62

harmonizes the strengths of plankton functional type model representations63

crucial for capturing large-scale biogeochemical cycles, with the strengths64
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of trait-based models aimed at representing the richness of plankton food65

webs and associated trophodynamics, under the constraint that it must be66

lean enough to be run for century-scale simulations. MARBL-SPECTRA in-67

cludes nine phytoplankton groups belonging to four different plankton func-68

tional types (picoplankton, mixed phytoplankton, diatoms, and diazotrophs).69

It also includes six zooplankton groups divided into two microzooplankton70

(<200 µm ESD) and four mesozooplankton size classes (between 0.2 mm and71

20 mm). MARBL-SPECTRA allows us to better and more explicitly sim-72

ulate plankton diversity while remaining computationally tractable to not73

preclude climate-timescale integrations within a global model. The model74

simulates important marine ecosystem dynamics such as phenology, biogeog-75

raphy, and trophic dynamics, as well as the coupled cycles of carbon, nitro-76

gen, phosphorous, iron, silicon, and oxygen.77

Here, we describe the features and assumptions of MARBL-SPECTRA78

and use the model to explore large-scale, emergent patterns in phytoplank-79

ton growth limitation, plankton phenology, plankton generation time, and80

trophic dynamics. The model results were validated against a comprehen-81

sive suite of biogeochemical observations, as well as independent estimates of82

phytoplankton and zooplankton productivity to assess MARBL-SPECTRA’s83

ability to capture global-scale patterns in the transfer of energy through the84

planktonic food web. The model qualitatively reproduces observed global85

patterns of surface nutrients and chlorophyll biomass and is consistent with86

empirical estimates of global primary production and phytoplankton size87

distributions. We use the expansion of plankton communities in MARBL-88

SPECTRA to explore growth limitation patterns between functional groups89

and size classes of phytoplankton. It also provides a venue to understand phe-90

nology and the trophic position of the plankton community, showing clear91

differences across productive and unproductive regions of the ocean. Us-92

ing this model, we investigate mechanisms driving global patterns as well as93

regional differences in seasonal succession, generation time, and trophic scal-94

ing. These processes influence the rate of primary production, export, and95

transfer efficiency to higher trophic levels which are important in regulating96

the strength of the biological pump.97
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2. Methods98

2.1. Size-based Plankton Ecological TRAits (SPECTRA) Model99

The Size-based Plankton Ecological TRAits (SPECTRA) planktonic com-100

munity model is implemented using the Marine Biogeochemistry Library101

(MARBL) (Long et al., 2021), which is the ocean biogeochemical component102

within the Community Earth System Model (CESM). MARBL is designed103

to allow for a flexible number of plankton functional types, and in its de-104

fault configuration, invokes an updated version of the marine ecosystem of105

its predecessor, the Biogeochemistry Elemental Cycle (BEC) model (Moore106

et al., 2001, 2004b, 2013b). MARBL-SPECTRA is a new configuration of107

MARBL that resolves nine phytoplankton (Fig. 1) ranging in size from 0.47108

µm to 300 µm in equivalent spherical diameter (ESD; (Fig. 1)). The nine109

model phytoplankton include one picoplankton, one diazotroph, three sizes110

of diatoms, and four sizes of mixed phytoplankton. Size classes were chosen111

such that: 1) within each phytoplankton group, characteristic size (geometric112

mean of the size range) was evenly spaced on a log10 scale, and 2) size classes113

across functional types were overlapping but not identical. The picoplankton114

group is analogous to Prochlorococcus and Synechococcus with a characteris-115

tic size of 0.89 µm ESD. Diazotrophs fix nitrogen and have a characteristic116

size of 6.2 µm ESD. Diatoms, the silicifiers in the community, range in size117

between 20 µm to 200 µm ESD. The mixed phytoplankton size ranges from118

1.7 µm to 300 µm ESD, and represent solitary protists not included in the119

other functional groups, such as picoeukaryotes and autotrophic dinoflagel-120

lates. Within the mixed phytoplankton group, implicit calcifiers (including121

coccolithophores) are represented by size classes between 3 µm and 25 µm122

to encompass the main species of coccolithophores (e.g., Emiliania huxleyi)123

(Aloisi, 2015). Phytoplankton ESD was converted to carbon biomass accord-124

ing to carbon:biovolume (C:BV) relationships, for picoplankton (Bertilsson125

et al., 2003), small nanoplankton (Reynolds, 2006), diatoms, and other non-126

diatom phytoplankton (Menden-Deuer and Lessard, 2000). The traits and127

parameters for each model phytoplankton are determined by their body size128

and functional group, which we describe in greater detail below.129
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Figure 1: Schematic representation of MARBL-SPECTRA Model. The plankton com-
munity is composed of nine phytoplankton groups belonging to four different functional
types; picoplankton (light blue), diazotrophs (sky blue), mixed phytoplankton (medium
blue), and diatoms (dark blue), and six zooplankton groups composed of microzooplank-
ton (light orange), and mesozooplankton (bright orange). Inorganic nutrients are taken
up by phytoplankton (SiO3 is only taken up by diatoms) who are grazed by zooplankton.
Larger circles indicate larger organisms, but the circles are not to scale. Straight arrows
indicate phytoplankton consumption by zooplankton, while dotted arrows indicate zoo-
plankton consumption by zooplankton. Mortality and aggregation transfer living organic
material into sinking particulate and dissolved organic detritus. The fluxes to particulate
organic matter (POM), dissolved organic matter (DOM), and dissolved inorganic matter
(DIM) pools are shown as arrows from phytoplankton and zooplankton groups.
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MARBL-SPECTRA includes six zooplankton ranging in size from 20 µm130

to 20 mm ESD (Fig. 1), with each zooplankton consuming multiple phyto-131

plankton and zooplankton prey types. The smallest two zooplankton (<200132

µm ESD) are heterotrophic organisms commonly referred to as microzoo-133

plankton. The smallest microzooplankton consumes only small phytoplank-134

ton, whereas the larger microzooplankton consumes both, small phytoplank-135

ton groups and the smallest microzooplankton. Mesozooplankton (between136

0.2 mm and 20 mm) correspond to the largest four zooplankton size classes137

(zoo3-zoo6) and include a range of organisms such as copepods, krill, chaetog-138

naths, and some gelatinous zooplankton. The first three mesozooplankton139

size classes are omnivorous, able to consume a range of phytoplankton and140

zooplankton prey, while the largest mesozooplankton is carnivorous, ranging141

from 6.3 to 20 mm in size. These feeding relationships between predators142

and prey are depicted by the feeding preference coefficient with an predator-143

to-prey optimal size ratio of 12.5:1 and maximum and minimum of 50:1 and144

1:1, respectively 2.4 (Law et al., 2009; Fuchs and Franks, 2010; Taniguchi145

et al., 2014; Heneghan et al., 2020). Notably excluded from the mesozoo-146

plankton are gelatinous zooplankton like salps and pyrosomes with extremely147

wide predator-to-prey size ratios (e.g., between 10,000:1 and 50:1) (Conley148

et al., 2018). Zooplankton ESD was converted to carbon biomass using mi-149

crozooplankton values from Menden-Deuer and Lessard (2000) and general150

non-gelatinous mesozooplankton values from Pitt et al. (2013).151

MARBL-SPECTRA leverages MARBL’s flexible ecosystem configura-152

tion, which represents phytoplankton types Pi and grazers Zj, where Pi153

(mmol C m−3) is the phytoplankton biomass of the of the ith phytoplankton154

type, and Zj (mmol C m−3) is the zooplankton biomass of the jth zooplank-155

ton type. The rate of change of biomass for the ith phytoplankton is a balance156

of growth and losses to grazing (predation), mortality, and aggregation, in157

addition to physical transport processes not shown here. Key model symbols158

and units are summarized in Tables 1, 2, and 3. See Long et al. (2021) for a159

comprehensive presentation of the plankton community in CESM, version 2.160

∂Pi
∂t

= growth− predationp − lossp (1)

Phytoplankton growth (mmol C m−3 d−1) is determined by a carbon-161

specific, light-saturated photosynthesis rate PCm
i (d−1) for each phytoplank-162

ton group, modulated by a non-dimensional factor which reflects sensitivities163

to light (γIi ):164
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growth = PCm
i γ

I
i Pi (2)

The light sensitivity of growth rate (γIi ) is parameterized using a modified165

form of the Geider et al. (1997, 1998) dynamic growth model (Eq. 3), where166

αChli (mmol C m2 (mg Chl W d)−1) is the Chl-specific initial slope of the167

photosynthesis irradiance curve, I (W m−2) is the instantaneous irradiance,168

and θCi is the Chl:C ratio (mg Chl mmol C−1), as follows:169

γIi = 1− e
−αChli θCi I

PCm
i (3)

MARBL also uses a multi-column subgrid scale treatment for light, fol-170

lowing Long et al. (2015), which reduces biases when light fields are hetero-171

geneous, such as high latitude spring bloom conditions. The above equation172

describes the biomass-specific rate of photosynthesis as a saturating function173

of irradiance. PCm
i is expressed as a function of the reference carbon-specific174

photosynthesis rate (PCref
i ) (d−1) (the maximum achievable carbon-specific175

photosynthesis rate at the reference temperature) for each phytoplankton176

group, the temperature dependence function (γTi ), and the nutrient limita-177

tion function (γNi ) for each phytoplankton type. αChli , θCi and PCref
i are178

set according to allometric relationships defined by Edwards et al. (2015a),179

Geider et al. (1997) and (Marañón et al., 2013) explained in more detail in180

Section 2.2.181

PCm
i = PCref

i γTi γ
N
i (4)

Nutrient limitation of growth (γNi ) is determined by the most limiting nu-182

trient resource (mmol m−3) for that phytoplankton, computed using Liebig’s183

Law of the Minimum:184

γNi = min(N lim
N,i , N

lim
P,i , N

lim
Fe,i, N

lim
Si,i) (5)

where the nutrients considered are nitrogen, iron, silicate, and phospho-185

rous, yet not all nutrients are required for each phytoplankton group. Di-186

atoms require nitrogen, phosphorous, silicate, and iron. Picoplankton, the187

mixed phytoplankton group and diazotrophs do not assimilate silicate, and188

diazotrophs are not limited by nitrogen due to their nitrogen fixing abili-189

ties. Simultaneous limitation by multiple nitrogen forms, i.e., nitrate (NO3)190

and ammonium (NH4), is represented following the substitutable model of191

O’Neill et al. (1989); See Long et al. (2021) for more details. A similar192
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approach is used to compute limitation terms for phosphate (PO4) and semi-193

liable dissolved organic phosphate (DOP). The effect on growth rate of each of194

these nutrients for each phytoplankton is represented according to Michaelis-195

Menten kinetics:196

N lim
i =

N

N + ki
(6)

where, ki (mmol N m−3) represents the half-saturation nutrient concen-197

tration for each phytoplankton type i set according to allometric relationships198

defined by Edwards et al. (2012) explained in more detail in Section 2.2.4.199

In contrast to the default MARBL configuration, which uses the Eppley200

(Eppley, 1972) temperature scaling with the Q10 factor, here, the tempera-201

ture modulation of growth for each phytoplankton (γTi ) is represented by the202

Arrhenius-Van’t Hoff equation (Arrhenius, 1915). Kremer et al. (2017) found203

that the Arrhenius-Van’t Hoff temperature scaling function more closely204

matched observations of how phytoplankton growth rates scale with temper-205

ature. Here, the temperature modulation of phytoplankton rates is expressed206

relative to the metabolic rate at a reference temperature.207

γTi = e
(
−Ea(T0−T )

kT0T
)

(7)

where, Ea is the activation energy (eV), k is the Boltzmann’s constant208

(k = 8.617 × 10−5 eV K−1), T is temperature (◦K), and T0 represents the209

reference temperature in the model (293.15◦K). Ea for all phytoplankton is210

set to 0.32 eV (Kremer et al., 2017), except for picoplankton, where Eapp is211

set to 0.42 eV, a value derived from an analysis of the Kremer et al. (2017)212

dataset. Multiple studies have shown that picoplankton have a higher tem-213

perature sensitivity compared to phytoplankton of larger sizes (Chen et al.,214

2014; Stawiarski et al., 2016; Anderson et al., 2021), and model experimen-215

tation showed that lower Ea is key for excluding picoplankton from polar216

regions, compared to lower temperature sensitivity of larger sizes.217

Predation on phytoplankton (predationp; mmol C m−3 d−1) is modeled218

using a Holling type II function, where predation pressure increases approx-219

imately linearly as prey increases, before saturating to a maximum rate at220

high prey concentrations:221

predationp = ιmaxj γTj φ

(
P
′
i

P
′
i +KP

)
Zj (8)

9
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Here, ιmaxj (d−1) is the zooplankton maximum ingestion rate at a reference222

temperature, and scales with zooplankton size (Section 2.3.1). The temper-223

ature modulation of ingestion for each zooplankton (γTj ) is similar to that of224

phytoplankton, but differs by having a greater zooplankton activation energy225

(EaZ) compared to autotrophs (Allen et al., 2005), as Rubisco carboxylation226

(rate limiting for photosynthesis) has a lower Ea than ATP synthesis (Allen227

et al., 2005; Ángel López-Urrutia et al., 2006). Thus, for zooplankton, EaZ228

are set to 0.55 eV, a value similar to Ángel López-Urrutia et al. (2006) obser-229

vations. This is in contrast with the default version of MARBL, which uses230

the same temperature sensitivity for both phytoplankton and zooplankton231

processes. Among global ocean biogeochemical models, very few models use232

a higher temperature sensitivity for zooplankton vs. phytoplankton (e.g.,233

PISCES Aumont et al., 2015); the majority of models use either the same234

scaling for all plankton (e.g., COBALT Stock et al., 2014b, 2020), or no235

temperature scaling of zooplankton rates (e.g., MEDUSA Yool et al., 2013).236

Using a higher temperature sensitivity in zooplankton vs. phytoplankton237

may have implications for phytoplankton-zooplankton coupling and trophic238

transfer, particularly under climate change, however, a systematic study has239

not yet been done.240

γTj = e
(
−EaZ (T0−T )

kT0T
)

(9)

KP (mmol C m−3) is the half-saturation prey concentration which regu-241

lates ingestion efficiency at low prey concentrations, and is set as a constant242

value for all zooplankton (Section 2.3.1). φ (unitless) is the feeding preference243

coefficient, which describes the probability of a given predator ingesting prey244

of a particular size. The feeding preference coefficient will be discussed in245

greater detail in Section 2.4. P
′
i is the phytoplankton concentration in excess246

of a temperature-and depth-dependent refuge, and is used to limit autotroph247

mortality at low biomass (mmol C m−3) (Long et al., 2021).248

Phytoplankton loss (lossp; mmol C m−3 d−1) is represented by a linear249

loss term (mi) (d−1) that includes non-predation mortality and a collection250

of density-independent processes such as dissolved organic matter (DOM)251

exudation, viral lysis, and cell death. 6% of phytoplankton loss is routed252

to dissolved organic carbon (DOC) and the remaining 94% to the dissolved253

inorganic carbon (DIC). In MARBL-SPECTRA, instead of a single allometric254

scaling, linear mortality is set as a fraction of PCref
i , with a factor of 0.02 for255

diatoms and 0.03 for all other phytoplankton. The lower linear mortality for256
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diatoms provide a slight advantage over other phytoplankton, particularly in257

nutrient rich (upwelling and polar) regions:258

lossp = miP
′

i γ
T
i + A(P

′

i ) (10)

A(P
′
i ) (mmol C m−3 d−1) represents loss of phytoplankton due to aggre-259

gation and unresolved predation, and this loss goes directly to particulate260

organic matter (POC).261

A(P
′

i ) = ai(P
′

i )
2 (11)

A(P
′
i ) is parameterized by a ”quadratic mortality” rate, ai (d−1 mmol262

C−1 m3) for all phytoplankton that falls between imposed minimum (amini263

P
′
i) and maximum aggregation (amaxi P

′
i) rates.264

As with phytoplankton, the time rate of change in zooplankton is a bal-265

ance between growth and losses to predation and non-predation mortality:266

∂Zj
∂t

= ζingestion− predationz − lossz (12)

Zooplankton ingestion (mmol C m−3 d−1) represents the predation gains267

by zooplankton from their prey, and ζ (unitless) represents the maximum268

gross growth efficiency coefficient (i.e., the maximum fraction of ingestion269

that goes to growth; Straile, 1997), and is set to be 30% for all zooplankton.270

Zooplankton (Zj) are able to feed on both phytoplankton (Pi) and other271

zooplankton (Zk, this excludes the largest zooplankton), modulated by a272

feeding preference coefficient (φ). Ingestion is thus the total consumption for273

a zooplankton (Zj):274

ingestion = ιmaxj γTj Zjφ

((
P
′
i

P
′
i +KP

)
+

(
Z
′

k

Z
′
k +KP

))
(13)

where Z
′

k is the zooplankton concentration in excess of a temperature-275

and depth-dependent threshold, used to limit zooplankton mortality at low276

biomass (mmol C m−3). γTj , ιmaxj , KP , and φ are described above.277

Of the total zooplankton ingestion, 35% is egested, yielding an assimila-278

tion efficiency (AE) of 65%, which is within the general range of 60-80% used279

for zooplankton (Carlotti et al., 2000). Partitioning of the egestion into the280

POC, DOC, and DIC fractions depends on zooplankton size, and is discussed281

further in Section 2.4.1. Active respiration is 35% of ingestion, with the re-282

maining biomass-based (basal) respiration represented by the linear fraction283
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Table 1: Size-independent biological parameters.

Parameter Symbol Value Units

Phytoplankton activation energy Ea 0.32 eV

Picoplankton activation energy Eapp 0.42 eV

Zooplankton activation energy EaZ 0.55 eV

Phytoplankton ”quadratic mortality”

rate

ai 0.035 mmol C−1 m3 d−1

Phytoplankton linear mortality scaling mi 0.03 d−1

Diatom linear mortality scaling mdiat 0.02 d−1

Grazing half-saturation coefficient KP 1.1 mmol m−3

of zooplankton loss (mmol C m−3 d−1). Thus, zooplankton production be-284

comes:285

production = ζingestion−mj(Z
′
j)γ

T
j (14)

where mj is the basal respiration rate (d−1), and is set following allometric286

relationships, as discussed in Section 2.4.1 (see also Table 3).287

Except for the largest mesozooplankton, all other zooplankton are also288

predated upon by larger zooplankton. These predator-prey relationships are289

displayed in Fig. 1. The predation term (predationz; mmol C m−3 d−1) thus290

represents the predation losses from one zooplankton (Zk) to another (Zj):291

predationz = ιmaxj γTj φ

(
Z
′

k

Z
′
k +KP

)
Zj (15)

Zooplankton losses (lossz; mmol C m−3 d−1) consist of a linear loss292

term representing zooplankton mortality, as well as unresolved losses to293

higher tropic levels (Steele and Henderson, 1992), which are represented by a294

biomass- and temperature-dependent quadratic mortality term aj (m3 mmol295

C−1 d−1). The largest mesozooplankton size class has a higher quadratic loss296

mortality to compensate for higher trophic grazing not directly represented297

by grazing from the modeled ecosystem. Total non-predation losses include298

the linear (basal metabolic rate) and quadratic losses:299

lossz = mjγ
T
j Z

′

j + ajγ
T
j (Z

′

j)
2 (16)
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2.2. Allometric scaling of phytoplankton traits300

Many phytoplankton traits, such as metabolic rate and nutrient affinity,301

are related to cell size (Chisholm, 1992; Litchman et al., 2007; Edwards et al.,302

2012). There are also ecologically meaningful differences in key traits across303

phytoplankton functional groups. For example, large diatoms tend to grow304

more slowly than do smaller diatoms, but diatoms as a whole tend to grow305

more rapidly than other competing functional groups such as dinoflagellates306

(Litchman et al., 2007; Edwards et al., 2012). We use key trade-offs among307

functional traits to model community composition of marine phytoplank-308

ton along environmental gradients. For example, major functional traits in309

phytoplankton parameters such as nutrient-dependent growth and uptake310

have physiological trade-offs in the ability to acquire and utilize resources311

(Litchman et al., 2007). Incorporating these traits and trait trade-offs into312

a model allows it to represent the fundamental and realized ecological niche313

of a species and facilitates its representation across a range of environmental314

and biotic conditions (Ward et al., 2012; Follows et al., 2007). This approach315

has been used in a range of plankton community and biogeochemical mod-316

els (e.g. Fuchs and Franks, 2010; Ward et al., 2012; Taniguchi et al., 2014;317

Dutkiewicz et al., 2015a; Heneghan et al., 2020). MARBL-SPECTRA adopts318

this approach, and ties organismal traits and interactions to body size and319

functional group by employing allometric rules to distinguish within plank-320

ton groups instead of individually tuning each plankton functional type. The321

use of these allometric relationships substantially reduces the number of free322

parameters.323

The effect of size variation on phytoplankton traits is often idealized using
a series of power-law scaling function with the typical form:

t = αV β (17)

where t is the physiological trait, V is the cell volume across plankton in324

the model, α is a scaling constant, and β is an exponent describing the size325

dependence. Below, we describe important allometric traits in the model, and326

discuss how our choices of α and β across functional groups were informed327

by empirical studies across many phytoplankton sizes and functional groups328

(Litchman et al., 2007; Edwards et al., 2012; Marañón et al., 2013). Model329

traits are summarized in Fig. 2 and Tables 1 and 2.330
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Figure 2: Model phytoplankton traits and parameters. Relationships for picoplankton
(light blue), diazotrophs (sky blue), mixed phytoplankton (medium blue), and diatoms
(dark blue), between equivalent spherical diameter (ESD) and (a) daily C-specific rate of

photosynthesis (PCrefi ) at a reference temperature (20oC), (b) Linear mortality (mi), (c)
aggregation loss ((ai) representing aggregation and unresolved predation, (d) maximum
value of the Chl to phytoplankton carbon ratio (θCi ), (e) initial slope of photosynthesis-
irradiance curve (αChli ), and half saturation nitrate concentration (kNO3

).

2.2.1. Phytoplankton growth and photosynthesis331

Within phytoplankton functional types and for cells larger than approx-332

imately 5 µm ESD, phytoplankton PCref
i rates generally decrease with in-333

creasing cell size (Marañón et al., 2013; Edwards et al., 2012; Tang, 1995).334

For phytoplankton smaller than 5 µm ESD, larger cells grow faster than do335

smaller ones, such that the overall relationship between PCref
i and cell size is336

unimodal, with the fastest growth rates achieved for cells around 5 µm ESD337

(Marañón et al., 2013; Edwards et al., 2012; López-Sandoval et al., 2014).338

In addition, different functional groups tend to deviate from this overall pat-339

tern. Diatoms, for example, tend to grow faster than other groups (Edwards340

et al., 2012).341

Consistent with this overall paradigm, PCref
i rates in MARBL-SPECTRA342
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scale with cell volume and functional group with a scaling slope of -0.14343

(Marañón et al., 2013) within functional types (Fig. 2a). Diatoms have344

higher PCref
i rates than other groups, but within diatoms, PCref

i decreases345

with body size ranging from 4.4 d−1 for the smallest diatoms, and 2.5 d−1 for346

the largest diatom, consistent with observations from Marañón et al. (2013)347

and López-Sandoval et al. (2014). The high PCref
i rates of diatoms facili-348

tate their high biomass in nutrient-rich habitats and during bloom conditions349

(Margalef, 1978). Picoplankton have a low PCref
i rate of 1.3 d−1 compared350

to quickly growing but somewhat larger cells. We have found that incorpo-351

rating lower PCref
i rates for picoplankton and mixed phytoplankton smaller352

than 5 µm ESD was essential for controlling small phytoplankton growth.353

Otherwise, the picoplankton and smallest mixed phytoplankton dominate,354

particularly in the higher latitude seasonal seas. PCref
i rates for the sec-355

ond smallest mixed phytoplankton through the largest mixed phytoplank-356

ton ranged between 2.3 d−1 and 0.8 d−1. Diazotrophs have PCref
i rates of357

1.5 d−1, roughly half compared with other phytoplankton of their size, due to358

the high energetic demands of nitrogen fixation, which reduces growth rates359

(Margalef, 1978; Fu et al., 2005; Falcón et al., 2005; Breitbarth et al., 2008).360

2.2.2. Chlorophyll-carbon ratios361

The chlorophyll to carbon ratio (θCi ) reflects photoacclimation and nu-362

trient stress and has been shown to track phytoplankton physiology both in363

the laboratory and in the field (Behrenfeld et al., 2005; Behrenfeld and Boss,364

2003). Under the dynamic growth parameterization (Geider et al., 1997),365

the carbon-specific photosynthesis rate is a function of irradiance as well as366

θCi . Chl synthesis is regulated by the balance between light absorption and367

photosynthetic carbon fixation (Geider et al., 1998). Depending on this ra-368

tio, a fraction of newly assimilated nitrogen is diverted to the synthesis of369

Chl. θCi values vary greatly among species and are affected nonlinearly by370

ambient nutrients, light, and temperature (Geider et al., 1997; Behrenfeld371

et al., 2002). θCi is maximal at high temperatures and low irradiances un-372

der nutrient-replete conditions and declines at high irradiances, especially at373

low temperature and under nutrient limiting conditions (Geider et al., 1997).374

The maximum chlorophyll to carbon ratio (θCi ) is used as an input parameter375

in the model but is weakly constrained by empirical studies, with generally376

higher θCi values for large diatoms and lower values for picoplankton such377

as Prochlorococcus (Geider et al., 1997; Sathyendranath et al., 2009). We378

therefore used a single allometric scaling relationship for most of the phyto-379
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plankton, where θCi ranges from 0.025 - 0.035 [mg Chl mg C−1], except for380

picoplankton which have a θCi of 0.01 [mg Chl mg C−1] (Fig. 2b), to match381

with observed values (Hartmann et al., 2014; Li et al., 2010; Geider et al.,382

1998, 1986).383

2.2.3. Initial slope of the photosynthesis-irradiance curve384

Phytoplankton growth rates generally increase under increasing light up385

to an irradiance optima, at which point growth rates peak before declining386

due to photoinhibition at higher irradiance levels (Falkowski et al., 1985).387

These patterns can be illustrated by the photosynthesis-irradiance (P-I) curve,388

described by the initial slope of the P-I curve (αChli ) and the biomass-specific389

rate of photosynthesis (PCm
i ) under optimal irradiance (Eq. 3). Variations390

in αChli across phytoplankton can be explained in part by consistent differ-391

ences between major taxonomic groups (Richardson et al., 1983; Cullen and392

MacIntyre, 1998; MacIntyre, 1998; Boyd et al., 2010) as well as cells of dif-393

fering size (Geider et al., 1986; Finkel, 2001). Where, a decrease in αChli394

with cell size represents the ability of smaller cells to outperform larger cells395

under low-light conditions (Edwards et al., 2015a). This is consistent with396

self-shading of intercellular photosynthetic pigments, also referred to as the397

”Package effect” (Kirk, 1976), where as cell size increases, the same concen-398

tration of pigment, cellular volume, or unit of biomass will adsorb less light399

due to self-shading of pigment molecules (Kirk, 1994).400

Discrepancies across functional types exist, with higher αChli in diatoms401

compared to other phytoplankton of similar sizes, due to the ability of di-402

atoms to perform relatively well under both limiting light and excessive light403

(Richardson et al., 1983), or fluctuating light (Litchman, 1998) environments.404

Based upon the dataset of Edwards et al. (2015b), we set α, and β to be 0.67405

mmol C m2 (mg Chl W d)−1 and -0.12 for diatoms (Table 4 & Fig. 2d). For406

other groups, we used 0.56 mmol C m2 (mg Chl W d)−1 and -0.15 respec-407

tively.408

2.2.4. Nutrient acquisition409

Phytoplankton growth in MARBL is a multiplicative factor of tempera-410

ture, light, and nutrient limitation, with the nutrient limitation set by what-411

ever nutrient concentration is lowest relative to the half-saturation constants412

for nutrient uptake (Moore et al., 2004b; Long et al., 2021). Experimen-413

tal data and theoretical evidence demonstrates that smaller cells have higher414

rates of nutrient uptake per unit biomass and lower half-saturation constants415
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(Eppley et al., 1969; Aksnes and Egge, 1991) compared to larger cells. The416

observed β between k and cell volume falls between 0.24 and 0.45 for NO3,417

and 0.29 to 0.56 for PO4 (Edwards et al., 2012). Since our model includes418

multiple limiting nutrients, we used a single size-scaling exponent of 0.3 for419

all nutrients. This means that within groups, picoplankton have more effi-420

cient nutrient uptake (smallest kN) compared to the large diatoms and large421

mixed phytoplankton. Diazotrophs (e.g. Trichodesmium spp.) are the only422

exception from this allometric scaling, since they are less efficient at inor-423

ganic nutrient uptake (McCarthy and Carpenter, 1979) and they often occur424

as large colonies, where their surface to volume considerations imply higher425

half-saturation constants relative to the small phytoplankton and diatom426

groups (Letelier and Karl, 1998). However, higher half saturation constants427

for diazotrophs were only set for nitrogen and iron. See table 2 for all nutrient428

half-saturation constants and scaling coefficients.429

MARBL-SPECTRA uses a fixed C:N:P stoichiometric ratio of nutrient430

uptake of 117:16:1 for all phytoplankton, which is a modified ratio following431

Anderson and Sarmiento (1994). While a dynamic model of C:P stoichiom-432

etry is provided within MARBL (Galbraith and Martiny, 2015; Long et al.,433

2021), enabling it with MARBL-SPECTRA would have added 15 additional434

tracers to the model, making computation extremely expensive. Addition-435

ally, we opted against using a size-dependent C:P stoichiometry (e.g., Finkel436

et al., 2010) to avoid undue complexity, as we found from initial tests that437

adding allometric C:P stoichiometry did not significantly impact plankton438

community composition in the present day. However, for future develop-439

ment of MARBL-SPECTRA, particularly for climate change experiments,440

size-dependent C:P stoichiometry can be explored.441

Photoadaptation is calculated as a variable phytoplankton ratio of chloro-442

phyll to nitrogen based on Geider et al. (1998). The model allows for variable443

Fe/C and Si/C ratios with an optimum and minimum value prescribed. As444

ambient Fe (or Si for diatoms) concentrations decline the phytoplankton445

lower their cellular quotas. Phytoplankton N/P ratios are fixed at the Red-446

field value of 16, but the diazotroph group has a higher N/P atomic ratio of447

50 (see a detailed description of the model in Moore et al. (2001, 2004a)).448

Thus, community N/P uptake varies with the phytoplankton community449

composition.450
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2.3. Zooplankton allometric scaling terms451

2.3.1. Zooplankton Ingestion452

The vital rates of organisms depend on their size: ingestion, metabolism,453

and growth rates all increase with body size to a power of approximately454

0.75, typically such that the mass-specific rates decline with body mass to455

a power of near -0.25 (Peters and Wassenberg, 1983; Kiørboe and Hirst,456

2014; Hansen et al., 1997). In MARBL-SPECTRA, zooplankton are defined457

as heterotrophs that can consume phytoplankton, other zooplankton, or a458

combination of both. Zooplankton ingestion rates are calculated as a function459

of prey carbon concentrations using the Hollings type II (Michaelis-Menten)460

function. There are two free parameters, maximum ingestion rate (ιmaxj ) and461

the half-saturation constant for grazing (KP ).462

Size-based variations in maximum specific ingestion rates were calculated463

as an allometric function of the predator biomass, with biomass-specific rates464

decreasing as biomass increases (Hansen et al., 1997). ιmaxj are also modified465

by the feeding preference coefficient, which is a function of the ratio between466

the predator size and the prey size. KP are highly variable and typically467

hard to constrain. Across all the zooplankton classes, KP has been found to468

be independent of body size (Hansen et al., 1997). Therefore, the effective469

KP is set to 1.1 (mmol C m−3) across zooplankton types (table 3).470

2.4. Predator-prey relationships471

In addition to physiological rates, predation in marine ecosystems is size-472

specific, with larger prey eating a characteristic size range of smaller prey473

(Sheldon et al., 1977; Hansen et al., 1994; Cohen et al., 1993; Barnes et al.,474

2008). We model these trophic links using a feeding kernel (FK) that is475

further modified to give the feeding preference coefficient (eq. 8, φ). Feed-476

ing kernels constitute the probability of a given predator ingesting prey of a477

particular size and can be highly variable, reflecting a great deal of measure-478

ment uncertainty and biological variability, with various studies employing479

gaussian, Laplace, and log-normal distributions (Law et al., 2009; Fuchs and480

Franks, 2010; Taniguchi et al., 2014; Heneghan et al., 2020). Here, we use481

the feeding kernel as a starting point to determine predator-prey feeding482

relationships, which are subject to additional tuning to achieve plankton dis-483

tributions consistent with large-scale observational constraints. The feeding484

kernel FKZj is represented as a complementary error function:485
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FKZj = Erfc

(
δPi,Zj√

2σZj

)
(18)

where Erfc(x) = 1 - Erf(x), the standard error function:486

Erf(x) =
2√
π

∫ x

0

exp−t2 dt (19)

and is closely related to the cumulative distribution function of the stan-487

dard normal distribution.488

Here, the numerator of the Erfc function is δPi,Zj , which is the absolute489

value of the difference between the predator-prey size ratio and the optimal490

predator-prey size ratio for any given predator, Zj:491

δPi,Zj =

∣∣∣∣ESDZj

ESDPi

−OptZj
∣∣∣∣ (20)

where ESDZj and ESDPi refer to the ESD (in mm) of the predator Zj492

and its prey, respectively, and OptZj is the predator specific optimal predator-493

to-prey size ratio. Note that we have used the Pi subscript here for simplicity,494

but the prey of Zj encompasses both phytoplankton and zooplankton prey.495

OptZj varies from approximately 7.5 to 18 from the smallest to the largest496

zooplankton, and represents the phenomenon that the mean predator-to-prey497

size ratio will often increase as predator size increases (Hansen et al., 1994).498

The parameters that define OptZj are given in Table 3.499

Similarly, the width of the feeding kernel also increases as predator size500

increases, reflecting both the wider organism size ranges, varied prey cap-501

ture strategies, and multiphagy of larger zooplankton (Hansen et al., 1994;502

Kiørboe, 2011). Here it is represented by σZj , which is in the denominator503

of eqn. 18, and is defined as σZj = 0.5 * OptZj .504

The feeding kernel as defined by the complementary error function has the505

property of being exactly 1 when δPi,Zj=0, and then declines in a sigmoidal506

manner as the predator-to-prey ratio increasingly differs from the optimum.507

Put together over the whole range of predator-to-prey size ratios, the resul-508

tant curve increases to a point at the center (the optimum), and declines on509

either side (see Fig. 3f), resembling the Laplace (double exponential) distri-510

bution, which was used in Fuchs and Franks (2010). It is important to note511

here that the exact shape of the feeding kernel is secondary relative to the512

following adjustments to the predator-prey feeding preference coefficient, as513
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they allowed us to tune this highly sensitive but poorly constrained grazing514

term to achieve plankton distribution patterns consistent with large-scale515

observational constraints.516

Building upon this basic kernel formulation, we made several adjustments517

to model predator prey interactions to improve the representation of the518

model plankton community. First, we increased microzooplankton grazing on519

picoplankton relative to the value in the feeding kernel. The increased grazing520

accounts for unresolved grazing by heterotrophic nanoflagellates, and allows521

for a higher stability in picoplankton populations. Second, we increased522

grazing on small diatoms, kept medium diatoms the same, and decreased523

the grazing on large diatoms. The increase in grazing on small diatoms was524

necessary to provide a strong top-down control on the abundance of fast525

growing small diatoms. The reduced grazing on larger diatoms accounts for526

their ability to form colonies and/or frustules to reduce losses to predation527

(Oostende et al., 2018). Third, zooplankton production rates were lower than528

estimated values (Landry and Calbet, 2004), so we decreased zooplankton529

grazing on other zooplankton to increase zooplankton production. Fourth, we530

also increased grazing on the small implicit calcifying mixed phytoplankton531

group to increase zooplankton production and at the same time reduce their532

high abundance in subpolar regions. Fifth, to increase mesozooplankton533

production, we decreased microzooplankton grazing on small diatoms, to534

allow mesozooplankton to take advantage of diatom blooms especially in535

very productive regions of the ocean.536

To ensure ingestion does not exceed maximum ingestion for a particular537

predator, the feeding kernel values were normalized by predator, such that538

the sum of all feeding kernel values per predator equalled 1. The individual539

feeding kernel values per predator-prey pair then modified predator ingestion540

rates (eq. 8).541

2.4.1. Zooplankton egestion, metabolism, and mortality542

Of the ingested prey carbon, 65% is assimilated into the predator biomass,543

and 35% is egested via sloppy feeding and fecal pellet production. The544

partitioning of the egestion into sinking particulate organic carbon (POC),545

semi-labile dissolved organic carbon (DOC), and highly labile DOC (which546

is instantly transformed to dissolved inorganic carbon, or DIC) varies by547

zooplankton size and phytoplankton prey type. The flux into sinking POC548

(ρPOC) increases with zooplankton size. However, there is no distinction in549

the sinking speed of detritus by size. We used the ballast model of Armstrong550
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Table 3: Size-dependent zooplankton biological parameters and scaling coefficients (t =
αV β).

Parameter Symbol Zooplankton Units

α β

Maximum ingestion rate ιmaxj 4.3 -0.63 d−1

Quadratic mortality aj 0.21 0.58 m3 mmol C−1 d−1

Zooplankton linear mortality mj 0.11 -0.63 d−1

Optimal predator to prey-ratio OptZj
12.9 0.53 unitless

et al. (2002) to distinguish between sinking speeds for ballast minerals (sili-551

cate, biogenic calcium carbonate (CaCO3), and mineral dust). The routing552

of ingestion to POC ranges from 0% for microzooplankton feeding on pi-553

coplankton to 35% for large mesozooplankton feeding on large diatoms. The554

remainder of the egestion losses not going to POC are partitioned to DOC555

(ρDOC ; 25%) and DIC (ρDIC ; 75%).556

In MARBL-SPECTRA, we distinguish between zooplankton ingestion-557

based (active) respiration and biomass-based (basal) respiration. Active res-558

piration is a fixed fraction of ingestion (35%), but biomass-specific basal559

respiration decreases with size (Kiørboe and Hirst, 2014). Similar to the560

specific ingestion rate (Section 2.3.1), the biomass-specific linear mortality561

(mj) is temperature-dependent and decreases with body size with a β of -562

0.25 (Hansen et al., 1997; Kiørboe and Hirst, 2014) and α of 0.12 d−1. These563

scaling relationships were converted to be scaled with volume with a β of564

-0.63 and α of 0.11 d−1.565

Zooplankton mortality due to predation by other zooplankton is resolved566

in the model in the lower size classes, becoming progressively unresolved567

with increasing size class. To account for the unresolved predation by higher568

trophic levels (fish, carnivorous jellies, marine mammals), the zooplankton569

quadratic mortality (aj) increases with biovolume with a β of 0.21 and α of570

0.58 m3 mmol C−1 d−1. We increased the quadratic mortality for largest571

mesozooplankton by a factor of 4 because to account for higher level grazing.572

The fraction of zooplankton quadratic mortality fluxing into particulate and573

dissolved organic matter pools depends on diet and organisms size. With a574

greater proportion of large zooplankton mortality being transferred to par-575

ticulate organic matter pools compared to smaller zooplankton.576
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Figure 3: Zooplankton parameters. Relationships for microzooplankton (<0.2 mm ESD)
(light orange) and mesozooplankton (>0.2 mm ESD) (dark orange) between equivalent
spherical diameter (ESD) and a) maximum zooplankton ingestion rate (ιmaxj ), b) zoo-

plankton grazing half saturation constant for grazing (KP ), c) linear mortality (mj), and
(d) quadratic mortality (aj) (representing predation by higher trophic levels). e) Maxi-
mum grazing rates between predator and prey pairs and f) Value of the feeding kernel,
which is then modified to give the feeding preference coefficient. The mean and width of
the feeding kernel increases as zooplankton sizes increase.

2.5. Model Calibration577

Many of the parameters required to simulate planktonic foods webs are578

difficult to measure directly, yet are highly important to simulate carbon579

and energy flow patterns (Stock and Dunne, 2010). In order to produce a580

balanced ecosystem, two main calibrations were done. First, the zooplank-581

ton loss terms (linear and quadratic mortality) were calibrated to preserve582

global totals of zooplankton production while largely maintaining allometric583

trait relationships across size classes (Kiørboe and Hirst, 2014; Hansen et al.,584

1997). We increased the zooplankton quadratic mortality for the largest585

mesozooplankton by a factor of four to account for unresolved predation by586

higher trophic levels. Phytoplankton linear mortality and aggregation loss587

were also calibrated because these parameters are poorly constrained by ob-588

servations. Instead of a single allometric scaling, linear mortality was set as589

a fraction of PCref
i , with a factor of 0.02 for diatoms and 0.03 for all other590

phytoplankton. The lower linear mortality in diatoms provides an advantage591

over other phytoplankton and increased their global production. We also592

removed the allometric scaling of phytoplankton aggregation loss (ai) with593
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body size to allow the same rate of aggregation loss for every phytoplankton.594

Second, the grazing half-saturation prey concentration for zooplankton595

were calibrated to allow higher global total zooplankton production. These596

parameters are poorly constrained by observations (Hansen et al., 1997), but597

the values used (Table 3) still fall within the observed ranges in Hansen598

et al. (1997). Because grazing half-saturation constants have been shown to599

be independent of body size (Hansen et al., 1997), only one KP had to be600

calibrated, because it was used for every zooplankton.601

2.6. Physical Framework602

MARBL-SPECTRA builds from the default MARBL configuration in603

CESM2.1 (MARBL-CESM2.1) in terms of biogeochemistry, plankton inter-604

action and transmission of light as described by tables and equations in Long605

et al. (2021). However, we have increased the number of plankton functional606

types and size classes to include greater diversity. Here we briefly provide607

an overview of MARBL-SPECTRA, and some more detailed description of608

the more complex ecosystem. More details and the full set of equations and609

parameters can be found in Long et al. (2021). MARBL runs within the610

ocean component of the Community Earth System Model version 2 (CESM611

2.1) (Moore et al., 2013b; Gent et al., 2011), which is the Parallel Ocean Pro-612

gram, version 2 (Smith et al., 2010). The physical configuration used here is613

very similar to that in CESM1, and a detailed description and evaluation of614

the ocean general circulation model in previous versions of CESM is given by615

Danabasoglu et al. (2012). The model has a nominal horizontal resolution616

of 1o, with 60 vertical depth levels ranging in thickness from 10 m in the617

upper 150m to 250 m in the deep ocean (Moore et al., 2013b). The sea-ice618

component (CICE) is described by Hunke et al. (2017).619

MARBL-SPECTRA simulates 55 tracers, including 17 non-living tracers620

and 38 tracers associated with the plankton community. This includes 27621

tracers associated with the nine phytoplankton size classes, with each phy-622

toplankton C, Chl, and Fe tracked separated (Moore et al., 2001, 2004a).623

In addition, there are 3 phytoplankton Si tracers associated with the three624

diatom classes, as well as 2 phytoplankton CaCO3 tracers associated with625

the two implicit calcifiers that are part of the mixed phytoplankton classes.626

Constant stoichiometry was assumed for zooplankton, therefore only 6 zoo-627

plankton carbon tracers were included. The model simulates six dissolved628

organic matter pools, including semi-labile and refractory dissolved organic629

carbon, nitrogen, and phosphorus (Letscher and Moore, 2015; Letscher et al.,630

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2022.02.01.478546doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478546
http://creativecommons.org/licenses/by-nc-nd/4.0/


2015). It also includes sinking particulate pools and an explicit simulation of631

the biogeochemical cycling of key elements (C, N, P, Fe, Si, O, plus alkalinity)632

(Moore et al., 2004a). Riverine nutrients (N, P, Si, Fe), dissolved inorganic633

carbon, alkalinity, and DOM fluxes are supplied to the CESM2 ocean model634

via the nutrient loading estimates from GlobalNEWS (Mayorga et al., 2010)635

and the Integrated Model to Assess the Global Environmental-Global Nutri-636

ent Model (IMAGE-GNM) (Beusen et al., 2015, 2016). The plankton com-637

munity component is coupled with a carbonate chemistry module based on638

the Ocean Carbon Model Intercomparison Project (OCMIP)(Najjar et al.,639

1999), allowing dynamic computation of surface ocean pCO2 and air-sea CO2640

flux.641

MARBL-SPECTRA simulations are forced with the Common Ocean-Ice642

Reference Experiment (CORE-II) data set(Large and Yeager, 2009). The643

forcing period from 1948 to 2009 (62 years) underwent two repeating cy-644

cles. This differs from CORE-II protocol where forcing undergoes five re-645

peating cycles (Griffies et al., 2009). A shorter integration does not provide646

a fully-equilibrated model solution in the deep ocean, but has been used647

for studying surface ocean dynamics (Stock et al., 2014b). Thus, by the648

end of the 62 year spin up time, surface biomass distributions are nearing649

an equilibrium state, even if deep ocean tracers may not be. We focus our650

analyses on the final 20 years of the simulation (1990-2009). Code for gen-651

erating the namelist parameters for MARBL-SPECTRA are available at:652

https://github.com/jessluo/gen spectra. The version of MARBL used for653

these simulations is available at: https://github.com/jessluo/MARBL/tree/spectra.654

3. Results655

3.1. Biogeochemical comparisons656

MARBL-SPECTRA qualitatively captures large-scale global biogeochem-657

ical and ecological patterns evident in available observations. Simulated658

global annual mean marine NPP, POC export, and nitrogen fixation, av-659

eraged over the top 150 m, are shown in comparison to empirical estimates660

in Table 4. For these metrics, the model falls within range of empirical esti-661

mates. The global total marine diatom production is 14 Pg C yr−1, which is662

about 28% of total NPP and falls within estimated values (20-40% of total663

NPP) (Nelson et al., 1995; Aumont et al., 2003). Global total zooplankton664

production is 12 Pg C yr−1 (23% of NPP), falling within empirical estimates665
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Table 4: Global annual averages of marine net primary production (NPP), sinking POC
flux, and nitrogen fixation, averaged over the top 150m.

Biogeochemical field Global average Empirical estimate Reference

NPP 52 Pg C yr−1 35-70 Pg C yr−1 (Carr et al., 2006)

POC flux 6.8 Pg C yr−1 4-12 Pg C yr−1 (Dunne et al., 2007; DeVries

and Weber, 2017)

Nitrogen Fixation 107 Tg N yr−1 51 - 196 Tg N yr−1 (Luo et al., 2014; Tang et al.,

2019; Wang et al., 2019;

Großkopf et al., 2012)

(21-25% of NPP) (Landry and Calbet, 2004), with microzooplankton con-666

tributing 8.7 Pg C yr−1 to overall zooplankton production, and the remainder667

3.3 Pg C yr−1 coming from mesozooplankton production.668

The model captures the large-scale surface (top 10 m) NO3 (Fig. 4a-c),669

PO4 (Fig. 4d-f), and SiO3 (Fig. 4g-i) distributions, with low nutrient con-670

centrations in the subtropical gyres and higher nutrient concentrations in671

subpolar and upwelling regions. Because the model simulation is 62 years,672

the global nutrient distributions are not likely to be in a time-average steady673

state, particularly in the deep ocean. Compared with the 2018 World Ocean674

Atlas (WOA18) macronutrient observations (Garcia et al., 2019) (Fig. 4b,e675

& h), near-surface NO3, PO4, and SiO3 concentrations are slightly higher in676

the model, with a bias of +0.50, +0.090, and -1.4 mmol m−3 respectively.677

For NO3 and PO4, the bias is greatest in the tropical Pacific Ocean. This678

could be due to a slightly lower export flux from the upper oceans, due to679

higher nutrient recycling in this region coming from the dominance of smaller680

phytoplankton (Fig. 8). SiO3 biases are highest in the Southern Ocean, po-681

tentially due to insufficiently vigorous diatom production depressing SiO3682

consumption. In the subpolar North Pacific Ocean, the model shows lower683

NO3, PO4, and SiO3, compared to the WOA18 observations (Fig. 4 c, f, i).684

This underestimation of macronutrients in the North Pacific is likely due to685

insufficient vertical mixing in this region, with phytoplankton production uti-686

lizing surface nutrients faster than they can be replenished. Simultaneously,687

overproduction of diatoms, due to insufficient Fe limitation stimulates the688

utilization of nutrients, leading to under-representation of the high nitrate,689

low chlorophyll (HNLC) region of the sub-Arctic North Pacific.690
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Figure 4: Macronutrients. Annual average modeled (a,d,g) and observed (b,e,h) surface
(top 5m) concentrations of NO3, PO4 and SiO3 and their differences (Model-Observations;
c,f,i). Observations are from the 2018 World Ocean Atlas release. (Garcia et al., 2019)

3.2. Limitation of model phytoplankton growth691

Using phytoplankton-biomass-weighted means of the upper-ocean limita-692

tion terms, we show the nutrients most limiting growth for each phytoplank-693

ton in the model (Fig. 5). Phytoplankton growth is limited primarily by694

the availability of nitrate (NO3) or Fe and regionally by PO4 (diazotrophs)695

and SiO3 (diatoms) (Fig. 5), consistent with previous modelling studies us-696

ing CESM (Moore et al., 2013a; Long et al., 2021). The degree of growth697

limitation by nutrients becomes stronger as body size increases (Fig. 5).698

This occurs because smaller phytoplankton have greater capacity to acquire699

nutrients via diffusion relative to their nutrient demands (Edwards et al.,700

2012). Nutrient replete areas (white areas in Fig. 5) are characterized by701

where the concentration of nutrients is high enough to support growth rates702

> 90% of the maximum potential growth rate. For picoplankton, these occur703

in the equatorial upwelling region and the subpolar and polar regions (Fig.704

5a). For diazotrophs, these occur in equatorial regions of the Atlantic and705

Indian Oceans, as well as the western Pacific (Fig. 5b). Diatoms and mixed706

phytoplankton are rarely nutrient replete due to their high nutrient require-707

ments (Fig. 5c,d). In addition to these overall patterns, diazotrophs undergo708

stronger PO4 limitation in the North Atlantic due to enhanced N2 fixation709
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simulated by Fe associated with dust deposition (Wu et al., 2000).710

Phytoplankton size
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Figure 5: Phytoplankton nutrient limitation in top 100m. The nutrient most limiting
phytoplankton growth over the 20 year climatology (January 1990- December 2009). Rows
categorize phytoplankton by their functional group: (a) picoplankton, (b) diazotroph, (c)
diatoms, and (d) mixed phytoplankton. Columns indicate relative phytoplankton size
within each group, increasing from left to right.

3.3. Chlorophyll711

Model annual-mean surface (top 10 m) chlorophyll exhibits plausible spa-712

tial gradients tied to provision of nutrients to the ocean surface and good over-713

all agreement with observations (Fig. 6). Surface chlorophyll observations714

were obtained from the Sea-viewing Wide Field-of-view Sensor(SeaWiFS)715

climatology from 1998-2009, which corresponds to the last twelve years of716

the CORE-II forcing dataset (Large and Yeager, 2009). Model chlorophyll is717

low in subtropical gyres due to wind-driven downwelling and low surface nu-718

trient availability (Fig. 4a). In higher latitudes and upwelling areas, higher719

nutrient concentrations allow for higher chlorophyll concentrations (Fig. 6a).720

Model annual average chlorophyll generally exceeds observations in subtrop-721

ical and temperate locations, while the model underestimates chlorophyll in722

the Arctic, Antarctic, and coastal upwelling regions (Fig. 6c).723
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Figure 6: Surface (top 10 m) chlorophyll concentration (mg Chl m−3). (a) Simulated
annual-mean surface chlorophyll, (b) satellite-derived (SeaWiFS) estimate of annual-mean
surface chlorophyll, (c) model – SeaWiFS, (d) mean monthly modeled surface chlorophyll
by biomes; (e) mean monthly SeaWiFS surface chlorophyll by biomes; and (f) difference
between model and observations on a monthly, per-biome basis. Refer reader to biome
map, and say how they were calculated.

The positive chlorophyll bias in subtropical and subpolar seasonally strat-724

ified biomes of the northern hemisphere is due to an earlier than observed725

phytoplankton bloom that starts in March and ends around June, about a726

month earlier than the observed bloom in April through June (Fig. 6f).727

This is perhaps due to lower mesozooplankton biomass in the spring from728

lack of diaupasing zooplankton, yielding insufficient top-down control on phy-729

toplankton and leading to an earlier spring bloom (Behrenfeld, 2014). The730

higher chlorophyll concentrations in the central Equatorial Pacific between731

July to November (Fig. 6f) are associated with higher nutrient delivery to732

the surface from the Equatorial upwelling zone. In the subtropical and sub-733

polar Southern Hemisphere, a stronger bloom initiates sooner (September)734

than observational estimates (November/December) (Fig. 6f), leading to a735

positive bias in subtropical and subpolar seasonally stratified biomes of the736

Southern Hemisphere.737

Vertical profiles of model chlorophyll show important biases compared738

with observations. Comparing vertical chlorophyll profiles of The Bermuda739

Atlantic Time-series Study (BATS), and the Hawaii Ocean Time-series (HOT)740
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stations (Fig. S2), MARBL-SPECTRA simulates a shallower deep chloro-741

phyll maximum (DCM) layer for BATS (60-80m) compared to HOT (70-742

100m). However, compared with observed values, MARBL-SPECTRA sim-743

ulates DCMs that are too shallow for both of these regions. For instance,744

data from HOT and BATS indicates a DCM layer falling between 60-120m745

for BATS (Steinberg et al., 2001), and 100-150m for the HOT station (Lete-746

lier et al., 2004). The tendency of these deep chlorophyll maximum to be747

shallower than observations may be due do a variety of reasons, such as the748

lack of representation of low-light adapted ecotypes of picoplankton which are749

generally restricted to the deep euphotic zone (Moore et al., 2002; Johnson750

et al., 2006; Moore and Chisholm, 1999) contributing to the deep chlorophyll751

maximum. The under-representation of mixotrophy in the model could also752

contribute to this bias, as it has been found that the incorporation of mixotro-753

phy in models has helped represent DCMs more accurately (Moeller et al.,754

2019).755

3.4. Phytoplankton biogeography756

The distribution of small, medium, and large phytoplankton in the model757

is consistent with satellite-derived size class estimates from Hirata et al.758

(2011). The small group includes the picoplankton (pp) and the smallest759

mixed phytoplankton (mp1), the medium group includes the smallest diatom760

(diat1), the diazotroph (diaz), and the medium mixed phytoplankton (mp2),761

and the large group includes the largest two diatoms (diat2, diat3) and the762

largest two mixed phytoplankton (mp3, mp4). The satellite algorithm used763

by Hirata et al. (2011) estimates the biomass of three phytoplankton size764

classes as microphytoplankton (>20 µm), nanophytoplankton (2-20 µm) and765

picophytoplankton (<2 µm).766

Small phytoplankton dominate the subtropical gyres with over 70% of the767

total Chla (Fig. 7c). These regions are characterized by strong vertical strati-768

fication and weak nutrient delivery to the surface. Here, small phytoplankton769

can outcompete larger phytoplankton due to their higher scaled nutrient and770

light affinities allowing them to maintain positive net growth at low nutri-771

ent concentrations compared to larger competitors (Edwards et al., 2012).772

Medium phytoplankton dominate in subpolar gyres, coastal upwelling zones,773

and equatorial upwelling regions where nutrient delivery is greater. Here,774

grazing pressure on small phytoplankton prevents small cells from consuming775

all resources and allows the medium phytoplankton to become established.776

The largest phytoplankton are found mainly in polar regions in the Arctic777
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Figure 7: Phytoplankton size class biogeography. Percent of total chlorophyll in each size
class: (a) Small phytoplankton (includes picoplankton and smallest mixed phytoplankton,
(b) Medium phytoplankton (includes the smallest diatom, the second smallest mixed phy-
toplankton, and the diazotroph), and (c) Large phytoplankton (includes the two largest
mixed phytoplankton, and the largest two diatoms on the model).

and Southern Oceans, where the balance between growth and predation on778

small and medium phytoplankton, together with lower light affinities, allows779

these larger phytoplankton to survive.780

Diatoms illustrate the importance of modelling different size classes within781

each phytoplankton functional type. Diatoms are found from the tropics to782

the poles, but are most abundant in polar to temperate, nutrient-rich regions,783

where silicic acid and other nutrients are not limiting. However, the distribu-784

tion of modeled diatoms varies by size and associated organism traits (Fig.785

S3g-i). Compared with other diatoms, the smallest diatom has a higher spe-786

cific growth rate, lower nutrient half-saturation constants, and higher affinity787

for light (Fig. 2), but also proportionally higher losses to mortality and graz-788

ing (Fig. 2; 3). Small diatoms are most abundant in coastal, equatorial789

upwelling, and subpolar regions (Fig. S3g). Larger diatoms have somewhat790

lower growth rates, weaker nutrient uptake abilities, and lower light affinity791

αChli , but lower mortality and losses to grazing (Fig. 2; 3). Large diatoms,792

therefore, are most abundant in subpolar and polar regions (Fig. S3i). The793

ability to model different size classes within each functional group allows us794

to observe these patterns that would otherwise not be resolved.795

The phytoplankton size abundance relationship is a general descriptor796

of phytoplankton community size structure, and plays a fundamental role797

in pelagic ecosystems as it determines the trophic organization of plankton798

communities and, hence, the biogeochemical functioning of the ecosystem799

(Legendre and Rassoulzadegan, 1996; Kiørboe, 1993). The relationship be-800

tween phytoplankton abundance and cell volume (V ) follows a power law,801

N = αV β, where N is the cell density and α is the intercept of the resulting802

linear regression. The size-scaling exponent, β, is a descriptor of commu-803
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nity size structure (Marquet et al., 2005) and generally takes values between804

-1.3 and -0.6 (Huete-Ortega et al., 2012). The slope of the size abundance805

relationship was calculated by plotting the logarithmic abundances of all806

phytoplankton size classes as a function of their volume.807

Figure 8: Slope of the size abundance relationship. (a) The annual averaged surface
slope of the size abundance relationship, and (b) mean monthly surface slope of the size
abundance relationship by biomes (Fig. S1) over the period 1990–2009. More negative
slopes are seen in the stratified waters of low-latitude, open-ocean environments, where
small cells account for most of the biomass, and less negative slopes appear in more
nutrient-rich, productive regions, where larger cells generally constitute a greater fraction
of total biomass than in lower nutrient regions.

Overall, MARBL-SPECTRA captures the horizontal gradients in size808

driven by the provision of nutrients to the ocean surface (Barton et al., 2013).809

Locations with more negative slopes tend to have relatively few large phy-810

toplankton present, whereas a less negative slope indicates the presence of811

proportionally more large phytoplankton(Cermeño et al., 2006). In MARBL-812

SPECTRA (Fig. 8b), the most negative slopes (between -1.2 and -0.9) oc-813

cur in the permanently stratified oligotrophic subtropical gyres where small814

phytoplankton dominate and large cells are scarce (Fig. 7). The highest815

contribution of small cells is especially seen during the boreal and austral816

summer of permanently stratified subtropical gyres, and lower latitude up-817

welling regions (Fig. 8b). The least negative slopes (>-0.9) are found in818

more productive regions of the ocean, like the subpolar and polar regions819

where larger phytoplankton have a higher contribution to total phytoplank-820

ton biomass (Fig. S3). Seasonally, less negative slopes are found during821

the boreal and austral Winter of the seasonal ice zone, and the northern822

seasonally stratified subpolar gyre (Fig. 8b).823
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3.5. Zooplankton production824

MARBL-SPECTRA’s global zooplankton production is mostly composed825

of microzooplankton. Approximately 73% of the total zooplankton produc-826

tion comes from microzooplankton (<200 µm ESD), represented by the two827

smallest zooplankton groups. These zooplankton dominate the grazing on828

picoplankton and small mixed phytoplankton. As a result, the microzoo-829

plankton are broadly distributed and are most abundant in the oligotrophic830

and subpolar regions (Fig. S4a,b). MARBL-SPECTRA simulates cross-831

biome patterns in mesozooplankton biomass, with the highest values in the832

North Pacific, the equatorial Pacific, and coastal upwelling regions (Fig. 9a).833

We compare model zooplankton biomass to observations from the NOAA834

COPEPOD global zooplankton database (https://www.st.nmfs.noaa.gov/copepod/),835

of which the global mesozooplankton carbon biomass dataset is the most836

relevant and accessible (Moriarty and O’Brien, 2013), for model output com-837

parison. However, since the COPEPOD database compiles measurements838

collected by net-tows of epipelagic mesozooplankton captured primarily us-839

ing large, 300 µm nets that under sample small mesozooplankton (Moriarty840

and O’Brien, 2013; Landry et al., 2001; O’Brien, 2005)), we only used the841

three largest mesozooplankton (zoo4-zoo6) for our model-data comparison.842

Additionally, because the COPEPOD database includes more samples during843

summer months, we only compared with summer months of each hemisphere844

(Fig. 9a,b). When comparing modeled and observed mesozooplankton across845

biomes (Fig. 9c-e), we excluded biomes containing less than 25% of observa-846

tions at each month. MARBL-SPECTRA’s annual average mesozooplankton847

biomass (only accounting for grid cells with observations) averages 2.7 mg848

C m−3, compared with COPEPOD’s annual average of 4.7 mg C m−3. The849

discrepancy from the model and observations comes from coastal upwelling850

regions in the model having lower biomass than observed in the COPEPOD851

database. Mesozooplankton biomass is lowest in the Southern Ocean and852

the sub-Arctic North Atlantic (Fig. 9a). Compared with the COPEPOD853

database observations, MARBL-SPECTRA overestimates mesozooplankton854

biomass in subtropical regions (Fig. 9e). This can be seen especially in gra-855

dients between coastal and offshore regions (e.g. near California Current),856

where high mesozooplankton production near the coast does not decrease857

to considerably lower values as you move to the oligotrophic regions in the858

model output. Thus, MARBL-SPECTRA captures basin-scale gradients in859

zooplankton biomass, but the dynamic range in the model is reduced com-860

pared with observations.861
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Figure 9: Mesozooplankton biomass. (a) Modeled annual mean mesozooplankton biomass
(mg C m−3) over the top 150 m (only including largest three mesozooplankton (zoo4 -
zoo6), compared with (b) observed annual average mesozooplankton biomass using the
COPEPOD database (mg C m−3) (Moriarty and O’Brien, 2013). (c) Mean monthly mod-
eled surface mesozooplankton biomass by biomes; (d) mean monthly COPEPOD meso-
zooplankton biomass by biomes (only showing biomes that have more than 25% of data
at each month); and (e) difference between model and observations.

Model mesozooplankton biomass in MRABL-SPECTRA display a weaker862

spatial dynamic range compared to observations. The strong negative bias863

of modeled mesozooplankton (Fig. 9e) in the subpolar and subtropical sea-864

sonally stratified biomes of the Northern Hemisphere comes from the un-865

derestimation of mesozooplankton biomass in the sub-Arctic North Atlantic,866

along with a 3-4 month delay in the zooplankton bloom (Fig. 9e). MARBL-867

SPECTRA does not resolve zooplankton life histories, including dormancy868

or diapause, which may contribute to these discrepancies. Due to limited869

observations, we are unable to diagnose seasonal zooplankton biomass pat-870

terns in poorly-sampled regions of the ocean (Fig. 9d). However, MARBL-871

SPECTRA simulates a Southern Hemisphere subpolar zooplankton bloom872

from December to March and the subtropical seasonally stratified bloom in873

the Southern Hemisphere from October to June (Fig. 9c). The low latitude874

upwelling region in the Southern Hemisphere shows a model mesozooplank-875

ton bloom from June to October, similar to a shorter one observed in the876

equatorial upwelling region from June to September.877
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3.6. Generation time878

MARBL-SPECTRA simulates plankton generation times and allows us to879

analyze their influence by organism size, temperature, and latitude. Plank-880

ton generation time was calculated as the ratio of depth-integrated biomass881

(mmol m−2 C) over production (mmolC m−2 d−1), averaged over the top882

150m. The global average generation time for phytoplankton increased with883

body size, ranging from a few days for picoplankton to a few months for884

the largest mixed phytoplankton (Fig. 10a). Global average zooplankton885

generation times ranged from about a week for the smallest microzooplank-886

ton to a few months for the largest mesozooplankton. However, there are887

considerable regional variations in generation time. The longest generation888

times reached almost a year for the largest mixed phytoplankton and almost889

two years for mesozooplankton near the poles, with the shortest generation890

times found in the tropics (Fig. SI S7,S8). These variations in generation891

time reflect body size and temperature effects (Gillooly et al., 2001; Gillooly,892

2000; Gillooly et al., 2002), although, consumption, respiration, predation,893

and mortality are also of influence. Generation times for some copepod894

species have been observed to reach up to 3-4 years (Hirche, 1997). However,895

MARBL-SPECTRA does not resolve zooplankton life histories such as dia-896

pause, which limits generation times for some mesozooplankton especially in897

polar regions.898

3.7. Trophic Scaling899

The model indicates not only zooplankton biomass and generation length,900

but food chain length and zooplankton trophic level. Using the grazing fluxes901

between predators and prey, we calculated the trophic level for each zooplank-902

ton by assigning a value depending on their prey. For example, zooplankton903

in the second trophic level are those who only feed on phytoplankton, with904

additional trophic levels beyond this added depending on the trophic level of905

zooplankton they eat as prey at each grid cell. Model simulations show aver-906

age zooplankton trophic levels to be highest in the oligotrophic subtropical907

gyres and lowest in polar regions around the Southern Ocean and the Arctic908

Ocean (Fig. 10b & Fig. S6). Low productivity regions of the ocean tend to909

have longer, less efficient food chains, suggesting a greater flow of energy and910

carbon through the microbial loop (Steinberg and Landry, 2017). Produc-911

tive regions with lower zooplankton trophic levels tend to have shorter, more912

efficient food chains (Fig. 10b), suggesting a more efficient energy transfer913

towards upper food web levels. Thus, for each given zooplankton size class914
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Figure 10: Predator-prey generation time and trophic dynamics. (a) Annual global aver-
age generation time averaged over the top 150m in days for each phytoplankton (blue),
and zooplankton (orange) size class, as a function of organisms body mass (units). (b)
Zooplankton annual mean trophic level over the top 150 m. A trophic level of 2 indi-
cates an entirely herbivorous zooplankton feeding on primary producers. A trophic level
3 indicates secondary consumers, which are carnivorous zooplankton that eat herbivores.

(Fig. S6), the average trophic level for each type of model zooplankton in-915

creased in the low nutrient, subtropical gyres, illustrating the predominance916

of lengthened food webs in those regions. In contrast, the Southern Ocean917

and the Arctic Ocean are not characterized by high trophic levels but are918

areas of elevated zooplankton biomass, especially large mesozooplankton.919

3.8. Zooplankton to phytoplankton biomass ratio920

MARBL-SPECTRA resolves spatial and temporal variations in the biomass921

pyramid in lower trophic levels of marine ecosystems, and consequently can922

provide mechanistic insights on factors regulating this structure. Regions of923

high phytoplankton and zooplankton biomass are concentrated in subpolar924

and coastal regions, whereas the oligotrophic gyres support much lower total925

biomass (Fig. S5a,b). The zooplankton to phytoplankton biomass ratio is at926

or below 1 in most of the ocean, consistent with observations from Irigoien927

et al. (2004); Gasol et al. (1997), and modelling results in marine (Vallina928

et al., 2014) and lake systems (Yuan and Pollard, 2018). Z:P biomass ratios929

are also shown to vary seasonally, in this case focusing on data from North-930

ern Hemisphere subpolar and polar regions (35oN-90oN). Here, the highest931
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Z:P ratios occurred in winter months, driven by declines in phytoplankton932

biomass (Fig. 11c).933

Figure 11: Predator-prey biomass ratios. (a) Global map of the zooplankton to phyto-
plankton biomass ratio, showing the depth integrated annual mean over the top 150 m.
(b) Seasonal zooplankton biomass (dark pink), phytoplankton biomass (light pink), and
zooplankton to phytoplankton biomass ratio (blue) of polar and subpolar regions in the
Northern Hemisphere (35oN-90oN). (c) log10 zooplankton and phytoplankton biomass re-
lationship integrated over the top 150 m. The dashed black line represents the 1:1 line,
and the solid black line represents the least squares line of best fit, which has an exponent
of 0.7464 in bold (with 95% CI).

The model indicates that as phytoplankton biomass increases, so too does934

zooplankton biomass. However, the rate of increase in zooplankton biomass935

is less than for phytoplankton biomass, such that the slope of the log10-936

log10 relationship between model phytoplankton and zooplankton biomass is937

approximately 0.75 (Fig. 11b). Our results are consistent with a 3/4 scal-938

ing exponent between prey and predator biomass observed by Hatton et al.939

(2015). In regions of low phytoplankton biomass, such as the oligotrophic940

gyres, Z:P ratios are close to 1:1, suggesting a tight and efficient coupling941

between small phytoplankton and their microzooplankton consumers. In re-942

gions of higher phytoplankton biomass, Z:P ratios are lower, suggesting a943

greater degree of decoupling between predators and prey.944

One exception from this overall relationship is the Arctic Ocean, which945

has much higher Z:P ratios, in some cases approaching 3:1. Here, the balance946

between strong seasonal bottom-up (light and temperature) controls and947

intense grazing pressure in these regions might explain the high Z:P biomass948

ratios.949

3.9. Plankton phenology950

The enhanced plankton community in MARBL-SPECTRA provides a951

mechanistic representation of the function and dynamics of plankton phenol-952
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Figure 12: Plankton phenology. Average number of plankton present at a level more than
1% of the total plankton biomass for a given grid cell at any time of the year (e). Seasonal
cycles for phytoplankton (blue) and zooplankton (orange) in a 5o by 5o region in the (a)
Subtropical North Pacific (47−51oN , 165−160oW ), (b) Arctic Ocean (78−83oN , 1−6oW ),
(c) Subpolar North Atlantic (45 − 50oN , 27 − 32oW ), (d) Subtropical North Atlantic
(78 − 83oN , 1 − 6oW ), (f) Equatorial Pacific (2oN -2oS, 97-101oW ), (g) Southern Ocean
(47− 61oS, 171− 175oW ), and (h) Southern Ocean sea ice zone (66− 70oS, 38− 42oW ).
The seasonal cycles are calculated from 20 year (1990-2009) biomass climatologies from
the model.

ogy, where the phenology of model plankton is tied to their body size, traits,953

and interactions. Here, we show the seasonal cycle of biomass for seven 5o954

by 5o locations in the global ocean (Fig. 12). While the details of a given955

site may differ between the model and observations for a range of reasons,956

the model simulates a seasonal succession at each location tied to nutrient957

delivery, temperature, light availability, and grazing pressure.958
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For example, in the subtropical North Pacific (47− 51oN , 165− 160oW ;959

Fig. 12a), low nutrient availability leads to picoplankton dominance through-960

out the year. Strong grazing pressure from small microzooplankton together961

with low nutrient delivery allows for the dominance of relatively small phy-962

toplankton. The Equatorial Pacific (2oN -2oS, 97-101oW ; Fig. 12f) is simi-963

larly dominated by picoplankton throughout the year with weak seasonality,964

however shows a higher contribution of small diatoms due to higher nutrient965

inputs from Equatorial upwelling (Fig. 4). Conversely, in the subpolar North966

Atlantic region (45−50oN , 27−32oW ; Fig. 12c), MARBL-SPECTRA simu-967

lates a Spring bloom dominated by small diatoms and mixed phytoplankton.968

The bloom decreases with the emergence of small microzooplankton and969

mesozooplankton grazing, followed by the development of a fall bloom com-970

posed of small diatoms. The Subtropical North Atlantic (78−83oN , 1−6oW ;971

Fig. 12d), shows a similar, but weaker spring bloom dominated by the small972

diatoms, decreasing with the emergence of mesozooplankton grazing. This973

bloom is followed by a longer fall and summer picoplankton bloom. In the974

Southern Ocean (47 − 61oS, 171 − 175oW ; Fig. 12g), small diatoms and975

mixed phytoplankton drive a late Spring/early austral Summer bloom due976

to high nutrient supply. A similar but shorter bloom occurs in the Southern977

Ocean sea-ice zone (66 − 70oS, 38 − 42oW ; Fig. 12h) driven by the small978

diatoms and mixed phytoplankton. In the Arctic Ocean (78−83oN , 1−6oW ;979

Fig. 12b), small and medium diatoms and small mixed phytoplankton drive980

a boreal Summer bloom decreasing with the emergence of microzooplankton981

and mesozooplankton grazing.982

Overall, MARBL-SPECTRA can simulate phenology and succession in a983

more diverse fashion than models with fewer taxa. We calculated the total984

number of phytoplankton and zooplankton taxa present at greater than 1% of985

total biomass of phytoplankton and zooplankton in each month of the year,986

and averaged this over all months, to find the averaged number of model987

species present at any time of year. The highest average number of plankton988

present contributing to more than 1% of plankton biomass are seen in the989

subtropical gyres, especially near coastal boundary currents (Fig. 12e). The990

weak seasonality, and high contribution of small phytoplankton and micro-991

zooplankton throughout the year might contribute to this greater number of992

plankton present in the subtropical gyres compared to other regions. Mean-993

while, the higher nutrient concentration in the Equatorial upwelling region,994

drivers a the opportunist small diatoms to dominate most of the plankton995

biomass decreasing the number of plankton types present (Fig. 12e & Fig.996
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S3). Polar regions display a lower average number of plankton types present997

throughout the year due to strong seasonality, and higher dominance of larger998

plankton types (Fig. 12e & Fig. 8).999

4. Discussion1000

4.1. Significant model advances1001

MARBL-SPECTRA is a plankton community model that expands on1002

plankton functional types and size classes compared to previous CESM plank-1003

ton community models. The union of functional type modelling with size-1004

resolved, trait-based models provides a tractable approach to simulate the1005

critical biogeochemical cycles mediating the large-scale structure of carbon1006

and nutrient distributions and the complex and nuanced variation of plank-1007

tonic ecosystems controlling trophic energy transfer. MARBL-SPECTRA1008

provides a framework to simulate seasonal and regional changes in phyto-1009

plankton phenology and diversity and their roles in ecosystem functioning1010

and biogeochemical processes. The mechanistic representation of these pro-1011

cesses allows for the identification of key drivers influencing plankton sea-1012

sonal succession and uncovers the roles of various functional groups in com-1013

munity interactions such as competition and predation. The incorporation1014

of MARBL-SPECTRA into CESM enables mechanistic projections of how1015

plankton communities are responding to seasonal and interannual changes1016

in their environment as well as how they might respond to future environ-1017

mental change. The inclusion of more plankton functional types and size1018

classes improves the representation of plankton spatial and temporal bio-1019

geography. Highly productive regions tend to be dominated by fast-growing1020

nutrient opportunists (i.e. small diatoms) (Fig. S3). Stratified, unproduc-1021

tive oligotrophic regions are dominated by slow-growing microbes with high1022

nutrient affinity (i.e., picoplankton) (Fig. S3), whose low nutrient require-1023

ments tied with their low growth and mortality rates allow them to prevail1024

throughout the year. The largest phytoplankton survive mainly in higher1025

latitudes in large part because their losses to predation are relatively low,1026

even though they tend to grow slowly and are less competitive for nutrients1027

compared with smaller phytoplankton. Additionally, including picoplankton1028

in MARBL-SPECTRA compared to previous versions of CESM was key in1029

differentiating community size structure across the globe. These advantages1030

were particularly apparent in the oligotrophic gyres of the ocean, where pi-1031
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coplankton contribute to about 70% of the total Chl, substantially improving1032

the dynamic range of chlorophyll in the model.1033

The more diverse plankton community in MARBL-SPECTRA simulates1034

the seasonal succession of plankton communities tied to nutrient delivery,1035

temperature, light availability, and grazing pressure. Diatoms dominate the1036

spring bloom in temperate regions due to the onset of thermal stratification1037

increasing light availability. Sufficient light and nutrient supply aid the rapid1038

growth of the smallest diatoms. Mixed phytoplankton develop in late spring1039

following strong microzooplankton and mesozooplankton grazing pressure on1040

diatoms. In autumn, a weaker small diatom bloom occurs in many regions,1041

driven by nutrient delivery to the surface due to enhanced mixing under fa-1042

vorable light conditions. In polar regions, this small diatom bloom is shifted1043

towards boreal and austral summer due to lower light availability and sea ice1044

dynamics influencing phytoplankton growth. The small diatoms and mixed1045

phytoplankton dominate the onset of the bloom, but larger diatoms still con-1046

tribute to overall biomass due to high nutrient concentrations. This bloom1047

declines with increased microzooplankton and mesozooplankton grazing and1048

decreases in light availability towards the end of the summer. Tropical and1049

subtropical regions display a weaker seasonality in phytoplankton blooms1050

coming from more stable light availability throughout the year and lower nu-1051

trient concentrations. Throughout the tropics and subtropics, but especially1052

in oligotrophic regions of the ocean, picoplankton dominate throughout the1053

year, with lower contributions of mixed phytoplankton and diatoms to overall1054

biomass.1055

The grazing relationships between predator and prey capture information1056

on food chain length and zooplankton trophic level with apparent differences1057

across productive and unproductive regions of the ocean. In low-productivity1058

waters, picoplankton are the dominant phytoplankton type (Fig. 7 & 8), with1059

microzooplankton as their main predators, consuming 75% of the primary1060

production in oligotrophic regions. The remaining production is channeled1061

directly through mesozooplankton or lost to sinking and other advective pro-1062

cesses. The tight coupling between phytoplankton, microzooplankton, and1063

mesozooplankton results in longer food chains in oligotrophic regions com-1064

posed of more trophic levels (Fig. 10b) compared to other regions in the1065

ocean. Oligotrophic regions in the model favor the recycling of organic matter1066

rather than its efficient transfer upward toward higher trophic levels (Azam1067

et al., 1983; Legendre and Le Fèvre, 1995). Meanwhile, productive regions1068

are characterized by shorter trophic pathways (Fig. 10b) with a larger frac-1069
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tion of particulate organic carbon exported from the euphotic zone (Fig.1070

S9). This is due either directly through the sinking of ungrazed cells or in-1071

directly through the sedimentation of aggregated detritus and zooplankton1072

fecal pellets, resulting in a biological pump more efficient in transporting1073

biogenic carbon towards the ocean’s interior (Guidi et al., 2009; Boyd and1074

Trull, 2007).1075

The increased model resolution of phytoplankton and zooplankton size1076

classes enables us to study the relative abundance of predators and prey1077

across regions of contrasting productivity. Zooplankton to phytoplankton1078

biomass ratios (Z:P) are consistent with a 3/4 scaling exponent observed1079

by Hatton et al. (2015), with zooplankton biomass increasing at a lower rate1080

than phytoplankton biomass. Coastal upwelling and other productive regions1081

of the ocean display lower zooplankton to phytoplankton biomass fractions1082

compared with oligotrophic regions of the ocean. The decrease in Z:P ratio1083

with a eutrophication gradient is consistent with observations (Gasol et al.,1084

1997; Yuan and Pollard, 2018; Hatton et al., 2015), but deviates from other1085

modelling analyses that show an increase in in Z:P ratio with a eutrophication1086

gradient (Ward et al., 2014; Vallina et al., 2014). One reason for lower Z:P1087

ratios in productive regions could be due to the longer generation times of1088

mesozooplankton (weeks to months) compared to microzooplankton (days),1089

which may impede them from thriving in upwelling regions where strong1090

fluctuations in food supply and environmental conditions occur. Addition-1091

ally, the use of the Holling Type II grazing function, which keeps predation1092

pressure relatively high at low prey concentrations, may prevent mesozoo-1093

plankton production from decreasing too much in oligotrophic regions of the1094

ocean. Another reason for this deviation could be due to the high sensitiv-1095

ity of zooplankton biomass to linear and quadratic mortality values in the1096

model. Higher zooplankton quadratic mortalities for the mesozooplankton1097

reflect higher trophic level grazing. The high mortality values can there-1098

fore decrease mesozooplankton biomass especially in upwelling regions of the1099

ocean, contributing to a weaker dynamic range in mesozooplankton biomass1100

between oligotrophic and eutrophic regions.1101

4.2. Limitations & future improvement1102

All plankton community models, including MARBL-SPECTRA, are sim-1103

plifications of natural plankton communities that seek to simulate phyto-1104

plankton physiology, predator-prey interactions, community structure, and1105

biodiversity in a dynamic environment. MARBL-SPECTRA incorporates 91106
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phytoplankton and 6 zooplankton types, where the traits of organisms and1107

their interactions are determined by organism size and functional group, in1108

the case of phytoplankton. While this approach is computationally tractable1109

and allows for the study of lower tropic levels in the marine environment, it1110

has several important limitations.1111

First, our model does not account for zooplankton life histories such as1112

diapause. Diapause is a critical component of the life history of copepods, as1113

it allows them to survive long periods of unfavorable environmental condi-1114

tions (Hairston Jr and Munns Jr, 1984). Copepods accumulate lipid reserves1115

prior to diapause, and are highly nutritious prey for a wide variety of preda-1116

tors in the oceans (Bauermeister and Sargent, 1979). Diapausing copepods1117

are especially important in polar, subpolar, and temperate environments1118

where Calanoid copepods are a key intermediary in the process of trophic1119

energy transfer from phytoplankton to higher trophic levels (Baumgartner1120

and Tarrant, 2017). The exclusion of zooplankton life histories can bias1121

mesozooplankton biomass in polar, subpolar, and temperate regions, partic-1122

ularly in the spring (Fig. 9), when copepods are emerging from diapause.1123

As a consequence, there may be insufficient top-down control on the spring1124

phytoplankton bloom, thought to be one of the key mechanisms controlling1125

bloom timing (Banse, 2013).1126

Second, some key phytoplankton and zooplankton functional groups are1127

absent from the model. Calcifying phytoplankton are a key functional group1128

important in the carbon cycle, producing more than half of the marine car-1129

bonate flux (Schiebel, 2002). Although MARBL-SPECTRA accounts for this1130

group implicitly, the inclusion of explicit calcifiers could improve the spatial1131

and temporal representation of calcium carbonate production, as well as1132

incorporate key carbon fertilization mechanisms thought to buffer coccol-1133

ithophore responses to climate change (Krumhardt et al., 2017, 2019). In1134

addition, phytoplankton dimethyl sulfide (DMS)-producers influence the at-1135

mospheric sulfur cycle by producing dimethysulfoniopropionate (DMSP) and1136

convert it into DMS using an extracellular enzyme (DMSP-lyase) (Stefels1137

et al., 1995). Phaeocystisantarctica is especially important in the South-1138

ern Ocean, where it has been observed to dominate the community during1139

blooms (Alvain et al., 2008). The high prevalence in Phaeocystis blooms1140

make it an important contributor to primary production and biogeochemical1141

cycles where it occurs. The explicit incorporation of gelatinous zooplank-1142

ton, such as Cnidarian jellyfish and salps, could improve the representation1143

of top-down control on prey and the representation of carbon transfer effi-1144
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ciency to depth (Luo et al., 2020). The ability of multiphagous gelatinous1145

zooplankton to feed across a wide spectrum of size classes would provide an1146

indirect route of carbon flux by which even small phytoplankton biomass can1147

be transferred to the deep ocean.1148

Third, our model does not include zooplankton vertical migration, the ac-1149

tive transport of organic carbon to depth by zooplankton consuming organic1150

particles at the surface during the night and respiring the inorganic nutri-1151

ents below the mixed layer during the day (Steinberg et al., 2000; Longhurst1152

and Harrison, 1988). While the global inventory of carbon export is con-1153

strained in models by ocean circulation and the upward flux of nutrients1154

driving new production, zooplankton diel vertical migration could be an im-1155

portant component in mesopelagic zones, contributing significantly to oxygen1156

consumption, particularly at oxygen minimum zones, and carbon export into1157

the ocean interior (Bianchi et al., 2013; Aumont et al., 2018).1158

Fourth, MARBL-SPECTRA does not represent mixotrophy. Mixotrophs1159

combine the autotrophic use of light and inorganic resources with the het-1160

erotrophic ingestion of prey. The incorporation of mixotrophy in ecological1161

models enhances the transfer of biomass to larger organisms at higher trophic1162

levels, which in turn increases the efficiency of oceanic carbon storage through1163

the production of larger, faster-sinking, and carbon-enriched organic detri-1164

tus (Ward and Follows, 2016). The exclusion of mixotrophy decreases the1165

production of larger phytoplankton, because the nutrient affinity of plankton1166

decreases with increasing organism size 2. The highly efficient uptake of the1167

small phytoplankton leaves insufficient nutrients to support photosynthesis1168

in the larger groups, especially the mixed phytoplankton group.1169

Fifth, MARBL-SPECTRA does not include an explicit representation1170

of higher trophic levels (fish, carnivorous jellies, etc.). Zooplankton losses1171

to consumption by higher predators are implicitly modelled using a squared1172

mortality term, which has a tendency to stabilize food webs (Edwards, 2001).1173

Feedbacks between the higher trophic level predator and zooplankton are not1174

resolved. One implication of this simplification is that the ecosystem effects1175

of fishing, for example, cannot be resolved by MARBL-SPECTRA.1176

Lastly, bacterial activity is not explicitly modeled in our ecosystem model.1177

The effect of the microbial loop is included through constant degradation1178

rates of bacterial remineralization. That is, mortality and exudation losses1179

are recycled to inorganic nutrients via constant rate degradation of several1180

pools of organic matter (dissolved and particulate) for each essential element.1181

Modelling bacterial activity explicitly would increase the model’s realism at1182
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capturing the microbial food web dynamics, but it should not significantly1183

change our results because bacterial abundances are generally more stable1184

than phytoplankton abundances seasonally in open-ocean waters (Spitz et al.,1185

2001).1186

4.3. Outlook1187

Plankton community models embedded in ocean biogeochemical and cir-1188

culation models are powerful tools for examining how organism traits shape1189

species biogeography, interactions within plankton communities, the impacts1190

of environmental changes on marine ecosystems, and feedbacks between ecosys-1191

tems and biogeochemical cycles (e.g., Kwiatkowski et al., 2020; Follows et al.,1192

2007; Ward et al., 2012; Dutkiewicz et al., 2015b). Here, we have developed1193

and evaluated MARBL-SPECTRA, a trait-based plankton community model1194

that resolves nine phytoplankton sizes classes across four functional groups1195

and six zooplankton size classes, allowing for an enhanced understanding of1196

the underlying mechanisms regulating marine plankton biogeography, and1197

the community’s role in biogeochemical cycles. Future increases in ocean1198

temperatures and other environmental properties are expected to modify1199

phytoplankton community diversity and distribution through a range of di-1200

rect and indirect pathways and mechanisms, many of which are simulated in1201

MARBL-SPECTRA. The future incorporation of MARBL-SPECTRA in a1202

fully coupled climate model would allow for the projection of model organ-1203

ism fitness into the future to better predict changes in plankton communities1204

structure, biogeochemical cycles, food web dynamics, and air-sea fluxes of1205

climate-active gases.1206
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6. Supplementary Information1223

Figure S1: Biomes. Designated oceanic biomes, using Sarmiento et al. (2004): Equatorial
downwelling (Eq-D), Equatorial upwelling (Eq-U), Subtropical permanently stratified (ST-
PS), Subtropical seasonally stratified (ST-SS), Lower latitude upwelling (LL-U), Sub-polar
seasonally stratified (SP), Seasonal ice-covered zone (SIZ). In the analyses, the northern
and Southern Hemisphere biomes are separated
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Figure S2: Modelled annual average chlorophyll (mg m−3) vertical profiles in the (a)
BATS, and (b) HOT station over the period 1990 and 2009.
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Figure S3: Phytoplankton biomass. Depth integrated average annual phytoplankton
biomass for each phytoplankton type: (a) picoplankton (b) diazotrophs, (c) smallest mixed
phytoplankton, (d) second smallest mixed phytoplankton, (e) second largest mixed phyto-
plankton, (f) largest mixed phytoplankton, (g) smallest diatom, (h) medium diatom and
(i) largest diatom.

Figure S4: Zooplankton biomass. Depth integrated average annual zooplankton biomass
for each zooplankton type: (a) smallest microzooplankton (microzooplankton 1) (b) largest
microzooplankton (microzooplankton 2), (c) smallest mesozooplankton (mesozooplankton
1), (d) second smallest mesozooplankton (mesozooplankton 2), (e) medium mesozooplank-
ton (mesozooplankton 3), and (f) largest mesozooplankton (mesozooplankton 4).
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Figure S5: Depth integrated carbon biomass over 1990-2009 for (a) zooplankton (mmol
C m−2) and (a) phytoplankton (mmol C m−2); (c) shows the ratio of depth-integrated
zooplankton to phytoplankton biomass over 1990-2009.

Figure S6: Zooplankton annual mean trophic level over the top 150 m between 1990 and
2009. (a) smallest microzooplankton (microzooplankton 1) (b) largest microzooplank-
ton (microzooplankton 2), (c) smallest mesozooplankton (mesozooplankton 1), (d) second
smallest mesozooplankton (mesozooplankton 2), (e) medium mesozooplankton (mesozoo-
plankton 3), and (f) largest mesozooplankton (mesozooplankton 4).
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Figure S7: Zooplankton generation time. The average annual generation time is the
zooplankton biomass divided by the zooplankton production at the top 150m for each
zooplankton type: (a) smallest microzooplankton (microzooplankton 1) (b) largest micro-
zooplankton (microzooplankton 2), (c) smallest mesozooplankton (mesozooplankton 1),
(d) second smallest mesozooplankton (mesozooplankton 2), (e) medium mesozooplankton
(mesozooplankton 3), and (f) largest mesozooplankton (mesozooplankton 4).

Figure S8: Phytoplankton generation time. The average annual generation time repre-
sents the phytoplankton biomass divided by the phytoplankton production at the top
150m for each phytoplankton type: (a) picoplankton (b) diazotrophs, (c) smallest mixed
phytoplankton, (d) second smallest mixed phytoplankton, (e) second largest mixed phyto-
plankton, (f) largest mixed phytoplankton, (g) smallest diatom, (h) medium diatom and
(i) largest diatom.
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Figure S9: Annual mean log10 POC production (a), annual mean log10 NPP (b), and
export ratio (e-ratio) (c) at the top 150m between 1990 and 2009.
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Marquet, P.A., Quiñones, R.A., Abades, S., Labra, F., Tognelli, M., Arim,1607

M., Rivadeneira, M., 2005. Scaling and power-laws in ecological systems.1608

Journal of Experimental Biology 208, 1749–1769.1609

Mayorga, E., Seitzinger, S.P., Harrison, J.A., Dumont, E., Beusen, A.H.,1610

Bouwman, A., Fekete, B.M., Kroeze, C., Van Drecht, G., 2010. Global1611

nutrient export from watersheds 2 (news 2): model development and im-1612

plementation. Environmental Modelling & Software 25, 837–853.1613

McCarthy, J.J., Carpenter, E.J., 1979. Oscillatoria (trichodesmium) thiebau-1614

tii (cyanophyta) in the central north atlantic ocean 1 2. Journal of Phy-1615

cology 15, 75–82.1616

Menden-Deuer, S., Lessard, E.J., 2000. Carbon to volume relationships for1617

dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr 45,1618

569–579.1619

Moeller, H.V., Laufkötter, C., Sweeney, E.M., Johnson, M.D., 2019. Light-1620

dependent grazing can drive formation and deepening of deep chlorophyll1621

maxima. Nature communications 10, 1–8.1622

Monteiro, F.M., Dutkiewicz, S., Follows, M.J., 2011. Biogeographical con-1623

trols on the marine nitrogen fixers. Global Biogeochemical Cycles 25.1624

Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd,1625

P.W., Galbraith, E.D., Geider, R.J., Guieu, C., Jaccard, S.L., Jickells,1626

T.D., Roche, J.L., Lenton, T.M., Mahowald, N.M., Marañón, E., Marinov,1627
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