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Abstract
Cardiovascular diseases are among the leading causes of death, and their early detection
and treatment is important for lowering their prevalence and mortality rate.
Electrocardiograms (ECGs) record electrical activity of the heart to provide information
used to diagnose and treat various cardiovascular diseases. Many approaches to
computer-aided ECG analysis have been performed, including Fourier analysis, principal
component analysis, analyzing morphological changes, and machine learning. Due to
the high accuracy required of ECG-analysis software, there is no universally-agreed
upon algorithm to identify P,Q,R,S, and T-waves and measure intervals of interest.
Topological data analysis uses tools from algebraic topology to quantify hole-like shapes
within data, and methods using persistence statistics and fractal dimension with
machine learning have been applied to ECG signals in the context of detecting
arrhythmias within recent years. To our knowledge, there does not exist a method of
identifying P,Q,S, and T-waves and measuring intervals of interest which relies on
topological features of the data, and we propose a novel topological method for
performing these aspects of ECG analysis. Specifically, we establish criteria to identify
cardinality-minimal and area-minimal 1-cycles with certain properties as P,Q,S, and
T-waves. This yields a procedure for measuring the PR-interval, QT-interval,
ST-segment, QRS-duration, P-wave duration, and T-wave duration in Lead II ECG
data. We apply our procedure to 400 sets of simulated Lead II ECG signals and
compare with the interval values set by the model. Additionally, the algorithm is used
to identify cardinality-minimal and area-minimal 1-cycles as P,Q,S, and T-waves in two
sets of 200 randomly sampled Lead II ECG signals of real patients with 11 common
rhythms. Analysis of optimal 1-cycles identified as P,Q,S, and T-waves and comparison
of interval measurements shows that 1-cycle reconstructions can provide useful
information about the ECG signal and could hold utility in characterizing arrhythmias.

Author summary
Topological data analysis (TDA) has been a rapidly growing field within the past 15
years and has found applications across many fields. In the context of TDA, several
algorithms primarily using persistence barcode statistics and machine learning have
been applied to electrocardiogram (ECG) signals in recent years. We use a topological
data-analytic method to identify subsets of an ECG signal which are representative of
certain topological features in the ECG signal, and we propose that those subsets
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coincide with the P,Q,S, and T-waves in the ECG signal. We then use information
about these subsets of the signal identified as P,Q,S, and T-waves to measure the
PR-interval, QT-interval, ST-segment, QRS-duration, P-wave duration, and T-wave
duration. We demonstrate our method on both simulated and real Lead II ECG data.
These results show how identifying subsets of an ECG signal with certain topological
properties could be used in analyzing the morphology of the signal over time and in
arrhythmia-detection algorithms.
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Introduction 1

Cardiovascular diseases are among the leading causes of death due to their high 2

prevalence and mortality rate [1] [2] [3]. Electrocardiograms (ECGs) provide a 3

non-invasive measure of the heart’s electrical activity and are used in diagnosing and 4

managing various cardiovascular diseases. Thus the analysis of ECGs is important for 5

accurate diagnosis and proper treatment of cardiovascular diseases. Several approaches 6

to automated ECG analysis have been performed, including machine 7

learning [4] [5] [6] [7] [8] [9] [10] [11], wavelet transforms [12] [13] [14] [15] [16], and 8

persistent homology [17] [18] [19] [20] [21] [22] [23]. Due to the high accuracy required of 9

ECG-analysis software and the fact that the bulk of ECG analysis is carried out by 10

healthcare providers, the development of algorithms that identifies P,Q,R,S, and 11

T-waves, measures intervals of interest, and/or detects arrhythmias is an active area of 12

research. 13

Topological data analysis (TDA) is concerned with the study of shapes constructed 14

from a dataset which are invariant under continuous deformations such as stretching 15

and twisting. Applications of TDA to ECG signals have used persistence 16

statistics [20] [18], fractal dimension [18], and machine learning [17] [19]. Using cycle 17

reconstructions has shown utility in various applications outside of ECG analysis such 18

as analyzing structures on the atomic scale [24] and in structural engineering [25]. To 19

our knowledge, nobody has performed an “inverse” analysis of using information from 20

cycle reconstructions to analyze ECG signals. We focus our attention on the “rhythm 21

lead”, i.e. Lead II, and for the remainder of the paper, any reference to an ECG signal, 22

whether simulated or real, refers to a Lead II ECG signal. 23

Suppose we are given an n-dimensional dataset, that is, a set of points in Rn. There 24

are n distinct types of topological features associated with that dataset: roughly, these 25

“types” correspond to what one would intuitively regard as “holes” or “gaps” of differing 26

dimensions in the dataset. To apply these methods to ECG data, we treat an ECG 27

signal as two dimensional with one temporal dimension and one amplitude dimension 28

rather than one dimensional with a specified sampling frequency. Consequently, from 29

this perspective, there are two distinct types of topological features associated with 30

ECG data: 0-dimensional homology features represent equivalence classes of connected 31

components, while 1-dimensional homology features represent equivalence classes of 32

non-contractible loops. The 0-dimensional homology features are useful in analyzing 33

clustering phenomena and have recently shown utility as a metric of heart rate 34

variability when applied to ECG signals [21] [22]. 35

In this paper, our focus is instead on the 1-dimensional homology features, which we 36

use in a novel way to analyze ECG data. Specifically, we identify subsets of an ECG 37

signal as P,Q,S, and T-waves by considering these subsets to be representative cycles of 38

1-dimensional homology features of the signal with certain properties and then use these 39

subsets identified as individual waves to measure the PR-interval, QT-interval, 40

ST-segment, QRS-duration, P-wave duration, and T-wave duration. To illustrate the 41

intuition behind 1-dimensional homology features and their representative cycles, we 42

first present an example which demonstrates how the 1-dimensional homology features 43

of a simple 2-dimensional dataset is related to the shape of the data in the “Example: a 44

1-dimensional topological feature in a simple dataset” section. This section describes 45

some geometric intuition of 1-dimensional homology features without going into linear 46

algebra details. These details are then given and the ideas from this section are 47

formalized in the “Background on topological data analysis” section, where we define 48

key terms in algebraic and computational topology to provide minimal background and 49

establish terms that will be used in identifying features of ECG signals. 50

51
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Example: a 1-dimensional topological feature in a simple dataset 52

Consider the set of points in the Cartesian plane R2 shown in Fig 1A. Then consider a 53

circle drawn around each datum, each with the same radius r. The geometric Čech 54

complex of radius r is defined as the union of the interiors of these circles. It is a subset 55

of R2, and as r increases, the geometric Čech complex of radius r is a larger and larger 56

subset of R2. Fig 1B-E depicts the geometric Čech complexes of radius 0.5,
√
2
2 , 2.5, and 57

5
√
2

2 as the region shaded in blue. Notice that for r < 0.5, none of the circles overlap, 58

whereas for 0.5 ≤ r <
√
2
2 , the circles centered at the data comprising the smaller square 59

overlap such that there is a “void” of non-overlapping space enclosed by their region of 60

overlap. Hence for 0.5 ≤ r <
√
2
2 , there exists a non-contractible loop within the 61

geometric Čech complex of radius r. “Non-contractible” here means that the loop drawn 62

around the void of non-overlapping space cannot be continuously deformed down to a 63

single point without leaving the geometric Čech complex: the loop gets “stuck” on the 64

void encircled by the geometric Čech complex, like trying to pull a rubber band off of a 65

broomstick of infinite length. Notice that for r < 0.5, none of the circles of the example 66

dataset in Fig 1A overlap, let alone overlap in such a way that they encircle some 67

non-overlapping space. Consequently, we are unable to construct non-contractible loops 68

within the geometric Čech complex of radius r for r < 0.5. 69

Fig 1. 1-dimensional homological features of example dataset in R2 A: Plot of
example data. B,C,D,E: The blue region depicts the geometric Čech complex of radius
0.5,

√
2
2 , 2.5, 5

√
2

2 , respectively. F: Persistence diagram: each blue triangle represents a
1-dimensional homological feature, i.e. an equivalence class of non-contractible loops,
with coordinates (birth radius, death radius); the y=x line is drawn to depict the
persistence distribution of all 1-dimensional homological features over a set of r values
by noting that the more persistent a 1-dimensional homological feature is, i.e. the larger
the difference between its death radius and birth radius, the more ’above’ the y=x line
it will be.

Recall that if we can draw a non-contractible loop within the geometric Čech 70

complex of radius r for some r > 0, then this loop must be “stuck" around some void 71

encircled by the geometric Čech complex. This non-contractible loop can be 72

continuously deformed to construct another non-contractible loop “stuck" around the 73

same void. We say the two loops are homotopic. As an example, the red and green 74

loops shown in Fig 1D are homotopic. The set of all possible non-contractible loops 75

“stuck" around some void encircled by the geometric Čech complex forms an equivalence 76

class of non-contractible loops, i.e. a set of non-contractible loops where any two 77

non-contractible loops in the set are homotopic. In practice, rather than homotopy, we 78

use a weaker but more technically-involved equivalence relation on loops called homology 79

to utilize efficient algorithms such as Ripser [26] and GUDHI [27] in computing 80

topological features. For a rigorous treatment of homotopy and homology, see [28]. 81

82

Suppose we are given a dataset X and a positive real number r. We write C̆r(X) for 83

the geometric Čech complex of X of radius r. For a given two-dimensional dataset such 84

that there exists a non-contractible loop ℓ within its geometric Čech complex of radius 85

r, we define the birth radius of ℓ as the smallest real number b such that some loop in 86

C̆r(X) which is equivalent to ℓ and which is contained in the subset C̆b(X) of C̆r(X) 87

exists. It follows immediately from this definition that b ≤ r. Similarly, we define the 88

death radius of ℓ as the smallest real number d such that r ≤ d and such that ℓ is 89

contractible when regarded as a loop in C̆d(X). That is, the birth radius of a 90

non-contractible loop is the smallest radius at which the equivalence class of that 91
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non-contractible loop forms, and the death radius is the smallest radius at which it 92

vanishes (i.e., becomes contractible). For r ∈ [birth radius, death radius], the 93

equivalence class of non-contractible loops ‘persists,’ and this motivates the definition of 94

the persistence of an equivalence class of non-contractible loops: the persistence is the 95

difference between the death radius and the birth radius. 96

97

The data comprising the larger square in the example dataset were included to 98

compare two 1-dimensional homology features of different persistence within a given 99

2-dimensional dataset. As previously noted, the birth radius and death radius of the 100

1-dimensional homology feature constructed from the data comprising the smaller 101

square are 0.5 and
√
2
2 ≈ 0.707, respectively, so the persistence of this feature is 102

approximately 0.707-0.5=0.207. The birth radius of the 1-dimensional homology feature 103

corresponding to the larger square is 2.5, and the death radius is 5
√
2

2 ≈ 3.536. Thus its 104

persistence is approximately 3.536-2.5=1.036. Since 1.036-0.207=0.829, the blue triangle 105

representing the equivalence class of non-contractible loops formed from the subset of 106

the data comprising the larger square lies a distance 0.829 further above the y=x line 107

than the blue triangle representing the equivalence class of non-contractible loops 108

formed from the subset of data comprising the smaller square. This illustrates how a 109

highly persistent 1-dimensional homology feature has a larger “loop-like” structure than 110

a 1-dimensional homology feature of lower persistence. 111

112

Also note how there are two choices of subsets of the dataset representative of the 113

equivalence class of non-contractible loops with a smaller persistence, namely the four 114

points that comprise the smaller square and the set of five points where four points 115

comprise the smaller square and the other point is nearby. These choices of data points 116

are referred to as representative 1-cycles and can be chosen such that the representative 117

1-cycle is minimal with respect to either i) the number of data points it consists of or ii) 118

the area it spans. In the first case, we have a cardinality-minimal representative 1-cycle 119

for the equivalence class; in the second case, we have a area-minimal representative 120

1-cycle for that equivalence class. In this example, both the cardinality-minimal and 121

area-minimal representative 1-cycle of the equivalence class of non-contractible loops 122

with a lower persistence consists of the four data points comprising the smaller square. 123

Background on topological data analysis 124

We now set out to formalize the notion of “equivalence classes of non-contractible loops 125

that persist for a given range of radius values.” Given a set of data X represented as a 126

finite set of points in R2, we construct a simplicial complex as a topological space that 127

approximates the structure of the data. 128

Definition 0.1 A simplicial complex is a collection K of subsets of a finite set V such 129

that: 130

• {v} ∈ K for all v ∈ V , and 131

• if τ ⊂ σ for σ ∈ K, then τ ∈ K. 132

An element of V is referred to as a vertex, and an element of K with cardinality n+ 1 133

is referred to as an n-simplex. 134

There are several ways to construct a simplicial complex given a finite set of points 135

in R2, and to be consistent with the geometry of the simple dataset example, we 136

consider the radius r Vietoris-Rips complex, a simplicial complex constructed by 137

considering a circle of radius r
2 around each point in our dataset and then including 138
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S ⊂ X as a simplex if the intersection of the balls of radius r
2 for each point in S is 139

nonempty. An example of constructing the Vietoris-Rips complex for several values of r 140

is shown in Fig 2. 141

142

Fig 2. Relation between the geometric Čech complex of radius r and the
radius r Vietoris-Rips Complex A-C: Geometric Čech complex of radius 0.4, 0.6,
0.8 shown in blue. D-E: Geometric realization of radius 0.4, 0.6, 0.8 Vietoris-Rips
complex; a point indicates a 0-simplex, a line indicates a 1-simplex whose members are
the endpoints of the line, and a filled-in region indicates a n-simplex whose n+1
members are the data on the boundary of the region; the red regions in each plot
indicates the simplicies which are born at r=0, r=0.5, and

√
2
2 , from left to right.

Definition 0.2 Given a dataset X represented as a finite subset of R2, and given a 143

positive real number r, the radius r Vietoris-Rips complex of X, denoted V Rr(X), is the 144

simplicial complex given by the collection of all subsets U of X with the property that if 145

x1, x2 ∈ U , then |x1 − x2| < r. 146

Note that if S ⊂ U for U ∈ V Rr(X), then |x1 − x2| < r for all x1, x2 ∈ U implies 147

|x1 − x2| < r for all x1, x2 ∈ S. Thus the radius r Vietoris Rips complex of a finite 148

subset of R2 defines a simplicial complex. 149

150

We are now in a position to be more concrete about the notion of an “equivalence 151

class of non-contractible loops” within the geometric Čech complex, as discussed in the 152

“Example: a 1-dimensional topological feature in a simple dataset” section. By an 153

“equivalence class of non-contractible loops,” we are referring to an element of the 154

1-dimensional homology group of some radius r Vietoris-Rips complex, which we now 155

set out to define. 156

157

Let X be a finite subset of R2, let r be a positive real number, and let Cn be the 158

vector space over F2 with basis consisting of the elements of V Rr(X) of cardinality 159

n+ 1 for n = 0, 1, 2. Furthermore, suppose there is an ordering on V Rr(X). Consider 160

0
δ−1←−− C0

δ0←− C1
δ1←− C2

δ2←− 0 where δn([x0, ..., xn]) =
∑i

i=0(−1)n[x0, ..., x̂i, ..., xn] and 161

x̂i indicates that xi is omitted from the ordered simplex. The elements of C1 are 162

referred to as 1-chains, the elements of ker(δ0) are referred to as 1-cycles, and elements 163

of im(δ1) are referred to as 1-boundaries. Since δ0(δ1(v)) = 0 for all v ∈ C2, every 164

1-boundary is an 1-cycle. However, it is not necessarily true that every 1-cycle is an 165

1-boundary. Intuitively, if we think of X as a cloud of points in the plane, the 166

1-dimensional homology group of V Rr(X) is defined such that its dimension over F2 167

counts the number of “holes” in that cloud. 168

Definition 0.3 Given r > 0 and V Rr(X) where X is a finite subset of R2, we follow 169

the construction of F2-vector spaces C0, C1, C2 and linear transformations δ−1, δ0, δ1, 170

δ2 as outlined above and define the first homology group of V Rr(X) as the quotient 171

vector space H1(V Rr(X)) = ker(δ0)/im(δ1). The F2-vector space dimension 172

β1 = dim(H1(V Rr(X))) = dim(ker(δ0))− dim(im(δ1)) of H1(V Rr(X)) is called the 173

first Betti number. 174

By increasing r, we create a sequence of Vietoris-Rips Complexes where 175

V Rr(X) ⊂ V Rr′(X) for r < r′. We then construct 176

V Rr0(X)
i0−→ V Rr1(X)

i1−→ ...
im−1−−−→ V Rrm(X)
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where V Rri(X) is a proper subset of V Rrj (X) for i < j and i0, i1,...,im−1 are inclusion 177

homomorphisms. This induces a sequence of F2-linear functions i∗0, i∗1,..., i∗m−1 such that 178

H1(V Rr0=0(X))
i∗0−→ H1(V Rr1(X))

i∗1−→ ...
i∗m−1−−−→ H1(V Rrm(X))

and i∗n([c]V ) = [in(c)]W for V = V Rrn(X), W = V Rrn+1
(X), and all n = 0, 1, ...,m− 1. 179

We now give a name to the “smallest” and “largest” r > 0 such that a given 1-cycle 180

belongs to H1(V Rr(X)). 181

Definition 0.4 Let [c] ∈ H1(V Rr(X)) for some r > 0. The birth filtration of [c] is 182

defined as the greatest lower bound of the set of all ϵ > 0 such that [c] is in the range of 183

the F2-linear function H1(V Rϵ(X))→ H1(V Rr(X)). Similarly, the death filtration of 184

[c] is defined as the least upper bound of the set of all ϵ > 0 such that [c] maps to zero 185

under the F2-linear function H1(V Rr(X))→ H1(V Rϵ(X)). The persistence of [c] is 186

defined as the difference between the death filtration and the birth filtration. 187

Up to a scaling factor in the variable r, the geometric Čech complex of radius r is 188

homotopy equivalent to the radius r Vietoris-Rips complex due to the Nerve 189

Lemma [29]. Consequently, the definitions of the birth and death radii of an equivalence 190

class of non-contractible loops presented in the “Example: a 1-dimensional topological 191

feature in a simple dataset” section are equivalent to the definitions of the birth and 192

death filtration of a class [c] ∈ H1(V Rr(X)) given in Definition 0.4. For a more 193

thorough treatment of persistent homology, see [30]. 194

Methods 195

In this section, we first describe how ECG data are processed to be in a form such that 196

our topological approach can be applied consistently. We then describe our topological 197

method of identifying P,Q,S, and T-waves and measuring the PR-interval, QT-interval, 198

ST-segment, QRS-duration, P-wave duration, and T-wave duration. Lastly, we present 199

the methods used to simulate ECG signals with the PR-interval, QT-interval, 200

ST-segment, QRS-duration, P-wave duration, and T-wave duration determined by 201

parameters of the simulation. 202

Data processing 203

Before an ECG signal can be analyzed using our topological approach, the signal is 204

processed such that the topological approach can be consistently applied. An outline of 205

this processing pipeline is depicted in Fig 3. This processing pipeline is the same 206

regardless of whether the ECG signal is simulated or real. 207

Fig 3. ECG Signal Processing Pipeline
The above flowchart depicts a processing pipeline which is applied to an ECG signal
prior to computing topological features of the signal.

Given an ECG signal (D, f) where D denotes the set of time indices and f : D → R 208

is such that f(t) represents the amplitude of the signal at time t, we first nearly double 209

the number of points comprising the signal by including the point (t+ h
2 ,

f(t)+f(t+h)
2 ) 210

for every pair of adjacent points (t, f(t)) and (t+ h, f(t+ h)) of the signal. The signal is 211

then normalized by mapping every ordered pair (t, f(t)) to (t, f(t)
M ) where 212

M = maximum
t∈D

{f(t)}. The coordinates of the R-wave peaks are used in identifying 213

P,Q,S, and T-waves, and the coordinate pair of the i-th R-wave peak is computed as the 214
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ordered pair (tR,i, f(tR,i)) where 0.6 < f(tR,i), f(tR,i) is a local maximum of the signal, 215

and there are exactly i− 1 local maxima f(tR,j) such that tR,j < tR,i and 0.6 < f(tR,j), 216

j = 1, 2, ..., i− 1 [31]. Next, an isoelectric line is incorporated into the signal by 217

mapping (t, f(t)
M ) to (t, baseline) where baseline is the median value of the set 218

{f∗(t) | t ∈ D and f∗(t) is f(t) rounded to the nearest hundredth} for all t ∈ D such 219

that t = h(2k) for some integer k. Lastly, we consider the restriction of the processed 220

ECG signal such that the signal begins and ends with an R-wave peak as the input of 221

our topological method. 222

Extracting features of processed ECG signals using TDA 223

Given a processed ECG signal (D, f), we are interested in i) identifying subsets of the 224

signal as P,Q,S, and T-waves using cycle reconstructions of 1-dimensional homology 225

classes and ii) using the identified waves to measure the PR-interval, QT-interval, 226

ST-segment, QRS-duration, P-wave duration, and T-wave duration. To describe how 227

P,Q,S, and T-waves are identified as 1-cycles with certain properties, if 1-cycles with 228

these properties exist, we first give a general description of five properties of ECG 229

signals that are used in this process: 230

• Persistence: Due to the the addition of the isoelectric line, specifically under the 231

P,T-waves and over the Q,S-waves, there is a loop-like structure of data 232

comprising the P,Q,S, and T-waves as shown in Fig 4A. Thus for a 1-cycle to be 233

identified as a P,Q,S, or T-wave, we impose that it must have a persistence within 234

some bounded interval depending on the specific wave. 235

• Birth filtration upper bound: It is a property of ECG signals that adjacent 236

points (t, f(t)), (t+ h, f(t+ h)) within each P,Q,S, and T-wave are within some 237

distance δ from one another where δ is small relative to the distance between 238

(t, f(t)) and a point (t′, f(t′)) on a different wave. Thus we impose an upper 239

bound on the birth filtration of each potential 1-cycle to exclude 1-cycles 240

constructed from points corresponding to multiple waves, e.g. a 1-cycle 241

constructed from both a P-wave and an R-wave as shown in Fig 4B. 242

• Time coordinate of centroid of 1-cycle: It is a property of ECG signals that 243

a T-wave follows a QRS-complex. We also expect a detected P-wave to necessarily 244

precede a QRS-complex due to our simulations not featuring atrial activity with 245

missed ventricular beats. Thus we expect that the centroids of 1-cycles comprising 246

a T-wave and P-wave lie between a pair of adjacent R-waves such that the T-wave 247

is some distance after the preceding R-wave, the P-wave is some distance prior to 248

the following R-wave, and the P-wave follows the T-wave. Similarly, we impose 249

that a 1-cycle comprising a detected Q-wave and S-wave slightly precedes an 250

R-wave and shortly follows an R-wave, respectively. 251

• Amplitude coordinate of centroid of 1-cycle: It is expected that over a 252

given heartbeat, the average amplitude of the signal in the P,T-wave be larger 253

than the signal amplitude at baseline. Additionally, we expect there to be a 254

positive upper bound on the average amplitude of the signal in the P,T-wave. 255

Conversely, it is expected that the average amplitude of the signal in the Q,S-wave 256

be less than the signal amplitude at baseline. 257

• Optimality: Of the 1-cycles satisfying the persistence, birth filtration, and 258

centroid coordinate conditions above, the 1-cycle representing the given P,Q,S, or 259

T-wave is expected to be optimal in the sense of i) having a minimal number of 260

data points comprising the 1-cycle and/or ii) having a minimal-area convex hull. 261

These optimal cycles were computed using HomCloud [32]. 262
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Fig 4. Illustration of properties of an ECG used to detect P,Q,S, and
T-waves
A: The red loops illustrate elements from equivalence classes of non-contractible loops
corresponding to the P,Q,S, and T-wave. Notice that without the addition of the
isoelectric baseline, we would be unable to draw non-contractible loops corresponding
to the P,Q,S, and T-waves within the geometric Čech complex. B: Example of output
without imposing an upper bound on the birth filtration of a 1-cycle identified as a
P-wave.

We now present the specific criteria that identifies 1-cycles with certain properties 263

related to those described above as being a P-wave or T-wave. We note that differences 264

in the classification criteria for P-waves and T-waves involves changes in the bounds of 265

the persistence range and changes to the upper bound of the birth filtration. 266

Additionally, the centroid of a 1-cycle identified as a P-wave is expected to be closer to 267

the subsequent R-wave than the preceding R-wave, and vice versa for the centroid of a 268

1-cycle identified as a T-wave. 269

270

P-wave Identification: An optimal 1-cycle satisfying the following conditions is 271

identified as a P-wave (UP , f) with collection of ordered pairs {(t, f(t)) | t ∈ UP } and 272

time index set UP : 273

• the persistence of the 1-cycle is in [0.001,0.2] 274

• the birth filtration of the 1-cycle is less than 0.03 275

• 0 < avg
t∈UP

{f(t)} < 0.15 276

• R_peak_time_coordinate[i]− 0.35 ∗ RR_interval < avg
t∈UP

{t} < 277

R_peak_time_coordinate[i]− 0.06 ∗ RR_interval for some i. 278

T-wave Identification: An optimal 1-cycle satisfying the following conditions is 279

identified as a T-wave (UT , f) with collection of ordered pairs {(t, f(t)) | t ∈ UT } and 280

time index set UT : 281

• the persistence of the 1-cycle is in [0.01,0.6] 282

• the birth filtration of the 1-cycle is less than 0.04 283

• 0 < avg
t∈UT

{f(t)} < 0.4 284

• R_peak_time_coordinate[i] + 0.15 ∗ RR_interval < avg
t∈UT

{t} < 285

R_peak_time_coordinate[i] + 0.5 ∗ RR_interval for some i. 286

We continue with describing the criteria for a 1-cycle to be identified as a Q-wave or 287

S-wave. The interval which the persistence of a 1-cycle must belong to for the 1-cycle to 288

be classified as a Q-wave or S-wave includes a smaller lower bound and smaller upper 289

bound compared to the interval of valid persistence values for a 1-cycle to be classified 290

as a P,T-wave. This is due to the data comprising Q-waves and S-waves having less of a 291

loop-like structure than data comprising the P-waves and T-waves. We also impose that 292

the centroid of a 1-cycle identified as a Q-wave or S-wave more closely precede or follow 293

the nearby R-wave peak relative to a P-wave or T-wave, respectively. 294

295

Q-wave Identification: An optimal 1-cycle satisfying the following conditions is 296

identified as a Q-wave (UQ, f) with collection of ordered pairs {(t, f(t)) | t ∈ UQ} and 297

time index set UQ: 298
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• the persistence of the 1-cycle is in [0.007,0.1] 299

• the birth filtration of the 1-cycle is less than 0.06 300

• avg
t∈UQ

{f(t)} < 0 301

• R_peak_time_coordinate[i]− 0.12 ∗ RR_interval < avg
t∈UQ

{t} < 302

R_peak_time_coordinate[i] for some i. 303

S-wave Identification: An optimal 1-cycle satisfying the following conditions is 304

identified as a S-wave (US , f) with collection of ordered pairs {(t, f(t)) | t ∈ US} and 305

time index set US : 306

• the persistence of the 1-cycle is in [0.007,0.1] 307

• the birth filtration of the 1-cycle is less than 0.06 308

• avg
t∈US

{f(t)} < 0 309

• R_peak_time_coordinate[i] < avg
t∈US

{t} < 310

R_peak_time_coordinate[i] + 0.12 ∗ RR_interval for some i. 311

In the above criteria, “optimal 1-cycle” refers to a 1-cycle computed as being minimal 312

with respect to i) the cardinality of the set of data points comprising the 1-cycle or ii) 313

the area spanned by the convex hull of the 1-cycle. Both types of optimal 1-cycles were 314

computed in our analysis and are compared. An example of area-minimal 1-cycles 315

identified as P,Q,S, and T-waves using the above criteria depicted on an ECG signal is 316

shown in Fig 5. Cardinality-minimal and area-minimal 1-cycles identified as P,Q,S, and 317

T-waves for the 400 simulated ECG signals is provided as Supplementary File 1 318

and Supplementary File 2. Additionally, cardinality-minimal and area-minimal 1-cycles 319

identified as P,Q,S, and T-waves for 200 Lead II ECG signals randomly sampled from a 320

pool of 10646 denoised signals with 11 common rhythms as described in [33] are shown 321

in Supplementary File 3 and Supplementary File 4, respectively. 322

323

Fig 5. Example of simulated ECG signal and persistence diagram with
area-optimal 1-cycles identified as P,Q,S, and T-waves
The points comprising P,Q,S, and T-waves were identified as area-optimal 1-cycles with
certain properties depending on their birth filtration, persistence, and centroid. The
Q-wave and S-wave 1-cycles drawn have the left-most and right-most centroid of all
Q-wave and S-waves detected within a given heartbeat, respectively. This is consistent
with the choice of Q-waves and S-waves used to measure intervals of interest. The color
of 1-cycles identified as P,Q,S, and T-waves matches the color of the corresponding
points in the persistence diagram.

We now describe how the PR-interval, QT-interval, ST-segment, QRS-duration, 324

P-wave duration, and T-wave duration are measured using 1-cycles identified as P,Q,S, 325

and T-waves. To measure these intervals solely using topological features of the data, 326

the PR-interval and QR-interval of a given heartbeat are only measured if a Q-wave is 327

detected. Similarly, the ST-segment of a given heartbeat is only measured if an S-wave 328

is detected. The QRS-duration is only measured if both a Q-wave and an S-wave are 329

detected. The intervals of interest are computed as the difference between their offset 330

and onset. Given a heartbeat of a processed ECG signal with at least one detected 331

Q,S-wave and one detected P,T-wave, we measure the onset and offset of the intervals of 332

interest as follows: 333

February 10, 2022 10/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.01.478609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478609
http://creativecommons.org/licenses/by/4.0/


• The onset of the PR-interval and onset of the P-wave duration is minimum{UP }. 334

• The offset of the PR-interval, onset of the QT-interval, and onset of the 335

QRS-duration is given by minimum{U∗
Q} where U∗

P is the set of time indices of 336

the 1-cycle satisfying the Q-wave criteria such that the time coordinate of its 337

centroid is less than the time coordinate of the centroid of every other 1-cycle 338

identified as a Q-wave within the heartbeat. 339

• The onset of the ST-segment and offset of the QRS-duration is given by 340

minimum{U∗
S} where U∗

S is the set of time indices of the 1-cycle satisfying the 341

S-wave criteria such that the time coordinate of its centroid is greater than the 342

time coordinate of the centroid of every other 1-cycle identified as an S-wave 343

within the heartbeat. 344

• The offset of the QT-interval and offset of the T-wave duration is minimum{UT }. 345

• The offset of the ST-segment and onset of the T-wave duration is minimum{UT }. 346

• The offset of the P-wave duration is maximum{UP }. 347

The average PR-interval, QT-interval, ST-segment, QRS-duration, P-wave duration, 348

and T-wave duration were calculated using i) the model’s parameters, ii) 349

cardinality-minimal 1-cycle reconstructions, and iii) area-minimal 1-cycle reconstructions 350

for all 1000 simulated ECG signals. The percent difference between the model’s 351

measurement of each interval and the optimal 1-cycle’s measurement of each interval for 352

both cardinality-minimal and area-minimal 1-cycles were calculated for each simulation. 353

ECG simulation 354

ECG signals were generated with a sampling frequency of 500Hz using an ECG 355

Simulator in MATLAB [34]. The set of parameters that completely characterizes what 356

we refer to as a simulated ECG signal includes the heart rate, the amplitude and 357

duration of the R-wave, and the amplitude, duration, and location with respect to i) the 358

subsequent R-wave for the P,Q-wave and ii) the preceding R-wave for the S,T-wave. We 359

now go into detail about how this parameter set is used to construct a simulated ECG 360

signal with a given PR-interval, QT-interval, ST-segment, QRS-duration, P-wave 361

duration, and T-wave duration. 362

363

Let h = 4−0
4∗500 = 0.002 be the time-step and D = {x ∈ [0, 4] | x = hk for k ∈ Z} be 364

the set of time indices of a simulated ECG signal. A simulated ECG signal (D, f) is 365

given by a set of ordered pairs (t, f(t)) where t ∈ D and f : [0, 4]→ R is such that f(t) 366

represents the amplitude of the signal at time t. Furthermore, the simulated ECG signal 367

is periodic, i.e. f(t) = f(t+ rr_interval) where rr_interval = 60
heart_rate . Thus to 368

completely characterize a simulated ECG signal, we need only know how f is defined on 369

a contiguous subset E of D which ranges over one period of f . We also impose the 370

property of a simulated ECG signal such that any choice of E contains five subsets of 371

the simulated ECG signal which we refer to as the P,Q,R,S, and T-waves. Depending on 372

the choice of E and the parameters of the model, the P,Q,R,S, and T-waves are either 373

connected by an isoelectric segment on which f is constant or intersect one another. 374

375

We now briefly describe the P,Q,R,S, and T-waves. The QRS complex consists of six 376

line segments, and the shape of the P and T-wave is dictated by a Fourier series [34]. 377

The amplitude and duration of the X-wave is given by the parameters 378

amplitude_X_wave and duration_X_wave, respectively, for X=P,Q,R,S,T. The 379

distance along the time-axis from the centroid of the ordered pairs comprising the 380
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P,Q-wave to the coordinate pair of the following R-wave peak is given by the parameter 381

location_P,Q_wave. Similarly, the distance along the time-axis from the coordinate 382

pair of an R-wave peak to the centroid of the ordered pairs (t, f(t)) comprising the 383

subsequent S,T-wave is given by the parameter location_S,T_wave. 384

385

We now describe how the intervals of interest, i.e. the PR-interval, QT-interval, 386

ST-segment, QRS-duration, P-wave duration, and T-wave duration, are constructed 387

from the model parameters. We consider the location on the time axis corresponding to 388

the R-wave peak as the origin and measure distance as being positive in both directions 389

along the time axis. Thus, both the onset and offset of the R-wave is given by 390
duration_R_wave

2 . The onset of the P,Q-wave and the offset of the S,T-wave is taken to 391

be location_X_wave+
duration_X_wave

2 for X=P,Q,S,T. Similarly, the offset of the 392

P,Q-wave and onset of the S,T-wave is given as location_X_wave− duration_X_wave
2 393

for X=P,Q,S,T. We now define the simulation’s measure of these intervals as 394

• PR-interval = onset of P-wave - onset of Q-wave 395

• QT-interval = onset of Q-wave + offset of T-wave 396

• ST-segment = onset of T-wave - offset of S-wave 397

• QRS-duration = onset of Q-wave + offset of S-wave 398

• P-wave duration = onset of P-wave - offset of P-wave 399

• T-wave duration = offset of T-wave - onset of T-wave 400

where if the amplitude of the Q-wave or S-wave is below 0.02, then the onset of the 401

Q-wave or offset of the S-wave is given by the onset or offset of the R-wave, respectively. 402

403

By uniformly sampling the heart rate from [60,100] and the parameter values of the 404

P,Q,R,S, and T-waves from the ranges in Table 1, 1000 simulated ECGs were generated. 405

406

Table 1. Parameter ranges of simulated ECG signals.
P-wave Q-wave R-wave S-wave T-wave

Amplitude [0, 0.4] [0, 0.2] N/A [0, 0.15] [0.15, 0.6]
Duration [0.08, 0.15] [0.04, 0.07] [0.03, 0.04] [0.04, 0.07] [0.08, 0.2]
Location [0.17*rr_int, 0.3*rr_int] [0.04*rr_int, 0.07*rr_int] N/A [0.04*rr_int, 0.07*rr_int] [0.26*rr_int, 0.38*rr_int]

Note that R-waves are evenly spaced a distance of 60
heart rate from one another and that the location of the P,Q,S, and

T-waves are defined with respect to the subsequent R-wave in the case of P,Q-waves and to the preceding R-wave in the case
of S,T-waves.

Results/discussion 407

The PR-interval, QT-interval, ST-segment, QRS-duration, P-wave duration, and T-wave 408

duration of 1000 simulated ECG signals were measured using i) cardinality-minimal 409

1-cycle reconstructions and ii) area-minimal 1-cycle reconstructions and compared with 410

the interval measurements made by model parameters. For each simulation, the percent 411

difference between the model’s measurement of each interval and the measurement of 412

each interval performed using optimal 1-cycle reconstructions was calculated. The 413

distribution of these measurements using cardinality-minimal and area-minimal 1-cycles 414

are shown in Fig 6 and Fig 7, respectively. The average percent difference and the 415
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standard deviation of the percent difference measurements for each interval of interest 416

across the 1000 simulated ECG signals is shown in Table 2. 417

Fig 6. Distribution of percent difference measurements using
cardinality-optimal 1-cycles
Each histogram depicts the distribution of percent difference measurements for a single
interval of interest. Left to right across the top row: PR-interval, QT-interval, ST-
segment. Left to right across the bottom row: QRS-duration, P-wave duration, T-wave
duration.

Fig 7. Distribution of percent difference measurements using area-optimal
1-cycles
Each histogram depicts the distribution of percent difference measurements for a single
interval of interest. Left to right across the top row: PR-interval, QT-interval, ST-
segment. Left to right across the bottom row: QRS-duration, P-wave duration, T-wave
duration.

Table 2. Average percent difference of interval measurements.
Area-minimal 1-cycles Cardinality-minimal 1-cycles
mean ± standard deviation mean ± standard deviation

PR− interval 9.712± 14.581 9.712± 14.581
QT − interval 4.668± 3.677 4.668± 3.675
ST − segment 25.122± 38.417 25.122± 38.417
QRS − duration 25.284± 23.791 25.285± 23.790
P − wave duration 7.473± 17.146 7.473± 17.146
T − wave duration 2.972± 9.136 2.972± 9.136

The intervals of interest of 1000 simulated ECG signals were measured using parameters of the model, cardinality-minimal
1-cycle reconstructions, and area-minimal 1-cycle reconstructions as outlined in the Methods section. The reported percent
difference values refer to the percent difference in interval measurements between the model’s measurements and
measurements made using optimal 1-cycles.

From comparing cardinality-minimal 1-cycles identified as P,Q,S, and T-waves to 418

area-minimal 1-cycles identified as P,Q,S, and T-waves in Supplementary File 1 and 419

Supplementary File 2, we see that these cycles are often “close” to one another, likely 420

resulting in the similar percent error distributions seen in Fig 6, Fig 7, and Table 2. It is 421

also evident from Supplementary File 1 and Supplementary File 2 that the algorithm 422

could be improved by using a more stable method to include an isoelectric baseline in 423

the signal. Additionally, to ensure that P,Q,S, and T-wave identifications and interval 424

measurements are not compromised due to misidentified or undetected R-wave peaks, a 425

more robust R-wave peak detection algorithm could be used such as those 426

in [35], [36], [37]. 427

428

The parameters in the criteria used to identify 1-cycles as P,Q,S, and T-waves are 429

currently determined from several iterations of identifying 1-cycles as P,Q,S, and 430

T-waves and adjusting the parameter values to obtain more accurate identification 431

based on visual inspection. A more robust method of optimizing this parameter set 432

could result in more accurate identification of 1-cycles which better represent the shape 433

and/or endpoints of the P,Q,S, and T-waves. A difficulty in this is that it may be 434

difficult to know what a “correct” subset of a signal is in order for it to be considered a 435

P,Q,S, or T-wave. Additionally, information about optimal 1-cycles identified as P,Q,S, 436

and T-waves could be combined with other existing approaches such as analyzing other 437
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persistent homology statistics, wavelet decompositions, and machine learning for 438

automated arrhythmia detection in future work [12] [13] [17] [19] [21]. 439

440

Supporting information 441

The code used to produce simulated ECG signals is available at 442

https://www.mathworks.com/matlabcentral/fileexchange/ 443

10858-ecg-simulation-using-matlab/ [34]. The real ECG data used in this study is 444

publicly available and can be freely downloaded at 445

https://www.nature.com/articles/s41597-020-0386-x/ [33]. The code used to 446

identify P,Q,S, and T-waves and measure intervals of interest based off of topological 447

features of the ECG signal can be found in the GitHub repository at 448

https://github.com/hdlugas/ekg_tda. 449

Supplementary File 1 Cardinality-minimal 1-cycle reconstructions 450

identified as P,Q,S,T-waves for 400 simulated ECG signals 451

Supplementary File 2 Area-minimal 1-cycle reconstructions identified as 452

P,Q,S,T-waves for 400 simulated ECG signals 453

Supplementary File 3 Cardinality-minimal 1-cycle reconstructions 454

identified as P,Q,S,T-waves for 200 ECG signals randomly sampled from the 455

pooled described in ’Methods-Extracting Features of Processed ECG Signals 456

using TDA’ 457

Supplementary File 4 Area-minimal 1-cycle reconstructions identified as 458

P,Q,S,T-waves for 200 ECG signals randomly sampled from the pooled 459

described in ’Methods-Extracting Features of Processed ECG Signals using 460

TDA’ 461

Supplementary File 5 File names of the randomly sampled ECG signals 462

analyzed using cardinality-minimal 1-cycles. 463

Supplementary File 6 File names of the randomly sampled ECG signals 464

analyzed using cardinality-minimal 1-cycles. 465
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