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Abstract

Cardiovascular diseases are among the leading causes of death, and their early detection
and treatment is important for lowering their prevalence and mortality rate.
Electrocardiograms (ECGs) record electrical activity of the heart to provide information
used to diagnose and treat various cardiovascular diseases. Many approaches to
computer-aided ECG analysis have been performed, including Fourier analysis, principal
component analysis, analyzing morphological changes, and machine learning. Due to
the high accuracy required of ECG-analysis software, there is no universally-agreed
upon algorithm to identify P,Q,R,S, and T-waves and measure intervals of interest.
Topological data analysis uses tools from algebraic topology to quantify hole-like shapes
within data, and methods using persistence statistics and fractal dimension with
machine learning have been applied to ECG signals in the context of detecting
arrhythmias within recent years. To our knowledge, there does not exist a method of
identifying P,Q,S, and T-waves and measuring intervals of interest which relies on
topological features of the data, and we propose a novel topological method for
performing these aspects of ECG analysis. Specifically, we establish criteria to identify
cardinality-minimal and area-minimal 1-cycles with certain properties as P,Q,S, and
T-waves. This yields a procedure for measuring the PR-interval, QT-interval,
ST-segment, QRS-duration, P-wave duration, and T-wave duration in Lead II ECG
data. We apply our procedure to 400 sets of simulated Lead II ECG signals and
compare with the interval values set by the model. Additionally, the algorithm is used
to identify cardinality-minimal and area-minimal 1-cycles as P,Q,S, and T-waves in two
sets of 200 randomly sampled Lead II ECG signals of real patients with 11 common
rhythms. Analysis of optimal 1-cycles identified as P,Q,S, and T-waves and comparison
of interval measurements shows that 1-cycle reconstructions can provide useful
information about the ECG signal and could hold utility in characterizing arrhythmias.

Author summary

Topological data analysis (TDA) has been a rapidly growing field within the past 15
years and has found applications across many fields. In the context of TDA, several
algorithms primarily using persistence barcode statistics and machine learning have
been applied to electrocardiogram (ECG) signals in recent years. We use a topological
data-analytic method to identify subsets of an ECG signal which are representative of
certain topological features in the ECG signal, and we propose that those subsets
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coincide with the P,Q,S, and T-waves in the ECG signal. We then use information
about these subsets of the signal identified as P,Q,S, and T-waves to measure the
PR-interval, QT-interval, ST-segment, QRS-duration, P-wave duration, and T-wave
duration. We demonstrate our method on both simulated and real Lead IT ECG data.
These results show how identifying subsets of an ECG signal with certain topological
properties could be used in analyzing the morphology of the signal over time and in
arrhythmia-detection algorithms.
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Introduction

Cardiovascular diseases are among the leading causes of death due to their high
prevalence and mortality rate [1] [2] |3]. Electrocardiograms (ECGs) provide a
non-invasive measure of the heart’s electrical activity and are used in diagnosing and
managing various cardiovascular diseases. Thus the analysis of ECGs is important for
accurate diagnosis and proper treatment of cardiovascular diseases. Several approaches
to automated ECG analysis have been performed, including machine

learning [4] [5] 16] [7] [8] [9] [10] [11], wavelet transforms [12] [13] [14] [15] |16], and
persistent homology [17] [18] [19] |20] [21] [22] |23]. Due to the high accuracy required of
ECG-analysis software and the fact that the bulk of ECG analysis is carried out by
healthcare providers, the development of algorithms that identifies P,Q,R,S, and
T-waves, measures intervals of interest, and/or detects arrhythmias is an active area of
research.

Topological data analysis (TDA) is concerned with the study of shapes constructed
from a dataset which are invariant under continuous deformations such as stretching
and twisting. Applications of TDA to ECG signals have used persistence
statistics [20] 18], fractal dimension [18], and machine learning [17] [19]. Using cycle
reconstructions has shown utility in various applications outside of ECG analysis such
as analyzing structures on the atomic scale [24] and in structural engineering [25]|. To
our knowledge, nobody has performed an “inverse” analysis of using information from
cycle reconstructions to analyze ECG signals. We focus our attention on the “rhythm
lead”, i.e. Lead II, and for the remainder of the paper, any reference to an ECG signal,
whether simulated or real, refers to a Lead II ECG signal.

Suppose we are given an n-dimensional dataset, that is, a set of points in R™. There
are n distinct types of topological features associated with that dataset: roughly, these
“types” correspond to what one would intuitively regard as “holes” or “gaps” of differing
dimensions in the dataset. To apply these methods to ECG data, we treat an ECG
signal as two dimensional with one temporal dimension and one amplitude dimension
rather than one dimensional with a specified sampling frequency. Consequently, from
this perspective, there are two distinct types of topological features associated with
ECG data: 0-dimensional homology features represent equivalence classes of connected
components, while 1-dimensional homology features represent equivalence classes of
non-contractible loops. The 0-dimensional homology features are useful in analyzing
clustering phenomena and have recently shown utility as a metric of heart rate
variability when applied to ECG signals |21] [22].

In this paper, our focus is instead on the 1-dimensional homology features, which we
use in a novel way to analyze ECG data. Specifically, we identify subsets of an ECG
signal as P,Q,S, and T-waves by considering these subsets to be representative cycles of
1-dimensional homology features of the signal with certain properties and then use these
subsets identified as individual waves to measure the PR-interval, QT-interval,
ST-segment, QRS-duration, P-wave duration, and T-wave duration. To illustrate the
intuition behind 1-dimensional homology features and their representative cycles, we
first present an example which demonstrates how the 1-dimensional homology features
of a simple 2-dimensional dataset is related to the shape of the data in the “Example: a
1-dimensional topological feature in a simple dataset” section. This section describes
some geometric intuition of 1-dimensional homology features without going into linear
algebra details. These details are then given and the ideas from this section are
formalized in the “Background on topological data analysis” section, where we define
key terms in algebraic and computational topology to provide minimal background and
establish terms that will be used in identifying features of ECG signals.
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Example: a 1-dimensional topological feature in a simple dataset

Consider the set of points in the Cartesian plane R? shown in Fig . Then consider a
circle drawn around each datum, each with the same radius r. The geometric Cech
complex of radius r is defined as the union of the interiors of these circles. It is a subset
of R?, and as r increases, the geometric Cech complex of radius r is a larger and larger
subset of R2. Fig —E depicts the geometric Cech complexes of radius 0.5, ?, 2.5, and
5v2

2¥= as the region shaded in blue. Notice that for r < 0.5, none of the circles overlap,

whereas for 0.5 < r < §7 the circles centered at the data comprising the smaller square
overlap such that there is a “void” of non-overlapping space enclosed by their region of
overlap. Hence for 0.5 <r < @, there exists a non-contractible loop within the
geometric Cech complex of radius r. “Non-contractible” here means that the loop drawn
around the void of non-overlapping space cannot be continuously deformed down to a
single point without leaving the geometric Cech complex: the loop gets “stuck” on the
void encircled by the geometric Cech complex, like trying to pull a rubber band off of a
broomstick of infinite length. Notice that for » < 0.5, none of the circles of the example
dataset in Fig overlap, let alone overlap in such a way that they encircle some
non-overlapping space. Consequently, we are unable to construct non-contractible loops
within the geometric Cech complex of radius r for r < 0.5.

Fig 1. 1-dimensional homological features of example dataset in R? A: Plot of
example data. B,C,D,E: The blue region depicts the geometric Cech complex of radius
0.5,§, 2.5, %, respectively. F: Persistence diagram: each blue triangle represents a
1-dimensional homological feature, i.e. an equivalence class of non-contractible loops,
with coordinates (birth radius, death radius); the y=x line is drawn to depict the
persistence distribution of all 1-dimensional homological features over a set of r values
by noting that the more persistent a 1-dimensional homological feature is, i.e. the larger
the difference between its death radius and birth radius, the more ’above’ the y=x line

it will be.

Recall that if we can draw a non-contractible loop within the geometric Cech
complex of radius r for some r > 0, then this loop must be “stuck" around some void
encircled by the geometric Cech complex. This non-contractible loop can be
continuously deformed to construct another non-contractible loop “stuck" around the
same void. We say the two loops are homotopic. As an example, the red and green
loops shown in Fig[ID are homotopic. The set of all possible non-contractible loops
“stuck" around some void encircled by the geometric Cech complex forms an equivalence
class of non-contractible loops, i.e. a set of non-contractible loops where any two
non-contractible loops in the set are homotopic. In practice, rather than homotopy, we
use a weaker but more technically-involved equivalence relation on loops called homology
to utilize efficient algorithms such as Ripser |26] and GUDHI [27] in computing
topological features. For a rigorous treatment of homotopy and homology, see [28].

Suppose we are given a dataset X and a positive real number r. We write C'T(X ) for
the geometric Cech complex of X of radius r. For a given two-dimensional dataset such
that there exists a non-contractible loop ¢ within its geometric Cech complex of radius
r, we define the birth radius of ¢ as the smallest real number b such that some loop in
C,.(X) which is equivalent to £ and which is contained in the subset Cy(X) of C.(X)
exists. It follows immediately from this definition that b < r. Similarly, we define the
death radius of ¢ as the smallest real number d such that r < d and such that ¢ is
contractible when regarded as a loop in C’d(X ). That is, the birth radius of a
non-contractible loop is the smallest radius at which the equivalence class of that
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non-contractible loop forms, and the death radius is the smallest radius at which it
vanishes (i.e., becomes contractible). For r € [birth radius, death radius], the
equivalence class of non-contractible loops ‘persists,” and this motivates the definition of
the persistence of an equivalence class of non-contractible loops: the persistence is the
difference between the death radius and the birth radius.

The data comprising the larger square in the example dataset were included to
compare two 1-dimensional homology features of different persistence within a given
2-dimensional dataset. As previously noted, the birth radius and death radius of the
1-dimensional homology feature constructed from the data comprising the smaller
square are 0.5 and g ~ 0.707, respectively, so the persistence of this feature is
approximately 0.707-0.5=0.207. The birth radius of the 1-dimensional homology feature
corresponding to the larger square is 2.5, and the death radius is % ~ 3.536. Thus its
persistence is approximately 3.536-2.5=1.036. Since 1.036-0.207=0.829, the blue triangle
representing the equivalence class of non-contractible loops formed from the subset of
the data comprising the larger square lies a distance 0.829 further above the y=x line
than the blue triangle representing the equivalence class of non-contractible loops
formed from the subset of data comprising the smaller square. This illustrates how a
highly persistent 1-dimensional homology feature has a larger “loop-like” structure than
a 1-dimensional homology feature of lower persistence.

Also note how there are two choices of subsets of the dataset representative of the
equivalence class of non-contractible loops with a smaller persistence, namely the four
points that comprise the smaller square and the set of five points where four points
comprise the smaller square and the other point is nearby. These choices of data points
are referred to as representative 1-cycles and can be chosen such that the representative
1-cycle is minimal with respect to either i) the number of data points it consists of or ii)
the area it spans. In the first case, we have a cardinality-minimal representative 1-cycle
for the equivalence class; in the second case, we have a area-minimal representative
1-cycle for that equivalence class. In this example, both the cardinality-minimal and
area-minimal representative 1-cycle of the equivalence class of non-contractible loops
with a lower persistence consists of the four data points comprising the smaller square.

Background on topological data analysis

We now set out to formalize the notion of “equivalence classes of non-contractible loops
that persist for a given range of radius values.” Given a set of data X represented as a
finite set of points in R2, we construct a simplicial complex as a topological space that
approximates the structure of the data.

Definition 0.1 A simplicial complex is a collection K of subsets of a finite set V' such
that:

o {v} €K forallveV, and
o ift Co foroce K, thent € K.

An element of V is referred to as a vertex, and an element of K with cardinality n + 1
is referred to as an n-simplex.

There are several ways to construct a simplicial complex given a finite set of points
in R2, and to be consistent with the geometry of the simple dataset example, we
consider the radius r Vietoris-Rips complex, a simplicial complex constructed by

T

considering a circle of radius § around each point in our dataset and then including
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S C X as a simplex if the intersection of the balls of radius 5 for each point in S is
nonempty. An example of constructing the Vietoris-Rips complex for several values of r
is shown in Fig [2}

Fig 2. Relation between the geometric Cech complex of radius r and the
radius r Vietoris-Rips Complex A-C: Geometric Cech complex of radius 0.4, 0.6,
0.8 shown in blue. D-E: Geometric realization of radius 0.4, 0.6, 0.8 Vietoris-Rips
complex; a point indicates a 0-simplex, a line indicates a 1-simplex whose members are
the endpoints of the line, and a filled-in region indicates a n-simplex whose n+1
members are the data on the boundary of the region; the red regions in each plot
indicates the simplicies which are born at r=0, r=0.5, and %, from left to right.

Definition 0.2 Given a dataset X represented as a finite subset of R?, and given a
positive real number r, the radius r Vietoris-Rips complex of X, denoted VR,.(X), is the
simplicial complex given by the collection of all subsets U of X with the property that if
x1,x9 € U, then |z1 — x| < 7.

Note that if S C U for U € VR, (X), then |21 — 23| < r for all x1,x9 € U implies
|1 — xo| < r for all z1, 29 € S. Thus the radius r Vietoris Rips complex of a finite
subset of R? defines a simplicial complex.

We are now in a position to be more concrete about the notion of an “equivalence
class of non-contractible loops” within the geometric Cech complex, as discussed in the
“Example: a 1-dimensional topological feature in a simple dataset” section. By an
“equivalence class of non-contractible loops,” we are referring to an element of the
1-dimensional homology group of some radius r Vietoris-Rips complex, which we now
set out to define.

Let X be a finite subset of R?, let r be a positive real number, and let C,, be the
vector space over Fo with basis consisting of the elements of V R,.(X) of cardinality
n+1 for n =0, 1,2. Furthermore, suppose there is an ordering on VR,.(X). Consider

071 Cp &2 ) &8 0y 22 0 where Sn([zo, v zn]) = 2i_o(=1)"[z0, ... @iy ..., ] and
%; indicates that x; is omitted from the ordered simplex. The elements of C; are
referred to as 1-chains, the elements of ker(dy) are referred to as 1-cycles, and elements
of im(d;) are referred to as 1-boundaries. Since dy(d1(v)) = 0 for all v € Cs, every
1-boundary is an 1-cycle. However, it is not necessarily true that every 1l-cycle is an
1-boundary. Intuitively, if we think of X as a cloud of points in the plane, the
1-dimensional homology group of VR,.(X) is defined such that its dimension over Fy
counts the number of “holes” in that cloud.

Definition 0.3 Given r > 0 and V R,.(X) where X is a finite subset of R?, we follow
the construction of Fo-vector spaces Cy, C1, Co and linear transformations 6_1, &g, 01,
d2 as outlined above and define the first homology group of VR.(X) as the quotient
vector space H1 (VR (X)) = ker(do)/im(01). The Fa-vector space dimension

b1 = dim(H(VR,(X))) = dim(ker(dg)) — dim(im(61)) of Hi(VR-(X)) is called the
first Betti number.

By increasing r, we create a sequence of Vietoris-Rips Complexes where
VR, (X) C VR (X) for r < r’. We then construct

VR, (X) % VR, (X) % .. "L VR, (X)
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where VR, (X) is a proper subset of VR, (X) for i < j and ig, 41,...,im,—1 are inclusion
homomorphisms. This induces a sequence of Fa-linear functions §, 7,..., ¢),_; such that

Hy(VRyy—o(X)) 25 Hy(VR, (X)) S5 .. 2% H (VR, (X))

and iy ([c]y) = [in(c)]w for V =VR, (X), W =VR, , (X),and alln=0,1,...,m — 1.

We now give a name to the “smallest” and “largest” r > 0 such that a given 1-cycle
belongs to H1(V R, (X)).

Definition 0.4 Let [c] € Hi(VR.(X)) for some r > 0. The birth filtration of [c] is
defined as the greatest lower bound of the set of all € > 0 such that [c] is in the range of
the Fy-linear function Hi(VR(X)) — H1(VR,(X)). Similarly, the death filtration of
[c] is defined as the least upper bound of the set of all € > 0 such that [c] maps to zero
under the Fo-linear function Hy(VR,(X)) = H1(VR(X)). The persistence of [c] is
defined as the difference between the death filtration and the birth filtration.

Up to a scaling factor in the variable r, the geometric Cech complex of radius r is
homotopy equivalent to the radius r Vietoris-Rips complex due to the Nerve
Lemma [29]. Consequently, the definitions of the birth and death radii of an equivalence
class of non-contractible loops presented in the “Example: a 1-dimensional topological
feature in a simple dataset” section are equivalent to the definitions of the birth and
death filtration of a class [c] € H;(V R,.(X)) given in Definition 0.4. For a more
thorough treatment of persistent homology, see [30].

Methods

In this section, we first describe how ECG data are processed to be in a form such that
our topological approach can be applied consistently. We then describe our topological
method of identifying P,Q,S, and T-waves and measuring the PR-interval, QT-interval,
ST-segment, QRS-duration, P-wave duration, and T-wave duration. Lastly, we present
the methods used to simulate ECG signals with the PR~interval, QT-interval,
ST-segment, QRS-duration, P-wave duration, and T-wave duration determined by
parameters of the simulation.

Data processing

Before an ECG signal can be analyzed using our topological approach, the signal is
processed such that the topological approach can be consistently applied. An outline of
this processing pipeline is depicted in Fig[3] This processing pipeline is the same
regardless of whether the ECG signal is simulated or real.

Fig 3. ECG Signal Processing Pipeline
The above flowchart depicts a processing pipeline which is applied to an ECG signal
prior to computing topological features of the signal.

Given an ECG signal (D, f) where D denotes the set of time indices and f: D — R
is such that f(¢) represents the amplitude of the signal at time ¢, we first nearly double
the number of points comprising the signal by including the point (¢ + g, W)
for every pair of adjacent points (¢, f(¢)) and (¢ + h, f(t + h)) of the signal. The signal is
then normalized by mapping every ordered pair (¢, f(¢)) to (¢, %) where
M = maicérgum{ f(®)}. The coordinates of the R-wave peaks are used in identifying

P,Q,S, and T-waves, and the coordinate pair of the i-th R-wave peak is computed as the
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ordered pair (tg,;, f(tr,:)) where 0.6 < f(tr;), f(tr:) is a local maximum of the signal,
and there are exactly ¢ — 1 local maxima f(tg ;) such that tgp; < tgr, and 0.6 < f(tr,;),
j=1,2,...,i—1[31]. Next, an isoelectric line is incorporated into the signal by
mapping (¢, %) to (t,baseline) where baseline is the median value of the set

{f*(t) | t € D and f*(t) is f(¢) rounded to the nearest hundredth} for all ¢ € D such
that ¢ = h(2k) for some integer k. Lastly, we consider the restriction of the processed
ECG signal such that the signal begins and ends with an R-wave peak as the input of
our topological method.

Extracting features of processed ECG signals using TDA

Given a processed ECG signal (D, f), we are interested in i) identifying subsets of the
signal as P,Q,S, and T-waves using cycle reconstructions of 1-dimensional homology
classes and ii) using the identified waves to measure the PR-interval, QT-interval,
ST-segment, QRS-duration, P-wave duration, and T-wave duration. To describe how
P,Q,S, and T-waves are identified as 1-cycles with certain properties, if 1-cycles with
these properties exist, we first give a general description of five properties of ECG
signals that are used in this process:

e Persistence: Due to the the addition of the isoelectric line, specifically under the
P, T-waves and over the Q,S-waves, there is a loop-like structure of data
comprising the P,Q,S, and T-waves as shown in Fig[dJA. Thus for a 1-cycle to be
identified as a P,Q,S, or T-wave, we impose that it must have a persistence within
some bounded interval depending on the specific wave.

e Birth filtration upper bound: It is a property of ECG signals that adjacent
points (¢, f(¢)), (¢t + h, f(¢ + h)) within each P,Q,S, and T-wave are within some
distance § from one another where ¢ is small relative to the distance between
(t, f(t)) and a point (', f(t')) on a different wave. Thus we impose an upper
bound on the birth filtration of each potential 1-cycle to exclude 1-cycles
constructed from points corresponding to multiple waves, e.g. a 1-cycle
constructed from both a P-wave and an R-wave as shown in Fig [dB.

e Time coordinate of centroid of 1-cycle: It is a property of ECG signals that
a T-wave follows a QRS-complex. We also expect a detected P-wave to necessarily
precede a QRS-complex due to our simulations not featuring atrial activity with
missed ventricular beats. Thus we expect that the centroids of 1-cycles comprising
a T-wave and P-wave lie between a pair of adjacent R-waves such that the T-wave
is some distance after the preceding R-wave, the P-wave is some distance prior to
the following R-wave, and the P-wave follows the T-wave. Similarly, we impose
that a 1-cycle comprising a detected Q-wave and S-wave slightly precedes an
R-wave and shortly follows an R-wave, respectively.

e Amplitude coordinate of centroid of 1-cycle: It is expected that over a
given heartbeat, the average amplitude of the signal in the P,T-wave be larger
than the signal amplitude at baseline. Additionally, we expect there to be a
positive upper bound on the average amplitude of the signal in the P,T-wave.
Conversely, it is expected that the average amplitude of the signal in the Q,S-wave
be less than the signal amplitude at baseline.

e Optimality: Of the 1-cycles satisfying the persistence, birth filtration, and
centroid coordinate conditions above, the 1-cycle representing the given P,Q,S, or
T-wave is expected to be optimal in the sense of i) having a minimal number of
data points comprising the 1-cycle and/or ii) having a minimal-area convex hull.
These optimal cycles were computed using HomCloud [32].
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Fig 4. Illustration of properties of an ECG used to detect P,Q,S, and
T-waves

A: The red loops illustrate elements from equivalence classes of non-contractible loops
corresponding to the P,Q,S, and T-wave. Notice that without the addition of the
isoelectric baseline, we would be unable to draw non-contractible loops corresponding
to the P,Q,S, and T-waves within the geometric Cech complex. B: Example of output
without imposing an upper bound on the birth filtration of a 1-cycle identified as a
P-wave.

We now present the specific criteria that identifies 1-cycles with certain properties
related to those described above as being a P-wave or T-wave. We note that differences
in the classification criteria for P-waves and T-waves involves changes in the bounds of
the persistence range and changes to the upper bound of the birth filtration.
Additionally, the centroid of a 1-cycle identified as a P-wave is expected to be closer to
the subsequent R-wave than the preceding R-wave, and vice versa for the centroid of a
1-cycle identified as a T-wave.

P-wave Identification: An optimal 1-cycle satisfying the following conditions is
identified as a P-wave (Up, f) with collection of ordered pairs {(t, f(¢)) | t € Up} and
time index set Up:

e the persistence of the 1-cycle is in [0.001,0.2]
e the birth filtration of the 1-cycle is less than 0.03

e 0< avg{f(t)} <0.15
teUp

e R peak time coordinate[i] — 0.35« RR_interval < avg {t} <
teUp

R_peak time coordinate[i] — 0.06 *x RR_interval for some i.

T-wave Identification: An optimal 1-cycle satisfying the following conditions is
identified as a T-wave (Ur, f) with collection of ordered pairs {(¢t, f(¢)) | t € Ur} and
time index set Up:

e the persistence of the 1-cycle is in [0.01,0.6]

e the birth filtration of the 1-cycle is less than 0.04

e 0< avg{f(¢)} <0.4
teUr

e R peak time coordinate[i] + 0.15 * RR_interval < avg {t} <
teUr

R_peak_time_coordinate[i] + 0.5 * RR_ interval for some i.

We continue with describing the criteria for a 1-cycle to be identified as a Q-wave or
S-wave. The interval which the persistence of a 1-cycle must belong to for the 1-cycle to
be classified as a Q-wave or S-wave includes a smaller lower bound and smaller upper
bound compared to the interval of valid persistence values for a 1-cycle to be classified
as a P,T-wave. This is due to the data comprising Q-waves and S-waves having less of a
loop-like structure than data comprising the P-waves and T-waves. We also impose that
the centroid of a 1-cycle identified as a Q-wave or S-wave more closely precede or follow
the nearby R-wave peak relative to a P-wave or T-wave, respectively.

Q-wave Identification: An optimal 1-cycle satisfying the following conditions is
identified as a Q-wave (Ug, f) with collection of ordered pairs {(¢, f(t)) | t € Ug} and
time index set Ug:
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the persistence of the 1-cycle is in [0.007,0.1]

the birth filtration of the 1-cycle is less than 0.06

avg {f(t)} <0
teUq

R_peak time coordinate[i] — 0.12 * RR_ interval < avg {t} <
teUqg

R_peak time coordinate[i] for some i.

S-wave Identification: An optimal 1-cycle satisfying the following conditions is
identified as a S-wave (Ug, f) with collection of ordered pairs {(¢, f(t)) | t € Us} and
time index set Ug:

e the persistence of the 1-cycle is in [0.007,0.1]
e the birth filtration of the 1-cycle is less than 0.06

o avg{f(t)} <0
teUs

e R peak time coordinateli] < avg {t} <
teUs
R_peak time coordinate[i] + 0.12 « RR_interval for some i.

In the above criteria, “optimal 1-cycle” refers to a 1-cycle computed as being minimal
with respect to i) the cardinality of the set of data points comprising the 1-cycle or ii)
the area spanned by the convex hull of the 1-cycle. Both types of optimal 1-cycles were
computed in our analysis and are compared. An example of area-minimal 1-cycles
identified as P,Q,S, and T-waves using the above criteria depicted on an ECG signal is
shown in Fig[o] Cardinality-minimal and area-minimal 1-cycles identified as P,Q,S, and
T-waves for the 400 simulated ECG signals is provided as [Supplementary File 1]
and [Supplementary File 2] Additionally, cardinality-minimal and area-minimal 1-cycles
identified as P,Q,S, and T-waves for 200 Lead II ECG signals randomly sampled from a
pool of 10646 denoised signals with 11 common rhythms as described in 33| are shown
in [Supplementary File 3| and [Supplementary File 4] respectively.

Fig 5. Example of simulated ECG signal and persistence diagram with
area-optimal 1-cycles identified as P,Q,S, and T-waves

The points comprising P,Q,S, and T-waves were identified as area-optimal 1-cycles with
certain properties depending on their birth filtration, persistence, and centroid. The
Q-wave and S-wave l-cycles drawn have the left-most and right-most centroid of all
Q-wave and S-waves detected within a given heartbeat, respectively. This is consistent
with the choice of Q-waves and S-waves used to measure intervals of interest. The color
of 1-cycles identified as P,Q,S, and T-waves matches the color of the corresponding
points in the persistence diagram.

We now describe how the PR~interval, QT-interval, ST-segment, QRS-duration,
P-wave duration, and T-wave duration are measured using 1-cycles identified as P,Q,S,
and T-waves. To measure these intervals solely using topological features of the data,
the PR-interval and QR-interval of a given heartbeat are only measured if a Q-wave is
detected. Similarly, the ST-segment of a given heartbeat is only measured if an S-wave
is detected. The QRS-duration is only measured if both a Q-wave and an S-wave are
detected. The intervals of interest are computed as the difference between their offset
and onset. Given a heartbeat of a processed ECG signal with at least one detected
Q,S-wave and one detected P, T-wave, we measure the onset and offset of the intervals of
interest as follows:
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e The onset of the PR-interval and onset of the P-wave duration is minimum{Up}.

e The offset of the PR-interval, onset of the QT-interval, and onset of the
QRS-duration is given by minimum{UZ‘Q} where Up is the set of time indices of
the 1-cycle satisfying the Q-wave criteria such that the time coordinate of its
centroid is less than the time coordinate of the centroid of every other 1-cycle
identified as a Q-wave within the heartbeat.

e The onset of the ST-segment and offset of the QRS-duration is given by
minimum{Ug} where U} is the set of time indices of the 1-cycle satisfying the
S-wave criteria such that the time coordinate of its centroid is greater than the
time coordinate of the centroid of every other 1-cycle identified as an S-wave
within the heartbeat.

e The offset of the QT-interval and offset of the T-wave duration is minimum{Ur}.

e The offset of the ST-segment and onset of the T-wave duration is minimum{Ur}.

e The offset of the P-wave duration is maximum{Up}.

The average PR-interval, QT-interval, ST-segment, QRS-duration, P-wave duration,
and T-wave duration were calculated using i) the model’s parameters, ii)
cardinality-minimal 1-cycle reconstructions, and iii) area-minimal 1-cycle reconstructions
for all 1000 simulated ECG signals. The percent difference between the model’s
measurement of each interval and the optimal 1-cycle’s measurement of each interval for

both cardinality-minimal and area-minimal 1-cycles were calculated for each simulation.

ECG simulation

ECG signals were generated with a sampling frequency of 500Hz using an ECG
Simulator in MATLAB [34]. The set of parameters that completely characterizes what
we refer to as a simulated ECG signal includes the heart rate, the amplitude and
duration of the R-wave, and the amplitude, duration, and location with respect to i) the
subsequent R-wave for the P,Q-wave and ii) the preceding R-wave for the S,T-wave. We
now go into detail about how this parameter set is used to construct a simulated ECG
signal with a given PR-interval, QT-interval, ST-segment, QRS-duration, P-wave
duration, and T-wave duration.

Let h = £=0- = 0.002 be the time-step and D = {z € [0,4] | = hk for k € Z} be
the set of time indices of a simulated ECG signal. A simulated ECG signal (D, f) is
given by a set of ordered pairs (¢, f(¢)) where t € D and f : [0,4] — R is such that f(t)
represents the amplitude of the signal at time ¢. Furthermore, the simulated ECG signal
is periodic, i.e. f(t) = f(t + rr_interval) where rr_interval = 7—9%——_ Thus to
completely characterize a simulated ECG signal, we need only know how f is defined on
a contiguous subset F of D which ranges over one period of f. We also impose the
property of a simulated ECG signal such that any choice of E contains five subsets of
the simulated ECG signal which we refer to as the P,Q,R,S, and T-waves. Depending on
the choice of E¥ and the parameters of the model, the P,Q,R,S, and T-waves are either

connected by an isoelectric segment on which f is constant or intersect one another.

We now briefly describe the P,Q,R,S, and T-waves. The QRS complex consists of six
line segments, and the shape of the P and T-wave is dictated by a Fourier series |34].
The amplitude and duration of the X-wave is given by the parameters
amplitude X wave and duration X wave, respectively, for X=P,Q,R,S,T. The
distance along the time-axis from the centroid of the ordered pairs comprising the

February 10, 2022

1117

334

335

336

345

346


https://doi.org/10.1101/2022.02.01.478609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478609; this version posted February 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

P,Q-wave to the coordinate pair of the following R-wave peak is given by the parameter
location P,Q wave. Similarly, the distance along the time-axis from the coordinate
pair of an R-wave peak to the centroid of the ordered pairs (¢, f(¢)) comprising the
subsequent S,T-wave is given by the parameter location S, T wave.

We now describe how the intervals of interest, i.e. the PR-interval, QT-interval,
ST-segment, QRS-duration, P-wave duration, and T-wave duration, are constructed
from the model parameters. We consider the location on the time axis corresponding to
the R-wave peak as the origin and measure distance as being positive in both directions
along the time axis. Thus, both the onset and offset of the R-wave is given by

w The onset of the P,Q-wave and the offset of the S,T-wave is taken to

be location X wave + w for X=P,Q,S,T. Similarly, the offset of the

P,Q-wave and onset of the S, T-wave is given as location X wave —
for X=P,Q,S,T. We now define the simulation’s measure of these intervals as

duration_ X wave
2

e PR-interval = onset of P-wave - onset of Q-wave

e QT-interval = onset of Q-wave + offset of T-wave

e ST-segment = onset of T-wave - offset of S-wave

e QRS-duration = onset of Q-wave + offset of S-wave
e P-wave duration = onset of P-wave - offset of P-wave
e T-wave duration = offset of T-wave - onset of T-wave

where if the amplitude of the Q-wave or S-wave is below 0.02, then the onset of the
Q-wave or offset of the S-wave is given by the onset or offset of the R-wave, respectively.

By uniformly sampling the heart rate from [60,100] and the parameter values of the
P,Q,R,S, and T-waves from the ranges in Table [1} 1000 simulated ECGs were generated.

Table 1. Parameter ranges of simulated ECG signals.

396

P-wave Q-wave R-wave S-wave T-wave
Amplitude | [0, 0.4] [0, 0.2] N/A [0, 0.15] [0.15, 0.6]
Duration [0.08, 0.15] [0.04, 0.07] [0.03, 0.04] | [0.04, 0.07] [0.08, 0.2]
Location [0.17*rr _int, 0.3*rr _int] | [0.04*rr int, 0.07*rr_int] | N/A [0.04*rr _int, 0.07*rr int] | [0.26*rr int, 0.38%

Note that R-waves are evenly spaced a distance of

60

meari oo from one another and that the location of the P,Q,S, and

T-waves are defined with respect to the subsequent R-wave in the case of P,Q-waves and to the preceding R-wave in the case

of S, T-waves.

Results/discussion

The PR-interval, QT-interval, ST-segment, QRS-duration, P-wave duration, and T-wave
duration of 1000 simulated ECG signals were measured using i) cardinality-minimal
1-cycle reconstructions and ii) area-minimal 1-cycle reconstructions and compared with
the interval measurements made by model parameters. For each simulation, the percent
difference between the model’s measurement of each interval and the measurement of
each interval performed using optimal 1-cycle reconstructions was calculated. The
distribution of these measurements using cardinality-minimal and area-minimal 1-cycles
are shown in Fig[6] and Fig[7] respectively. The average percent difference and the
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standard deviation of the percent difference measurements for each interval of interest
across the 1000 simulated ECG signals is shown in Table

Fig 6. Distribution of percent difference measurements using
cardinality-optimal 1-cycles

Each histogram depicts the distribution of percent difference measurements for a single
interval of interest. Left to right across the top row: PR-interval, QT-interval, ST-
segment. Left to right across the bottom row: QRS-duration, P-wave duration, T-wave
duration.

Fig 7. Distribution of percent difference measurements using area-optimal
1-cycles

Each histogram depicts the distribution of percent difference measurements for a single
interval of interest. Left to right across the top row: PR-interval, QT-interval, ST-
segment. Left to right across the bottom row: QRS-duration, P-wave duration, T-wave
duration.

Table 2. Average percent difference of interval measurements.

Area-minimal 1-cycles Cardinality-minimal 1-cycles
mean + standard deviation | mean + standard deviation

PR — interval 9.712 + 14.581 9.712 + 14.581

QT — interval 4.668 4+ 3.677 4.668 + 3.675

ST — segment 25.122 + 38.417 25.122 + 38.417

QRS — duration 25.284 + 23.791 25.285 + 23.790

P — wave duration | 7.473 £ 17.146 7.473 +£17.146

T — wave duration | 2.972 +9.136 2.972 +£9.136

The intervals of interest of 1000 simulated ECG signals were measured using parameters of the model, cardinality-minimal
1-cycle reconstructions, and area-minimal 1-cycle reconstructions as outlined in the Methods section. The reported percent
difference values refer to the percent difference in interval measurements between the model’s measurements and
measurements made using optimal 1-cycles.

From comparing cardinality-minimal 1-cycles identified as P,Q,S, and T-waves to
area-minimal 1-cycles identified as P,Q,S, and T-waves in [Supplementary File 1| and
[Supplementary File 2| we see that these cycles are often “close” to one another, likely
resulting in the similar percent error distributions seen in Fig[6] Fig[7 and Table[2} It is
also evident from [Supplementary File T]and [Supplementary File 2 that the algorithm
could be improved by using a more stable method to include an isoelectric baseline in
the signal. Additionally, to ensure that P,Q,S, and T-wave identifications and interval
measurements are not compromised due to misidentified or undetected R-wave peaks, a
more robust R-wave peak detection algorithm could be used such as those
in [35], [36], [37]-

The parameters in the criteria used to identify 1-cycles as P,Q,S, and T-waves are
currently determined from several iterations of identifying 1-cycles as P,Q,S, and
T-waves and adjusting the parameter values to obtain more accurate identification
based on visual inspection. A more robust method of optimizing this parameter set
could result in more accurate identification of 1-cycles which better represent the shape
and/or endpoints of the P,Q,S, and T-waves. A difficulty in this is that it may be
difficult to know what a “correct” subset of a signal is in order for it to be considered a
P,Q,S, or T-wave. Additionally, information about optimal 1-cycles identified as P,Q,S,
and T-waves could be combined with other existing approaches such as analyzing other

February 10, 2022

13/]17

416


https://doi.org/10.1101/2022.02.01.478609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478609; this version posted February 16, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

persistent homology statistics, wavelet decompositions, and machine learning for
automated arrhythmia detection in future work [12] [13] [17] [19] [21].

Supporting information

The code used to produce simulated ECG signals is available at
https://www.mathworks.com/matlabcentral/fileexchange/

10858-ecg-simulation-using-matlab/| [34]. The real ECG data used in this study is

publicly available and can be freely downloaded at

https://www.nature.com/articles/s41597-020-0386-x/||33|. The code used to
identify P,Q,S, and T-waves and measure intervals of interest based off of topological

features of the ECG signal can be found in the GitHub repository at
https://github.com/hdlugas/ekg_tdal

Supplementary File 1 Cardinality-minimal 1-cycle reconstructions
identified as P,Q,S,T-waves for 400 simulated ECG signals

Supplementary File 2 Area-minimal 1-cycle reconstructions identified as

P,Q,S,T-waves for 400 simulated ECG signals

Supplementary File 3 Cardinality-minimal 1-cycle reconstructions

identified as P,Q,S,T-waves for 200 ECG signals randomly sampled from the
pooled described in 'Methods-Extracting Features of Processed ECG Signals

using TDA”’

Supplementary File 4 Area-minimal 1-cycle reconstructions identified as
P,Q,S,T-waves for 200 ECG signals randomly sampled from the pooled
described in Methods-Extracting Features of Processed ECG Signals using

TDA’

Supplementary File 5 File names of the randomly sampled ECG signals

analyzed using cardinality-minimal 1-cycles.

Supplementary File 6 File names of the randomly sampled ECG signals

analyzed using cardinality-minimal 1-cycles.
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