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Despite decades of research, whether the C. elegans traveling-wave
sinusoidal body pattern during locomotion is produced (a) by the
undulations of the head followed by wave propagation down the
body, or (b) via centrally coordinated posture control along the body,
is still under debate. By studying relationships between the time
series of postural angles along the body extracted from videos of
moving worms, we find that the reflex-chain model can be refuted, in
both forward and backward locomotion as well as during swimming
and crawling behaviors. We show that information theory applied to
animal behavior can yield insights into the neural control of behavior.
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How the nematode C. elegans moves in a well-executed1

serpentine fashion is still unknown despite a detailed2

anatomical knowledge, connectome and genetic access to each3

of its 302 neurons (1, 2). The body motor system of C.4

elegans consists of overlapping 95 body wall muscle cells that5

ring the body and 75 body motor neurons grouped into 126

similar neuromuscular units running down the body (3). Two7

main models exist for C. elegans locomotion: a reflex-chain8

model where the dorsoventral undulations of the head set9

up an oscillatory pattern that propagates down the body10

via connections between adjacent neuromuscular units and11

biomechanical linkage, and an alternative active posture model12

where the sinusoidal body posture along the entire body is13

effected by active neural control not solely deriving from lateral14

neuromuscular signaling from the head to tail (Fig 1a). The15

earliest computer simulations of C. elegans movement were16

based on a reflex-chain model, and more recent simulations17

based on proprioceptive reflex chains recapitulate aspects of18

C. elegans movement (4–7). Worms crawl on their side with a19

smoothly propagating sinusoidal undulation with little body20

slippage outside of the sinusoidal path they trace out on their21

crawling surface; we surmise that the appearance of a smooth22

and consistent traveling wave inspired the reflex-chain model.23

An alternative model, which we term the active posture24

model, posits that worm motion is driven by multiple sites of25

centrally coordinated neural signals along the body. (Fig. 1a).26

These signals may be produced by a pattern generator (CPG)27

consisting of one more cells. Recently, rhythmically active28

groups of neurons for forward and backward locomotion have29

been identified (8–12), but whether these groups of neurons30

represent autonomous CPGs is still to be resolved.31

Results32

Cross-correlation of postural angle time series reveals non–33

monotonic noise accumulation down the body. To generate34

quantitative worm movement data, we recorded high reso-35

lution videos of worms crawling on an agar surface using a36
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Fig. 1. Locomotion models and analysis overview. a. Schematics of the reflex-
chain model (left) versus the active posture model (right). b. Overview of analysis
of worm movement. Sustained bouts of forward locomotion were tracked, worm
skeletons were segmented, and the worm tangent angles were plotted versus time for
each segment. Finally, pairwise measures – time lag to peak cross-correlation, peak
absolute cross-correlation, and mutual information were calculated for all joint angle
pairs.

custom-built motorized-stage microscope and image–based 37

tracking software system (13) and performed video analysis 38

(14) to silhouette and segment the worms. We then extracted 39

time series of the postural tangent angles between each of 40

13 body segments (Fig. 1b). As expected, these time series 41

resembled a series of phase-lagged noisy sinusoids. Performing 42

analysis with a finer discretization of body segments did not 43

change the key findings. 44

The sinusoidal appearance of the signals suggested that 45

cross-correlation analysis would be revealing. The cross- 46

correlation of two closely related sinusoidal signals in the 47

presence of noise consists of a set of peaks of decaying mag- 48

nitude (Fig. 1b). The x-coordinate of the peak of the cross- 49

correlation provides an estimate of the time lag of the signals. 50

The maximum absolute value of the cross-correlation provides 51

a scalar estimate of the relatedness of the signals measured 52

at the most favorable relative time delay, and it is reduced 53

by the amount of noise present in the transformation between 54

the signals. To simulate the undulations of forward locomo- 55

tion under the reflex-chain model, we created a sine wave to 56

represent head postural angle time series, added noise and a 57

phase delay to the signal to generate the posteriorly adjacent 58

postural angle time series, and iterated this procedure down 59

the body. 60

We computed the cross-correlation between each body joint 61

angle with respect to the anterior-most (head) joint angle 62
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Fig. 2. a-c: Postural angle time series relationships during forward locomotion. a. Time lag to the peak cross correlation vs angle # calculated for the reflex-chain model
(orange) and wild-type worms (blue) for forward locomotion, n=10. b. Heat map shows peak abs. cross-correlations computed between all angle pairs; first row is shown in
the larger plot. Note that the experimental data is non-monotonic, in contrast to the model. (Segment 5 − segment 3 and segment 9 − segment 7, random sampling with
replacement, **p<0.01) c. Mutual information plotted between all angles in the inset heatmap, with the mutual information relative to the head angle plotted. (Segment 5 −
segment 3 and segment 9 − segment 7, random sampling with replacement, ***p<0.001) d-f: Forward versus backward crawling. d. Time lag to peak cross-correlation for
forward (blue) and backward (orange) locomotion (compared to the head angle for forward and tail angle for backward), n=9 worms. e. Peak abs. cross-correlation normalized
to the head angle for forward locomotion (blue) and tail angle for backward locomotion (orange). f. The peak mutual information normalized to the head angle for forward
(blue) and tail angle segment for backward (orange). g-i: Forward crawling versus swimming. g. Time lag to peak cross-correlation for crawling (blue) and swimming
(orange) locomotion compared to the anterior-most segment. n=10 worms for each group. h. Peak abs. cross-correlation for crawling (blue) and swimming (orange) locomotion
normalized to the anterior-most segment. i. The mutual information for crawling (blue) and swimming (orange) locomotion normalized to the anterior-most segment.

during this simulated pattern of forward locomotion (Fig.63

1b). As expected, in the reflex-chain model simulation, the64

time lag to peak cross-correlation with respect to the first65

segment time series increased monotonically, and the peak66

absolute cross-correlation with respect to the first segment time67

series decreased monotonically with increasing segment number68

(Fig. 2a,b). We then performed the same analysis of our69

experimental data. For this analysis, we selected contiguous70

time series sections when the animal was crawling forward71

and not turning. In our experimental worms, we did not72

observe a stably increasing time lag to peak cross-correlation73

(Fig. 2a), and strikingly, we observed a strong breaking of74

monotonicity in the peak absolute cross-correlation (Fig. 2b).75

There were local minima in the peak absolute cross-correlation76

of angle pairs (1,5) and (1,9). This deviation from monotonicity77

suggests that the reflex-chain model is a poor fit to experiment.78

However, there was trial-to-trial variability in the pattern of79

peak correlations and time lag; thus, we sought a more robust80

measure of information transmission. 81

Mutual information suggests centrally coordinated posture 82

control. A central theorem of information theory is the data 83

processing inequality: a propagating signal can only lose, and 84

not gain information from transmission from point to point, 85

due to the accumulation of noise (15). If a worm moved 86

according to the reflex-chain model, the mutual information 87

between the head joint angle and each successive body angle 88

would monotonically decrease (Fig. 2b, c). However, we found 89

a strong experimental deviation from monotonic information 90

loss. The two local maxima of the mutual information relative 91

to angle 1 occur at the same angle numbers (5 and 9) as 92

the two local maxima of the peak absolute cross-correlation, 93

suggesting that active postural control may be transmitted to 94

the periphery through two specific points. We also measured 95

the mutual information between all angle pairs (Fig. 2c, inset). 96
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Forward crawling, backward crawling, and swimming are97

under centrally coordinated postural control. We extended98

our analysis to backwards locomotion, in this case using the99

posterior-most (tail) angle as angle 1. C. elegans backwards lo-100

comotion is shorter in bout duration and crawling length than101

forwards locomotion, so we employed shorter time windows102

than those used for forward locomotion. Similar to forward103

locomotion, we found a non-monotonic peak absolute cross-104

correlation and non-monotonic mutual information (Fig. 2e,105

f). The peak absolute cross-correlation has local maxima for106

angle pairs (1,5) and (1,10) (Fig. 2e, f). A reflex-chain model107

can thus be rejected for both directions of crawling, and both108

appear to coordinate control at two points along the body.109

We then analyzed worm swimming. It has been argued110

that C. elegans swimming and crawling represent distinct111

neural control patterns (16) rather than solely the result of112

biomechanical influence of a changing physical substrate. We113

found the time-lag to absolute cross-correlation to be non-114

monotonic but, in contrast to the crawling state, the peak115

absolute cross-correlation has only one, rather than two local116

maxima, suggesting a different mode of central cooordination.117

(Fig. 2g, h). The reflex-chain model can be rejected for118

swimming worms as well as crawling worms.119

Discussion120

We claim that the reflex-chain model of worm movement121

is inconsistent with fine analyses of behavioral data. Our122

data suggests there are two body locations where central123

coordination reaches the periphery. With higher resolution124

video recordings, detailed anatomical registration of neural and125

neuron-to-muscle connectivity data from the worm connectome126

could suggest particular neurons and connections responsible127

for centrally coordinated posture control.128

Our data is consistent with recent loss-of-function studies.129

One study showed that forward-rhythm undulations persist in130

posterior body segments even when anterior body segments131

are paralyzed (8). Another study found that when anterior A132

motor neurons were ablated, it did not prevent the propagation133

of reversal waves in posterior body segments (9). In addition134

to recent studies suggesting the presence of neural oscillators,135

there is also evidence for lateral information transmission be-136

tween adjacent neuromuscular units (17). If there are multiple137

CPG groups driving locomotion, our data suggest that they are138

strongly coupled. We hypothesize that coordinated oscillatory139

postural control signals reach the neuromuscular periphery140

at two specific points along the body, bypassing intervening141

neuromuscular units. These signals are shaped into a spatially142

smooth traveling body waveform by lateral neuromuscular143

signal transmission and further smoothed by biomechanical144

linkage.145

We assume that there is not severe segment-to-segment146

heterogeneity in the noise accumulated during the local biome-147

chanical transformation from muscle to body bend angle; if148

this transformation noise were both strong and wildly differ-149

ent along the body, it could undermine our interpretation of150

the non-monotonicity of our measures. However, we find this151

unlikely given the robustness of the results and lack of an152

intuition as to how such heterogeneity might occur.153

Materials and Methods 154

We recorded videos of wild-type (N2) worms using a custom track- 155

ing microscope and TierpsyTracker software (13, 14). We manu- 156

ally identified bouts of forward crawling, backward crawling, and 157

swimming. Analysis code is available at https://github.com/focolab/ 158

worm-locomotion-control and was written in python. 159
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