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Abstract 45 

Accurate, high-resolution environmental monitoring of SARS-CoV-2 traces indoors 46 

through sentinel cards is a promising approach to help students safely return to in-47 

person learning. Because SARS-CoV-2 RNA can persist for up to a week on several 48 

indoor surface types, there is a need for increased temporal resolution to determine 49 

whether consecutive surface positives arise from new infection events or continue to 50 

report past events. Cleaning sentinel cards after sampling would provide the needed 51 

resolution, but might interfere with assay performance. We tested the effect of three 52 

cleaning solutions (BZK wipes, wet wipes, RNase Away) at three different viral loads: 53 

“high” (4 x 104 GE/mL), “medium” (1 x 104 GE/mL), and “low” (2.5 x 103 GE/mL). RNAse 54 

Away, chosen as a positive control, was the most effective cleaning solution on all three 55 

viral loads. Wet wipes were found to be more effective than BZK wipes in the medium 56 

viral load condition. The low viral load condition was easily reset with all three cleaning 57 

solutions. These findings will enable temporal SARS-CoV-2 monitoring in indoor 58 

environments where transmission risk of the virus is high and the need to avoid 59 

individual-level sampling for privacy or compliance reasons exists. 60 

 61 

Importance 62 

Because SARS-CoV-2, the virus that causes COVID-19, persists on surfaces, testing 63 

swabs taken from surfaces is useful as a monitoring tool. This approach is especially 64 

valuable in school settings, where there are cost and privacy concerns that are 65 

eliminated by taking a single sample from a classroom. However, the virus persists for 66 

days to weeks on surface samples, so it is impossible to tell whether positive detection 67 
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events on consecutive days are persistent signal or new infectious cases, and therefore 68 

whether the positive individuals have been successfully removed from the classroom. 69 

We compare several methods for cleaning “sentinel cards” to show that this approach 70 

can be used to identify new SARS-CoV-2 signals day to day. The results are important 71 

for determining how to monitor classrooms and other indoor environments for SARS-72 

CoV-2 virus. 73 

 74 

Body 75 

For the last two years, the SARS-CoV-2 pandemic has disrupted lives and caused 76 

millions of deaths globally. Due to the high risk of virus transmission in indoor settings, 77 

schools have been forced to convert to remote learning [1]. Although remote learning 78 

can be convenient for some, not every child has access to a stable internet connection 79 

and a supportive, quiet learning environment [2,3]. Therefore, most child health 80 

authorities are recommending a return to in-person learning, if it can be conducted 81 

safely [4]. Effective SARS-CoV-2 monitoring is crucial to allow for in-person learning to 82 

resume safely and widely [5], with the goal of restoring education equity. However, 83 

performing daily nasal swabs to monitor the spread of the disease has high financial 84 

and labor costs, and often runs into difficulties with consent and reporting of results to 85 

relevant public health authorities. 86 

 87 

Wastewater and environmental monitoring strategies have been developed [6-8] and 88 

implemented [9] as a means of circumventing clinical swabs. We have already 89 

demonstrated that viral signals from COVID-19 patients in indoor environments 90 
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commonly accumulate on high-touch surfaces and the floors in front of features with 91 

high interaction times [8]. Additionally, SARS-CoV-2 RNA has been demonstrated to 92 

persist for up to a week on several indoor surface types [7, 10], making it difficult to 93 

understand exactly when an infected individual came into contact with a surface or if 94 

consecutive positives are from new deposition events. Thus, an effective post-sampling 95 

cleaning procedure needs to be established in order to increase temporal resolution and 96 

ensure that consecutive positives are from new infection events. 97 

 98 

To increase the temporal resolution of proven environmental pipelines [9,11] we tested 99 

resetting SARS-CoV-2 RNA signal with a mock sentinel surface. Here, a sentinel 100 

surface is a surface used as an environmental monitoring tool for detecting whether or 101 

not an infected individual was recently present in an indoor space. The mock sentinel 102 

surfaces we used were 100 cm2 laminated cards. The sentinel cards were inoculated 103 

with 10 μL of a dilution series of heat-inactivated SARS-CoV-2 particles (strain WA-1, 104 

SA-WA1/2020) in water and then wiped with a cleaning solution each day for five days. 105 

Samples were collected by swabbing the sentinel cards pre-inoculation, post-106 

inoculation, and post-wipe (Supplemental Fig. S1).  107 

 108 

For this study we used three viral loads: “high” (4 x 104), “medium” (1 x 104), and “low” 109 

(2.5 x 103) dilutions of SARS-CoV-2 viral genomic equivalents, as measured by droplet 110 

digital PCR. These concentrations were chosen to bracket the ranges we typically 111 

observed in classrooms during SASEA [9]. We used two different transport media: SDS 112 

(0.5% w/v sodium dodecyl sulfate (SDS), Acros Organics, 230420025), which we have 113 
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previously shown to yield superior results in SARS-CoV-2 molecular assays [County 114 

paper], and VTM (Viral Transport Medium, NEST Scientific USA, 202016), which is in 115 

widespread use by public health laboratories. We tested three cleaning methods: 116 

benzalkonium chloride (BZK) antiseptic towelettes (Dynarex, 1331), moist wet wipe 117 

(WW) towelettes (Royal, RF1MB), and paper towels moistened with RNase AWAY (RA) 118 

(ThermoFisher Scientific, 10328011).  119 

 120 

To continue benchmarking proven environmental pipelines [7, 9, 11] and to account for 121 

potential interactions, we used a factorial study design covering two swabbing media 122 

(SDS, VTM), three cleaning solutions (BZK wipes, wet wipes, RNase Away) and three 123 

viral spike-in concentrations (High, Medium, Low). Each condition was performed in 124 

triplicate for a total of 54 cards. A three-step swabbing process was performed on each 125 

card over a five-day period. First, we swabbed each card at the start of the day (Step 1). 126 

Next, the viral spike-in was added to the card and a second swab was collected (Step 127 

2). The card was then wiped with the cleaning solution and a final swab was collected 128 

(Step 3). Extraction and RT-qPCR were performed as described in our previous work, 129 

with VTM samples processed by the Perkin-Elmer pipeline and SDS samples 130 

processed by the Thermo pipeline described in that work [PHL paper]. 131 

 132 

Our results demonstrated that all of the cleaning methods worked well at low viral load 133 

over 5 cleaning cycles, although cleaning failures were somewhat more frequent with 134 

BZK (Fig. 1). Wet wipes and BZK performed well with SDS at medium viral loads, but 135 

only wet wipes performed well with VTM under these conditions. At high viral loads, only 136 
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the combination of RNase away and SDS was able to remove the signal. Therefore, we 137 

recommend that if high viral loads (Cq < 30, with SDS) are detected on a sentinel card, 138 

that the sentinel card be replaced at the next opportunity rather than cleaned. Repeat 139 

cleaning did not degrade the sentinel card surface or the ability to detect signal. As 140 

expected from our past work [11], SDS returned lower Cq values (better signal) than 141 

VTM on the same samples. 142 

 143 

An important consideration is the number of distinct genes recovered as matching in the 144 

RT-qPCR process, as this can make the difference between a sample being called as 145 

SARS-CoV-2 positive versus invalid. Because the peaks with the same viral load 146 

applied were highly reproducible across multiple days (reaching the same height in Fig. 147 

1), for this analysis we could treat each day as a replicate of the pre-application, post-148 

application, and post-cleaning sample conditions that were collected on each day. Fig. 2 149 

shows the reproducibility of replicates with cleaning, including the number of genes 150 

amplified. Under low load conditions, as expected, cleaning was effective and non-zero 151 

values occurred nearly always post-application and disappeared on cleaning, with the 152 

exception of VTM samples which sometimes carried over (right hand column in Fig 2). 153 

In contrast, in the high load condition (left hand column in Fig. 2), cleaning was nearly 154 

always ineffective except with RNase Away, not practical for classroom use. In the 155 

medium condition (middle column), all cleaning methods were effective with SDS but 156 

none were effective with VTM – the slightly higher cluster of Cq values are obtained with 157 

VTM in each case, consistent with expectations and with Fig. 1. Because VTM is 158 

viscous and contains fetal calf serum, a noticeable film developed on the sentinel cards, 159 
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and we suspect that vigorous and repeated cleaning beyond what is achievable with 160 

wipes may be required to remove all of it. 161 

 162 

Taken together, these results indicate that sentinel cards are an effective and practical 163 

solution for SARS-CoV-2 classroom monitoring, but that they must be cleaned carefully 164 

in order to remove carryover signal, and this process is easier with samples collected in 165 

SDS than in VTM (although cleaning with VTM is still possible). Because removing high 166 

viral load from sentinel cards is challenging, strong positives should be removed rather 167 

than cleaned. These findings are an important step to deployment of these cards at 168 

scale in projects such as SASEA. 169 

 170 
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 227 

Figure 1. Effect of cleaning solution at high, medium and low viral load with different 228 

swabbing media. On each day, three samples were taken: (1) before addition of viral 229 

particles, (2) after addition, and (3) after cleaning. Therefore, the expected pattern is a 230 

train of 5 spikes, starting at zero, rising to the maximum Cq value, returning to zero the 231 

same day, and staying at zero until the next day, as seen for SDS in the low load 232 

condition with RNase away (bottom right panel, solid lines).  High, medium, and low 233 

viral load were defined as (4 x 104), (1 x 104), and (2.5 x 103), respectively. Average Cq 234 

(Avg. Cq) was calculated as a mean Cq value from three samples. Two viral transport 235 

media were tested: SDS (0.5% w/v sodium dodecyl sulfate (SDS) and VTM (Viral 236 

Transport Medium). Effective cleaning reset Cq for each day. RNase away was shown 237 

to be effective at each viral load, whereas benzalkonium chloride (BZK) and wet wipes 238 

were only effective at medium and low viral load.   239 
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 240 

 241 

 242 

Figure 2. Cleaning solution efficiency after deliberate addition of viral load. Sampling 243 

was performed in three steps: initial virus amount (blank) was sampled from the wall for 244 

Step 1. Virus was deliberately loaded on the surface and sampled for Step 2. The 245 

surface was cleaned with different cleaning methods and sampled for qPCR analysis for 246 

Step 3. High, medium, and low viral load were defined as (4 x 104), (1 x 104), and (2.5 x 247 

103), respectively. Average Cq (Avg. Cq) was calculated as a mean Cq value from three 248 

samples. Two viral transport media were tested: SDS (0.5% w/v sodium dodecyl sulfate 249 

(SDS) and VTM (Viral Transport Medium). Effective cleaning reset Cq for each day 250 

(steps 1 and 3), whereas ineffective cleaning retained high viral load (non-zero Cq) at 251 

these steps. The number of gene hits refers to how many gene targets were amplified 252 

during RT-qPCR across the triplicate samples: the qPCR method for the SDS samples 253 
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targeted 3 genes for a total of 9 possible genes amplified while the method for the VTM 254 

samples targeted 2 genes for a total of 6 possible gene hits.  255 
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Supplemental Fig. S1 269 

Diagram of sampling events for each day of the experiment. Each day the sentinel 270 

cards were swabbed pre- and post-inoculation and post wiping. 271 
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