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2 
 

abstract (150-200 words) 1 

Previous studies suggest that humans are capable of coregulating the speed of decisions and 2 

movements if promoted by task incentives. It is unclear however whether such behavior is 3 

inherent to the process of translating decisional information into movements, beyond posing a 4 

valid strategy in some task contexts. Therefore, in a behavioral online study we imposed time 5 

constraints to either decision or movement -phases of a sensorimotor task, ensuring that 6 

coregulating decisions and movements was not promoted by task incentives. We found that 7 

participants indeed moved faster when fast decisions were promoted and decided faster when 8 

subsequent movements had to be executed swiftly. Furthermore, inflicting faster movements 9 

seems to alter decision-making in a similar fashion as conditions promoting faster decisions: 10 

In both fast-decision and fast-movement blocks, decisions relied more strongly on 11 

information presented shortly rather than long before movement onset. Taken together, these 12 

findings suggest that decisions not only impact movement characteristics, but that properties 13 

of movement impact the time and manner with which decisions are made. We interpret these 14 

behavioral results in the context of embodied decision-making, whereby shared neural 15 

mechanisms may not only enable faster movements but also assist in making decisions in less 16 

time. 17 

Key words: embodied choice, urgency, capture rate, speed-accuracy tradeoff, finger 18 

tapping, time pressure   19 
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Introduction 1 

When animals hunt, they may have to decide quickly whether turning left or right allows 2 

cutting into their prey’s path, before putting this plan into action. Traditional views have 3 

understood this sensorimotor process as consisting of at least two functionally distinct brain 4 

processes (e.g. Ratcliff & McKoon, 2008; Sternberg, 1969): ‘Deciding’ regards the 5 

comparison and selection between expected outcomes based on sensory information, whereas 6 

‘moving’ reflects the interaction with the environment to achieve the favored outcome. These 7 

two processes have been associated with different brain structures (Farrar et al., 2018 8 

Welniarz et al., 2022) and different neurophysiological signatures (Desender et al., 2021; 9 

Kelly & O’Connell, 2015; Wessel, 2020). Perhaps as a result of this predominant view, 10 

research on decision-making and movement specification have been covered by different 11 

scientific ‘disciplines’ (Cisek & Pastor-Bernier, 2014), leaving a blind spot on the interplay 12 

of both aspects of sensorimotor processing. 13 

 However, over the course of the past ten years or so, increased interest in the 14 

interaction between decisions and movements has generated findings which challenge the 15 

view that these processes operate independently. For instance, properties of decisions such as 16 

reward expectancy (Klein-Flügge & Bestmann, 2012; Shadmehr et al., 2019), choice 17 

preference (Calderon et al., 2018; de Lange et al., 2013; Klein et al., 2012), conflict 18 

anticipation (Derosiere et al., 2018; Duque et al., 2016) and time pressure (Derosiere et al., 19 

2021; Kelly et al., 2021; Murphy et al., 2016; Steinemann et al., 2018) systematically change 20 

activity in motor areas of the brain, and alter kinematics of movements expressing those 21 

decisions (Freeman, 2018; Shadmehr et al., 2019; Spieser et al., 2017; Thura, 2020). 22 

Likewise, kinematic properties of movements such as required time (Burk et al., 2014; 23 

Reynaud et al., 2020) and energetic costs (Hagura et al., 2017; Marcos et al., 2015; Morel et 24 

al., 2017) are factored into decisions. Taken together, these findings challenge the view that 25 
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decisions and movements pose fully functionally distinct aspects of sensorimotor processing 1 

(Barsalou, 2008).   2 

 Such interplay may reflect adjustments concerning both decisions and movements in 3 

order to increase the net payoff of behavior. For example, biomechanical costs of movement 4 

may be weighed against its expected outcome in order to justify its effort expenditure (Cos et 5 

al., 2014; Morel et al., 2017; Shadmehr et al., 2016). Similarly, under time pressure, reducing 6 

both the time to decide and to move shortens the overall time required to respond (Spieser et 7 

al., 2017). Taken together, animals, including humans, likely aim to maximize ‘capture rate’ 8 

(Reynaud et al., 2020; Shadmehr et al., 2019; Thura, 2020; Yoon et al., 2018) by minimizing 9 

time and effort required to obtain reward, leading to adaptations concerning both decisions 10 

and movements.  11 

 If animal behavior in terms of decisions and movements serves a common function to 12 

secure capture rate and hence survival, then a close consensus between decisions and 13 

movements may be naturally promoted by the organization of the sensorimotor system 14 

(Cisek, 2019). In other words, decisions and movements may not be fully functionally 15 

distinct brain processes, as they serve a common function and hence likely rely on shared 16 

brain circuity through evolution. As such, movements may be considered expressed or 17 

embodied decisions in that they establish preferred outcomes through interaction with the 18 

environment. From this theoretical perspective, termed embodied decision-making, a gradual 19 

shift in functionality exists between anatomically distinct brain areas, transforming abstract-20 

decisional considerations of future consequences to their concrete implementation through 21 

movement (Cisek & Pastor-Bernier, 2014; Lepora & Pezzulo, 2015; Wispinski et al., 2020; 22 

Yoo & Hayden, 2018). The key difference to more traditional viewpoints is the 23 

acknowledgement of reciprocal, continuous and interactive communication between brain 24 

areas associated with decisional and motor processes (Wispinski et al., 2020), leading to a 25 
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distributed consensus about the preferred course of action, reflecting both abstract decisional 1 

considerations of future consequences and concrete motor requirements for the 2 

implementation of the response (Yoo & Hayden, 2018). As such, embodied decision-making 3 

accounts predict a close functional relationship between decisions and movements, whereby 4 

movement kinematics depend on decisional information and the integration of information 5 

into decisions is fundamentally constrained by movement requirements.  6 

 It was the goal of this study to seek behavioral evidence for embodied decision-7 

making, which has remained largely theoretical despite of its appeal. Although previous 8 

studies in this regard largely demonstrated how decisions and (preparation of) movements 9 

change under time pressure (Jaśkowski et al., 2000; Kelly et al., 2021; Murphy et al., 2016; 10 

Pastötter et al., 2012; Spieser et al., 2017, 2018; Steinemann et al., 2018; Thura, 2020), the 11 

nature of these tasks actively promoted a joint reduction of time taken to decide and move, to 12 

reduce overall response times. However, from an embodied decision-making perspective a 13 

mutual dependence of decisions and movements may reflect an inherent property of the 14 

sensorimotor system. It should therefore be observable even if there is no task incentive 15 

linking decisions and movements. Likewise, it implies that such interdependence sustains 16 

even when time pressure is limited towards either decisions or movements, rather than 17 

towards both at the same time as in previous studies. 18 

With a behavioral online study run on 62 participants, we tested four predictions 19 

grounded in the embodied decision-making framework. As a first hypothesis, people should 20 

tend to move quicker if they have less time to decide, even if such behavior is not required, 21 

nor advantageous. As a second hypothesis, conversely, people should tend to decide faster as 22 

they need to perform faster movements, again even if not profitable. Third and fourth 23 

predictions were derived from the idea that embodied decisions emerge from a distributed 24 

consensus between decisional and movement concerns (Cisek, 2012; Yoo & Hayden, 2018). 25 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.478832doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478832
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

Such consensus implies that the preparation to move may be seen as gradual commitment 1 

towards a decision, as readiness to initiate movement may increase costs of revoking 2 

movement and hence changing the decision (Lepora & Pezzulo, 2015). Therefore, it was our 3 

third prediction that decisions should rely more on earlier information as compared to 4 

information presented shortly before movement onset. This is conceptually similar to findings 5 

showing that committing to a decision reduces sensitivity towards subsequent information 6 

(Bronfman et al., 2015; Talluri et al., 2021), however preparation of movement itself should 7 

reflect such gradual commitment. As a final fourth prediction, such primacy effect with which 8 

novel information is integrated into decisions should be strongest when high motor control is 9 

required, such as when performing fast as compared to slow tapping (Jäncke, Peters, et al., 10 

1998; Jäncke, Specht, et al., 1998; Lutz et al., 2004). This is because costs of revoking 11 

movement and hence changing the decision should increase under high motor control (Burk 12 

et al., 2014), leading to less consideration of later information for embodied decisions. 13 

Especially this fourth hypothesis allows a strong test for embodied decision-making, as it 14 

predicts that people arrive differently at their decisions based on the movement required to 15 

express those.   16 

In summary, we sought evidence for embodied decision-making by testing that a) the 17 

time taken to decide and move constrain each other even if not adaptive in the context of the 18 

task and b) integration of information into decisions over time is constrained by the 19 

movement required to express those decisions. We found such evidence by imposing time 20 

constraints either to decision phases or movement phases of a sensorimotor task. Participants 21 

indeed reduced both the time to decide and to move although time constraints regarded only 22 

either decisions or movements. Remarkably, most participants who displayed larger 23 

instructed time savings in either decision or movement duration also speeded up 24 

corresponding movements or decisions more, respectively, although not profitable in this 25 
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task. Furthermore, the influence of novel information on ongoing decisions fundamentally 1 

depended on the timing relative to the motor response: Contrary to our expectations and 2 

likely driven by task design, novel information presented shortly before movement initiation 3 

was taken into account more than earlier information. This recency effect was however 4 

accentuated when participants performed faster movements, providing strong evidence that 5 

movement characteristics affect decision-making. Taken together, these findings support the 6 

idea that decisions and movements are not fully functionally distinct brain processes, but 7 

condition each other even when not required in the context of the task.  8 

 9 
Figure 1. Trial structure. After some time of fixation, baby bananas moved symmetrically 10 
into position below the fixation circle, telegraphing the onset of the decision phase. The latter 11 

was characterized by asymmetrical growth of bananas, during which participants had to 12 
indicate which banana would outgrow the other with a key press. After this decision, the 13 
same key had to be pressed four more times in the movement phase to move a caterpillar into 14 
the corresponding direction. Here, the required tapping speed depended on the experimental 15 
condition: Fast-tapping blocks required participants to tap fast to avoid a chasing snake, 16 

whereas slow-tapping blocks required slow tapping to avoid a retreating snake. In contrast, 17 
fast-decision and slow-decision conditions had no specific finger tapping speed requirements 18 

but required to put the emphasis on either decision speed or accuracy, respectively. In the 19 
post-decision phase, bananas finished their growth trajectories until a full circle was covered. 20 
Here, bananas grew at same speed as in the decision phase, with the exception of the fast-21 
decision condition, during which bananas grew four times faster. Afterwards, decision 22 
feedback was given by highlighting the chosen banana either in green (correct) or red 23 

(incorrect). A final intertrial interval preceded the next trial. Blue arrows depict movement 24 
trajectories of the stimuli, with thicker and longer arrows reflecting faster movement. Blue 25 
arrows are shown for illustrative purposes and were not visible to participants. Symbols were 26 
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shown in the upper right corner of the screen (indicated by asterisks), as constant reminder of 1 

one of the four experimental block conditions. ‘s’ = seconds, ‘RT’ = reaction time.  2 
 3 

Results 4 

Sixty-two participants performed two separate sessions of a behavioral online 5 

experiment from home. We administered an adaptation of the Tokens task, which has been 6 

widely used to investigate the effect of time pressure on sensorimotor processes in humans 7 

(Cisek et al., 2009; Derosiere et al., 2019; Reynaud et al., 2020; Lunazzi et al., 2021; Thura, 8 

2020). Each trial consisted of a dedicated decision and movement phase in order to measure 9 

the time participants would allocate to deciding and moving (see Figure 1). In the decision 10 

phase, participants decided which one of two bananas would outgrow the other; both grew at 11 

a non-constant speed over time. Their decision had to be indicated by a left- or rightward key 12 

press, which initiated the subsequent movement phase. Here, participants continued tapping 13 

this key to move a caterpillar upwards. The caterpillar moved faster with faster key tapping. 14 

This basic task template was modified in a ‘decision session’ to encourage fast or slow 15 

decisions in separate blocks, with no constraints on tapping speed. In a separate ‘movement 16 

session’, fast or slow finger tapping was required, with no restrictions on decision speed. 17 

Comparing finger tapping speed in the movement phase between blocks of fast and slow 18 

decisions and comparing decision duration in the decision phase between blocks of fast and 19 

slow tapping allowed to test the hypothesis that the duration of decisions and movements 20 

impact each other, even if not profitable in the context of the task.  21 

When participants are required to decide faster, they also move faster 22 

Participants followed the instructions consistently and adjusted their decision duration 23 

in fast and slow decision-blocks. As seen in Figure 2A, participants took about 672 ms (95%-24 

Confidence Interval [95%-CI]: 585-733 ms) less to decide which banana to choose in fast-25 

decision (median = 1057 ms, Median Absolute Deviation [MAD] = 385 ms) as compared to 26 

slow-decision blocks (median = 1767 ms, MAD = 345 ms, S = 2, p < 10-13). This came at the  27 
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 1 
Figure 2. Behavioral results. The upper graphs (A-C) depict data for the decision session; 2 
three lower graphs (D-F) are for the movement session. A) As instructed, participants 3 
changed their decision duration between blocks in the decision session. B) Although not 4 

profitable in the context of the task, participants tapped faster in fast-decision blocks as 5 
compared to slow-decision blocks. C) There was a linear relationship between the instructed 6 

change in decision duration and the resulting change in tap duration across participants. This 7 
linear relationship was significant both when considering the entire sample (red line), as well 8 

as the sample after removing outliers (red data points and black line, gray area reflects 95%-9 
CI). D) Although not profitable in the context of the task, participants decided faster in fast-10 

tapping blocks as compared to slow-tapping blocks. E) As instructed, participants changed 11 
their tap duration between blocks in the movement session. F) There was no linear 12 
relationship between the instructed change in tap duration and the resulting change in 13 

decision duration across participants when considering the whole sample (red line). However, 14 
there was a significant relationship after removing outliers (red data points and black line). A, 15 

B, D, E) Individual data is shown as colored points connected by a line, with blue data 16 
indicating individuals with numerically lower values in fast as compared to slow decision or 17 
movement blocks and orange indicating the opposite. Dashed histograms indicate the 18 

distribution of data points for each condition. Solid histograms reflect the same distributions 19 
after centering subjects around the group mean to remove between-subjects variance 20 

unrelated to the experimental manipulation (Cousineau, 2005). The average effect on the 21 

group level is shown by plotting the mean (black horizontal lines), connected by a black line. 22 

Black bars around the mean reflect its within-subject 95% confidence interval (Cousineau, 23 
2005). The group median of each condition is shown as circle. 24 
 25 

price of reducing probability of making the correct decision by 16% (95%-CI: 13-19%) from 26 

a median of 84% (MAD = 6%) in slow-decision to 66% (MAD = 8%) in fast-decision blocks 27 
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(S = 4, p < 10-11), reflecting a shift in speed-accuracy tradeoff (see Supplemental Figure 1 

S3A). As a consequence, there was a reduction in the proportion of correct decisions by 14% 2 

(95%-CI: 10-19%) from slow-decision (median = 91%, MAD = 3%) to fast-decision blocks 3 

(median = 76%, MAD = 13%, S = 5, p < 10-10, see Supplemental Figure S3B).  4 

As predicted, this reduction in decision duration came with increased tapping speed in 5 

the movement phase following the decision (see Figure 2B). The average duration of the four 6 

individual key taps was reduced by circa 16 ms (95%-CI: 12-20 ms) from slow-decision 7 

(median = 186 ms, MAD = 27 ms) to fast-decision blocks (median = 174 ms, MAD = 26 ms, 8 

S = 1, p < 10-15). This experimental effect was significant for each of the four finger taps in 9 

the movement phase (all p’s < 10-9, see Supplemental Figure S4A). Post hoc comparisons did 10 

not indicate that this experimental effect was larger for earlier finger taps (all p’s ≥ .44), 11 

although there was a significant BLOCK TYPE x TAP NUMBER interaction (F(2.29, 130.80) = 12 

10.15, p < 10-4 and η2
p= .15, see Figure S4A) in a repeated-measures ANOVA. Similar 13 

results were obtained for this ANOVA after removing extreme values lying three median 14 

absolute deviations (MADs) outside the group median to test for robustness of these findings. 15 

Remarkably, Figure 2C shows that those participants with the largest reduction in decision 16 

duration were also those who increased tapping speed the most between slow and fast 17 

decision-blocks (t = 4.34, p < 10-4 and r = .50). A similar linear relationship was observed 18 

after removing six influential values from this analysis (i.e. those with a Cook’s Distance 19 

three times larger than the mean, red dots in Figure 2C; t = 5.07, p < 10-5 and r = .58). 20 

Virtually all finger taps in the movement phase of fast-decision (median = 100%, MAD = 21 

0%) and slow-decision (median = 100%, MAD = 0%) blocks were performed correctly, with 22 

no difference between blocks (S = 6, p > .99, see Supplemental Figure S3C). 23 

 The interpretation that participants tapped faster when fast decisions were required 24 

was substantiated by fitting behavior to drift diffusion models. These models assume that 25 
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reaction times reflect the duration of the sensorimotor process covering sensation, decision-1 

making and response execution. By fitting different candidate models to behavior, it can be 2 

determined which aspects of this sensorimotor process most likely differed between 3 

experimental conditions. A model, which allowed the decision threshold, non-decision time 4 

and drift rate to differ between experimental conditions, described behavior best (see Table 5 

S2). The decision threshold (as proxy for changes in decision duration due to shifts in speed-6 

accuracy tradeoff) was significantly lower in fast-decision blocks than in slow-decision 7 

blocks (Probability > 99.975%, i.e. exceeding 3999 out of 4000 posterior samples). Critically, 8 

the non-decision time (as proxy for sensorimotor delays related to initiating and executing the 9 

first key press) was also significantly reduced (Probability > 99.975%, see Table 1). 10 

Although not expected, the drift rate (as proxy for the efficiency with which a correct 11 

decision can be made) was also lowered (Probability > 99.975%), indicating that choosing 12 

under time pressure let to worse decision performance beyond deliberate shifts in speed-13 

accuracy tradeoff (cf. Rae et al., 2014). 14 

Table 1. 15 

  16 
Estimated drift diffusion model parameters per experimental condition. 17 

 decision threshold (a) non-decision time (t) drift rate (v) 

 mean CI mean CI mean CI 

slow decision 

(intercept) 
3.17 

3.02 

3.34 
0.73 

0.65 

0.82 
0.97 

0.90 

1.04 

       

fast decision 

(difference) 
-1.04 

-1.22 

-0.85 
-0.35 

-0.44 

-0.25 
-0.42 

-0.49 

-0.34 

       

slow tapping 

(intercept) 
2.87 

2.73 

3.01 
0.80 

0.72 

0.89 

0.91 
0.85 

0.98 
     

fast tapping 

(difference) 
-0.11 

-0.21 

-0.01 
-0.05 

-0.11 

0.01 

Note. Parameter values are based on group posteriors of the best-fitting drift diffusion models 18 
of each session. Credible intervals (CI) cover 2.5% and 97.5% percentiles of the respective 19 

posterior distribution. To estimate within-subject effects, an intercept was fitted to the slow 20 
condition and the difference thereof was fitted to the fast condition of the respective session. 21 
For the movement session, only one drift rate was fitted for both experimental conditions, as 22 
this provided better model fit than the full model (see Table S2).  23 
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When participants are required to move faster, they also decide faster 1 

 As shown in Figure 2E, participants also followed the instructions consistently in the 2 

movement session. Average duration of each of the four key taps in the movement phase was 3 

circa 111 ms faster (95%-CI: 104-125 ms) when fast tapping (median = 146 ms, MAD = 22 4 

ms) was required as compared to slow tapping (median = 263 ms, MAD = 45 ms, S = 0, p < 5 

10-17). Each single finger tap was consistently faster when fast tapping was required as 6 

compared to slow tapping (all p < 10-16). However the first finger tap of the movement phase 7 

was speeded up the most from slow to fast tapping-blocks (all p < 10-7 as compared to 8 

subsequent taps), as well as the second tap being sped up more than the last (p = .04, with no 9 

other significant comparisons), as indicated by a BLOCK TYPE and TAP NUMBER interaction 10 

(F(1.22, 70.93) = 36.71, p < 10-8 and η2
p = .39, see Supplemental Figure S4B). Similar results 11 

were obtained after removing extreme values to test for robustness. Hence, the experimental 12 

manipulation was effective in shifting tapping speed of participants between blocks. The 13 

proportion of trials in which participants performed tapping movements correctly was high, 14 

however it was significantly lower in fast-tapping (median = 93%, MAD = 4%) as compared 15 

to slow-tapping blocks (median = 100%, MAD = 0%, S = 1, p < 10-15, see Figure S3F), 16 

consistent with the higher motor control requirement associated with the former condition. 17 

 We then tested the hypothesis that decision duration changes with tapping speed. As 18 

predicted and shown in Figure 2D, decisions were circa 73 ms (95%-CI: 35-98 ms) faster in 19 

fast-tapping blocks (median = 1502 ms, MAD = 296 ms) as compared to slow-tapping blocks 20 

(median = 1579 ms, MAD = 296 ms, S = 13, p < 10-4). The probability of making a correct 21 

decision was however not significantly different between slow-tapping blocks (median = 22 

80%, MAD = 7%) and fast-tapping blocks (median = 79%, MAD = 7%, S = 24, p = .19, see 23 

Supplemental Figure S3D). Likewise, this did not result in a change in the proportion of 24 

correct decisions from slow-tapping (median = 90%, MAD= 4%) to fast-tapping blocks 25 
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(median = 90%, MAD = 4%, S = 26, p = .43, see Supplemental Figure S3E). Across all 1 

participants, we did not find that those reducing decision duration the most, where also those 2 

who speeded up tapping the most between blocks (see Figure 2F; t = 1.78, p = .08 and r = 3 

.23). However, such linear relationship was present after removing two influential values 4 

based on Cook’s Distance (red dots in Figure 2F; t = 2.69, p < .01 and r = .34). This suggests 5 

that faster tapping is preceded by proportionally faster decisions in most, but not all 6 

participants.  7 

 Drift diffusion modelling corroborated the interpretation that requirements to tap fast 8 

shortened decisions: That is, out of five candidate models, the hypothesized model fit 9 

behavioral data best. This model allowed the decision threshold and the non-decision time to 10 

differ between experimental conditions (see Table S2). The decision threshold was 11 

significantly reduced in fast-tapping blocks (Probability = 98.30%), supporting the 12 

interpretation that movement requirements reduced the time taken to decide. The reduction in 13 

non-decision time did not reach conventional levels of significance (Probability = 95.60%), 14 

potentially since experimental constraints on tapping speed regarded the movement phase, 15 

but not the first tap during the decision phase (visualized as chasing or retreating snakes, see 16 

Figure 1), which was modelled.   17 

Experimental conditions influence how people arrive at their decisions over time 18 

In line with embodied decision-making, we expected gradual commitment to a 19 

decision as corresponding movement is progressively prepared (Yoo & Hayden, 2018). 20 

Therefore, decisions should rely more on earlier evidence than evidence presented shortly 21 

before the movement. To test this, we computed temporal weighting profiles (see Figure 3). 22 

These show in how far participants’ decisions can be predicted by decisional information, 23 

depending on when in time this information is shown. Negative slopes of these profiles 24 

suggest that participants prioritized earlier over later information, i.e. a primacy effect. A 25 
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positive slope suggests a recency effect, i.e. the opposite. In contrast to the hypothesized 1 

primacy effect, we found a significant recency effect in all experimental conditions (all p’s < 2 

10-15). Indeed, visual inspection of Figure 3 suggests that decisional information had the 3 

strongest influence on the participants’ decisions when presented between 400 and 100 ms 4 

before the estimated onset of the first finger tap. 5 

We also hypothesized that conditions with faster movements, i.e. fast-decision and 6 

fast-tapping blocks, should be associated with a stronger prioritization of earlier information. 7 

Also contrary to that prediction, there was an even stronger recency effect in fast decision (S 8 

= 47, p < 10-5) and tapping blocks (t = 4.33, p < 10-4). Critically, these findings remained 9 

significant after matching experimental blocks in decision and movement -sessions in 10 

decision duration by a subsampling procedure (see Figure 3B and Materials and Methods): 11 

Also in this control analysis there was a stronger recency effect in fast-decision (t = 7.75, p < 12 

10-9) and fast-tapping blocks (S = 39, p = .02). This attests that experimental conditions took 13 

influence how participants arrived at their decisions, beyond mere changes in decision 14 

duration. Furthermore, these differences in temporal weighting profiles remain significant 15 

across a wide range of ‘settings’ for deriving these profiles, highlighting the robustness of 16 

these findings (see Supplemental Material). In sum, although unexpected, results are 17 

consistent with the idea that movement characteristics alter decision making in a similar 18 

fashion as shifts in decisional speed-accuracy tradeoff do.  19 

Discussion 20 

 Embodied decision-making is a perspective which assumes an inherent functional 21 

interdependency between deciding amongst different realizable events and preparing 22 

movements corresponding to their implementation (Cisek & Pastor-Bernier, 2014; Wispinski 23 

et al., 2020; Yoo & Hayden, 2018). Our findings are in support of such interdependency with 24 

regards to the pace with which decisions and movements are completed. Faster as compared 25 
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 1 
Figure 3. Temporal weighting profiles. Participants prioritized recent over earlier evidence 2 
when making their decisions (i.e. a recency effect), and more so when either fast decisions or 3 
fast tapping was required. Left and right columns show data from the decision session and 4 

movement session, respectively. The upper row shows the main results and the lower row 5 
shows a control analysis with matched decision durations between experimental conditions of 6 
the same session. Respective left larger line graphs show how the correlation between 7 

momentary evidence and participants’ decisions (y-axis) changes as a function of the time (x-8 
axis, in milliseconds) relative to the estimated onset of the first finger tap (dashed vertical 9 

line, i.e. ‘response-locked’). Green lines reflect temporal weighting profiles in either slow-10 
decision blocks (left column) or slow-tapping blocks (right column), whereas purple lines 11 
reflect either fast-decision blocks (left column) or fast-tapping blocks (right column). Line 12 

graphs depict grand averages across participants, with lighter colors depicting 95%- 13 

confidence intervals. Vertical colored solid lines represent the expected onset of the decision 14 
(phase) per experimental condition, computed as negative average median decision duration 15 
across participants. In the lower row, these vertical lines are overlapping, since decision 16 
durations were matched between experimental conditions (see Materials and Methods). 17 

Statistical tests were conducted on the basis of individual slopes of temporal weighting 18 
profiles, which are shown as smaller graphs on the respective right side. Individual slopes 19 
were extracted from the interval of negative median decision duration (estimated decision 20 
onset) to 0 (estimated decision offset). For individual slopes, red lines depict participants with 21 
a numerically stronger recency effect in fast (decision or tapping) blocks as compared to slow 22 

blocks, whereas blue lines depict participants with the opposite effect. 23 
 24 
to slower decisions were followed by faster finger tapping movements, even if such behavior 25 

was not encouraged, nor adaptive in the context of the task. Likewise, faster as compared to 26 

slower tapping induced faster decision-making, which cannot be easily reconciled with 27 

strategic considerations. Furthermore, inflicting faster tapping seems to alter decision-making 28 

in a similar fashion as conditions favoring faster decisions: In both fast-tapping and fast-29 

decision blocks, decisions relied more strongly on information presented shortly rather than 30 
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long before movement onset. Taken together, these findings suggest that decisions not only 1 

determine movement characteristics, but that properties of movement constrain the time and 2 

manner with which decisions are made.   3 

 Previous studies suggest that decisions and movements are co-regulated to increase 4 

capture rate, which declines with the average time and effort required to obtain reward 5 

(Shadmehr et al., 2019). It is plausible that such coregulation is inherent to the sensorimotor 6 

system, and therefore not limited to contexts explicitly promoting such behavior. To address 7 

this hypothesis, in the present study coregulating decisions and movements was not effective 8 

to alter capture rate: Tapping speed in the movement phase did not change the pacing of a 9 

trial, nor did the duration of the decision phase, with the exception of fast-decision blocks, to 10 

encourage faster decisions. Hence, it was not adaptive in terms of capture rate to speed up 11 

decisions or finger tapping, unless this was explicitly instructed. Importantly, we did not find 12 

that understanding of these instructions modulated the experimental effect (see Supplemental 13 

Material). Moreover, tapping faster after faster decisions, as observed in the decision session, 14 

did not allow to increase the amount of momentary reward earned, as a timeout of three 15 

seconds in the movement phase ensured that the tapping sequence was virtually always 16 

completed on time (and hence rewarded). Likewise, deciding faster before fast finger tapping, 17 

as observed in the movement session, did not allow to increase the amount of momentary 18 

reward neither, as faster decisions could not increase probability of success. Finally, changes 19 

in effort allocation likely cannot account for these findings neither. As such, one may assume 20 

that faster, more effortful finger tapping (Arias et al., 2015; Jäncke et al., 2006; Lutz et al., 21 

2004) was compensated by performing shorter, less effortful decisions (Petitet et al., 2021), 22 

and vice versa, explaining the findings in both sessions. However, by nature of the task late 23 

decisions benefitted from more conclusive information than early information, which was 24 

intentionally held ambiguous or even misleading, to prevent participants from deciding too 25 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.478832doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478832
http://creativecommons.org/licenses/by-nc/4.0/


17 
 

quickly (see Materials and Methods). In line with this, drift rate was significantly reduced in 1 

fast-decision blocks as compared to slow-decision blocks, suggesting that deciding with 2 

limited evidence and under time pressure may have been more difficult, and hence more 3 

effortful, rather than less effortful. In addition, a recent study explicitly tested in a related task 4 

whether movement effort is compensated by shortening decision duration, finding no such 5 

effect with 31 participants (Lunazzi et al., 2021). Given these considerations, we interpret 6 

current findings as reflecting inherent properties of the sensorimotor system rather than 7 

strategic adaptations with changing task contexts.  8 

 If not strategically advantageous, why did the pacing of decisions and movements 9 

condition each other? Several brain areas have been proposed, which may take common 10 

influence on decision making and movement control. Subcortical structures, specifically the 11 

basal ganglia (Forstmann et al., 2008; Herz et al., 2016; Thura & Cisek, 2017) and the locus 12 

coeruleus-noradrenergic system (Hauser et al., 2018; Murphy et al., 2016; Steinemann et al., 13 

2018), may broadly regulate activity of cortical sensorimotor areas when time pressure is 14 

high. The core idea of these proposals is that neural activity in sensorimotor cortex 15 

accumulates towards commitment for a certain motor response (Kelly et al., 2021; Murphy et 16 

al., 2016; Steinemann et al., 2018; Thura & Cisek, 2016). Under time pressure, these 17 

subcortical areas may upregulate neural activity in cortical structures so that such decisional 18 

commitment occurs earlier. On the level of cortical premotor and motor areas, such global 19 

change in neural activity can be observed as broad disinhibition of the motor system: Beta 20 

and mu power, electrophysiological markers of inhibitory control over sensorimotor sites, are 21 

reduced when participants are required to report decisions fast through movement (Kelly et 22 

al., 2021; Murphy et al., 2016; Pastötter et al., 2012; Steinemann et al., 2018). Likewise, 23 

stronger motor disinhibition at corresponding sensorimotor sites is associated with faster 24 

response times (Little et al., 2019; Meziane et al., 2015; Wessel, 2020) and higher movement 25 
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velocity (Chen et al., 2007, 2011; Pogosyan et al., 2009; Torrecillos et al., 2018; but see Tatti 1 

et al., 2019). Such motor disinhibition may therefore reflect an increased tendency to execute 2 

a movement, and hence to report a decision, thereby reducing the time available to decide. 3 

Taken together, we propose that subcortical structures, such as basal ganglia or the 4 

noradrenergic system may regulate broad changes in neural activity of the sensorimotor 5 

cortex when fast action is required, reducing the time taken to decide and to move in a joint 6 

fashion. Future studies may turn to electrophysiological correlates of decisions (see Kelly & 7 

O’Connell, 2015) and movements (see Wessel, 2020), to further insight on the cortical 8 

mechanisms acting on the level of both decisional and movement control. 9 

 Such interpretation of a global signal originating from subcortical areas, controlling 10 

the urgency with which both decisions and movements are made, is in line with our findings 11 

on temporal weighting profiles. Participants prioritized recent over earlier information when 12 

making their decisions. This recency effect in the temporal weighting of information was 13 

enhanced in conditions favoring either fast decisions or fast tapping, suggesting that time 14 

pressure on either aspect of the task had a comparable effect on decision-making. These 15 

findings are conceptually in line with abovementioned proposals that cortical activity 16 

representing decisional evidence is dynamically amplified by subcortical projections, in order 17 

to allow to reach decisional commitment faster when the response deadline is approaching 18 

and time pressure to respond is high (Cisek et al., 2009; Thura, 2020; Thura et al., 2012). Our 19 

findings suggest that both faster decision-making, as well as faster tapping movements, may 20 

have induced such pronounced dynamic amplification, leading to an increased reliance on 21 

decisional information as the onset of movement approaches.  22 

 These findings on temporal weighting profiles provide strong evidence that not only 23 

the decision policy, but also movement characteristics such as tapping speed, constrain how 24 

people arrive at their decisions with time. However, we initially predicted a stronger primacy 25 
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effect when fast decisions or tapping were required, i.e. the opposite of what we observed. 1 

Two aspects may account for these unexpected results. First, the task design itself may have 2 

promoted a recency effect: By nature of the task, later information was more indicative of the 3 

correct decision than earlier information, since less screen refreshes remained which could 4 

sway the trial outcome. In addition, early information was held more ambiguous to prevent 5 

participants from deciding too early (see Materials and Methods). As prioritizing late over 6 

earlier information was more advantageous in our task, participants likely adapted this 7 

behavior (Levi et al., 2018). Secondly, we predicted a stronger primacy effect in conditions 8 

promoting faster finger tapping, since increased costs of motor control should lead to a 9 

stronger gradual commitment towards a singular response. It remains possible, however, that 10 

the tendency to tap faster made it instead necessary to prepare both movements equivalently, 11 

so that either one could be executed effectively after the decision (Haith et al., 2016). From 12 

this perspective, increased motor demands may have called for less, rather than more, 13 

response selectivity. Indeed, some studies suggest that unchosen responses are prepared more 14 

when deciding and moving under time pressure, suggesting less selectivity of preparing a 15 

singular motor response (Murphy et al., 2016; Steinemann et al., 2018). In short, subcortical 16 

networks may instigate higher activity in cortical (pre-)motor areas allowing faster 17 

commitment to either response, leading to less response selectivity and ensuring that either 18 

response can be executed swiftly. This would leave greater flexibility in selecting the 19 

appropriate movement based on late decisional information, i.e. causing a stronger recency 20 

effect. However, more research is needed on this matter, as two other studies reported no 21 

change in excitability of unchosen motor representations across urgency contexts (Derosiere 22 

et al., 2021; Spieser et al., 2018). 23 

 At first glance, our findings seem to be at odds with results of Reynaud and 24 

colleagues (2020), who also investigated how movement duration affects decision-making. In 25 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.478832doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478832
http://creativecommons.org/licenses/by-nc/4.0/


20 
 

contrast to our findings, faster as compared to slower movements were associated with longer 1 

decisions (see also Lunazzi et al., 2021). However, in their task 160 correct decisions 2 

completed an experimental block, and faster movements allowed to finish trials faster. Hence, 3 

performing slow, accurate decisions and fast movements posed the best strategy to finish 4 

early. As such, trials requiring fast movement may have allowed to invest relatively more 5 

time in deciding accurately. This was critically different from our experiment where tap 6 

duration did not change trial length and where experimental blocks had a fixed duration, 7 

independent of performance. As a result, in our study it was not advantageous to trade off 8 

decisions and movements, likely leading to the observed coherence of these sensorimotor 9 

processes. Bridging findings of both studies, properties of the sensorimotor system may 10 

promote a natural matching of the pace of decisions and movements, but contrary policies 11 

may be implemented if advantageous in the task context. 12 

A perspective of embodied decision-making argues against a strictly sequential 13 

relationship of decisions and movements. Hence, it is somewhat a caveat that our data 14 

analysis was based on approaches assuming that reaction times reflect the additive sum of 15 

sensorimotor delays attributable to decisions and movements. Such assumption was made 16 

when subtracting simple reaction times from reaction times to isolate decision durations (see 17 

Materials and Methods), as well as when fitting reaction times to drift diffusion models. Yet, 18 

we chose to adopt such an approach to ensure that faster decisions in fast-tapping blocks 19 

could not be attributed to shorter motor delays. A mathematical formalization of behavior 20 

from an embodied decision-making perspective is still in its infancy (e.g. Lepora & Pezzulo, 21 

2015), which will be required in the future to provide an alternative view on sensorimotor 22 

behavior. 23 

Conclusion 24 
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 Our results demonstrate an interplay between decisional and motor processes. 1 

Movement characteristics not only depended on properties of decisions preceding them, but 2 

surprisingly, they also took distinct influence on when and how people arrived at their 3 

decisions. We interpret these behavioral results in the context of embodied decision-making, 4 

whereby shared neural mechanisms may not only enable faster movements but also assist in 5 

making decisions in less time. These findings open interesting new perspectives for future 6 

research, which may allow to reconceptualize sensorimotor processes and their associated 7 

brain regions as a functional gradient ranging from simulating potential action outcomes 8 

based on environmental information to establishing preferred action outcomes in the 9 

environment through movement.  10 

Materials and Methods 11 

Participants 12 

The final dataset consisted of 62 right-handed participants (15 male) between 18 and 13 

34 years old (M = 23.69, SD = 3.29), which were recruited on Facebook in groups for paid 14 

participation in academic research at Belgian universities. They affirmed to have normal or 15 

corrected-to-normal vision, no colorblindness, no history of neurological, psychiatric or 16 

mental disorders and no physical injuries or disabilities. Participants were asked to perform 17 

two sessions of the experiment circa seven days apart, of which one was the decision session 18 

and the other the movement session. Data from both sessions was available for 55 out of 62 19 

participants, which were conducted 7.22 days apart on average (Range = 5 - 14 days, SD = 20 

1.08). In the cases data was not available for one session (7 participants), the causes were due 21 

to early termination of the session, an interruption of the internet connection, a refresh rate of 22 

the computer monitor lower than 60 Hz or poor behavioral performance leading to the 23 

exclusion of more than 50 % of the trials (see Data analysis). In sum, data was available for 24 

58 decision sessions (30 as second session) and 59 movement sessions (29 as second 25 
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session). This was in line with the goal to reach 60 participants per session, in order to detect 1 

small-to-medium effect sizes (dz ≥ 0.37) in paired-samples t-tests, and small-to-medium 2 

correlations (r ≥ 0.25) with 80 % power. Apart from these 62 participants in the final dataset, 3 

eight more participants started at least one session, but were excluded due to similar reasons 4 

as stated above.  5 

Paid 10 Euro per hour, participants received 25 Euro for circa 2.5 hours split into two 6 

experimental sessions, plus a performance-dependent bonus (see Experimental task), which 7 

was circa 5 Euro. The protocol was approved by the institutional review board of the Catholic 8 

University of Louvain, Brussels, Belgium, and was in compliance with the principles of the 9 

Declaration of Helsinki. Written, informed consent was given by emailing photographed and 10 

hand-signed consent forms to the experimenter.  11 

Experimental task 12 

 As seen in Figure 1, a trial started with a light gray fixation dot on a dark gray 13 

background, shown for 100-500 ms. In the subsequent pre-decision phase, two ‘baby 14 

bananas’ appeared on the left and right of the fixation dot at a 30-degree angle and covered a 15 

circular track of 60 degrees, crossing each other, to arrive centrally below the fixation dot, 16 

separated by a horizontal gap. With a fixed duration of 1000 ms, this pre-decision phase 17 

telegraphed the onset of the decision phase. In this next phase, bananas grew progressively, 18 

with their tips following a circular track around the fixation dot, whereas their ends remained 19 

in place. With every refresh of the screen, i.e. at a rate of 60 Hz, pseudo-randomly either the 20 

left or right banana was extended by 2 degrees, creating the illusion of continuous growth at a 21 

non-constant speed. If uninterrupted by the participant’s response, the bananas kept growing 22 

for 179 frames or 2983 ms (hereafter: 3000 ms) to cover 358 degrees around the fixation dot. 23 

An uneven number of frames ensured that one banana was always longer by the end of a trial. 24 

Participants had to select the anticipated longer banana before the end of the decision phase 25 
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by pressing the S-key (left banana) or L-key (right banana) with their respective index finger. 1 

With this first finger tap, the movement phase was initiated by placing a rose caterpillar 2 

below the central fixation dot on a circular track parallel to the one of the chosen banana, 3 

which itself faded into the background within 200 ms. The caterpillar extended with each key 4 

press, including the initial decision, by 36 degrees along the circular track, with movement 5 

animations lasting circa 80 ms each (5 frames). In addition to the initial decision, participants 6 

thus had to tap four more times to move the caterpillar head to a position above the fixation 7 

dot. Important for the purpose of the study, the movement phase had a fixed duration of 3000 8 

ms, i.e. the subsequent phase did not begin earlier even if participants completed the 9 

movements earlier (cf. Morel et al., 2017). To represent this fixed duration of the movement 10 

phase visually, the fixation dot disappeared with phase onset and gradually returned to initial 11 

opacity by phase offset. In addition to the caterpillar which remained onscreen, bananas 12 

additionally reappeared within the last 200 ms of the movement phase. If participants had not 13 

responded within 3000 ms during the decision phase earlier, the caterpillar did not appear, 14 

however participants still had to sit out the movement phase. Next, as a post-decision phase, 15 

bananas completed their growth paths in a similar fashion as the decision phase until they 16 

covered an approximately full circle around the fixation dot. In this way, for all experimental 17 

conditions except one (see the following paragraph), bananas grew for a fixed duration of 18 

3000 ms on every trial independent of the timing of participant’s decision. In a feedback 19 

phase lasting 800 ms, the outline of the chosen banana was highlighted in either green or red, 20 

depending on the correctness of their decision. If participants had not responded within the 21 

specified time of either the decision or movement phase, the fixation dot was replaced with 22 

the caption ‘decide faster!’ or ‘tap faster!’, respectively. A final intertrial phase of 700 to 23 

1000 ms followed, which was visually identical to the fixation phase.  24 
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Trials were embedded in different blocks, which manipulated either decision speed or 1 

tapping speed experimentally, depending on the session: In the decision session, blocks 2 

encouraged either fast decisions or slow (accurate) decisions, whereas in the movement 3 

session, either fast or slow finger tapping was required. Blocks in the decision session 4 

differed in that fast-decision blocks exceptionally allowed to shorten the duration of a trial by 5 

deciding faster: In contrast to all other conditions (see Figure 1), bananas grew four times 6 

faster in the post-decision phase (by only showing every fourth frame of growing bananas). 7 

Additionally, fast-decision blocks were not limited to 40 trials as in other blocks, but instead 8 

the length of these blocks was fixed to 5 minutes and 30 seconds. Participants were instructed 9 

to select as many bananas as possible and were informed that choosing bananas quickly 10 

would allow them to complete more trials. To encourage this behavior, a block-based bonus 11 

of 10 cents was given when participants ‘completed more rounds than average’, i.e. 12 

completing more than 40 trials in fast-decision blocks. In contrast, for slow-decision blocks, 13 

participants were informed that exactly 40 trials had to be completed, with a fixed trial 14 

duration independent of behavior. Here, participants had to select the correct banana as often 15 

as possible. This was again encouraged by rewarding an ‘above average’ amount of correctly 16 

chosen bananas with a block-based bonus of 10 cents, i.e. when more than at least 85% of the 17 

decisions were correct. Importantly, it was stressed that tapping speed in the movement phase 18 

would not alter trial duration in any experimental condition. This fact was further confirmed 19 

with the visual representation of an example trial, which showed that deciding faster in fast-20 

decision blocks was the only circumstance in which behavior would change trial duration. 21 

Blocks in the movement session differed in that fast-tapping blocks required to move 22 

the caterpillar with a minimum speed, whereas slow-tapping blocks were limited by 23 

maximum speed. For this purpose, a snake either chased the caterpillar during the movement 24 

phase or retreated from it, both at a constant speed calibrated individually per participant (see 25 
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Session Protocol). In fast-tapping blocks, the snake was initially placed 36 degrees behind the 1 

caterpillar and moved at a uniform velocity corresponding to 85 % of maximum tapping 2 

speed. In slow-tapping blocks, the snake was initially placed 36 degrees in front of the 3 

caterpillar and retreated with a constant pace corresponding to 59.5 % of maximum tapping 4 

speed. Depending on the condition, the snake’s color was either purple or green, 5 

counterbalanced between participants. If participants tapped too slowly or too quickly, 6 

respectively, the caterpillars head would coincide with the snake’s head and both animals 7 

would stop moving. In this case, novel responses would no longer be registered, otherwise 8 

the trial continued as described earlier. Also for the movement session an example trial 9 

demonstrated that trial duration was fixed and thus independent of the participants’ behavior.  10 

In each session, participants performed four times each of the two block types, i.e. 11 

eight blocks of (at least) 40 trials presented in randomized order, resulting in (at least) 160 12 

trials per experimental condition. Each block started with a fixed instruction screen of at least 13 

20 seconds before moving on, ensuring that instructions for the following block could not be 14 

skipped. Each first trial of a block had an additional 700 ms of fixation. To further remind 15 

participants of the current instructions in each block, a symbol representing each of the four 16 

block types was shown in the upper right corner of the screen throughout (see Figure 1). To 17 

keep participants engaged throughout the task, 1 point could be earned for each correctly 18 

performed decision and movement, respectively, i.e. a maximum of 2 points per trial. After 19 

each block, the total number of accumulated points was converted to a monetary bonus at a 20 

rate of 0.4 cent per point, in addition to feedback on the possible block-based bonus of 10 21 

cent in decision sessions. Between blocks, participants were further informed about the 22 

number of remaining blocks of the current session. 23 

 Trial difficulty was controlled between experimental conditions by adjusting the rate 24 

at which the winning banana outgrew the other over time: A more asymmetric growth results 25 
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in an easier decision. We intermixed four trial types which were chosen in analogy to similar 1 

approaches in the literature (e.g. Derosiere et al., 2019; Reynaud et al., 2020; Thura, 2020 in 2 

humans or Thura & Cisek, 2014, 2016, 2017 in monkeys): In ‘obvious’ trials, one banana 3 

grew larger than the other one early on and remained so for the remainder of the trial. In 4 

‘ambiguous’ trials, bananas remained in competition for length for about halfway of the trial, 5 

before one banana proceeded to take the lead. In ‘misleading’ trials, one banana seemed to 6 

outgrow the other early on in the trial but lost that competition by the end of the trial. Finally, 7 

in ‘random’ trials bananas could show any growing pattern. Each experimental condition 8 

consisted of 30 % obvious, 30 % ambiguous, 20 % misleading and 20 % random trials.  9 

Session outline  10 

 The online experiment was built in lab.js, hosted on Open-Lab (Henninger et al., 11 

2019), and was accessed via the Google Chrome browser. It required a screen of at least 15 12 

inch in diameter with a refresh rate of 60 Hz, and was run in full screen mode. At the start of 13 

each session, participants were asked to create a calm environment by using a solitary room 14 

and by removing possible sources of noise. An overview of the session outline can be seen in 15 

Supplemental Figure S5.  16 

 The movement session always started with a so-called ‘keyboard calibration’, which 17 

was skipped for the decision session. This segment allowed to estimate maximum tapping 18 

speed, although this goal was not disclosed. Within four-second intervals, the S- or L-key had 19 

to be tapped repeatedly as fast as possible. Each trial consisted of a countdown represented as 20 

a pie chart, which declined from 360 degrees (full circle) to 0 degrees (no circle) within four 21 

seconds. The letter which had to be tapped was superimposed. A counter for the total number 22 

of key taps was shown below the pie chart, both were reset with each new trial. 23 

After each trial, the feedback to tap ‘FASTER!’ was given irrespective of performance. 24 

Participants performed eight trials per key (the beginning key was randomized) and the 25 
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maximum tapping speed was calculated as average tapping speed for the last six trials of both 1 

keys.  2 

 The first out of two sessions continued with a familiarization segment. This segment 3 

introduced the decisional aspect of the task through visual animations and written text. 4 

Instructions could be repeated at will by navigating through instruction screens with 5 

dedicated keys, however new instructions could not be skipped. A simpler version of the task 6 

with only the decision phase could then be practiced in 20 trials, i.e. a trial required only one 7 

key press to report the decision. Practice had to be completed up to three times if the 8 

proportion of correct decisions did not reach at least 70%. In that case, participants were 9 

given the choice to re-read or skip instructions before repeating practice trials. All sessions 10 

then continued with a training phase, which introduced the movement phase of the trial. 11 

Participants were then informed about the two experimental blocks in the session. This full 12 

task had to be practiced in another 20 trials, with 10 trials in each condition. Training had to 13 

be again completed up three times if either a decision accuracy of at least 70% was not 14 

reached, or the required number of key taps was below 70%.  15 

 The main experiment followed with circa 320 trials. Participant’s understanding of the 16 

instructions was afterwards probed with a questionnaire: Statements on the influence of 17 

behavior on trial duration had to rated on agreement (see Supplemental Material). 18 

Participants with a good task understanding should indicate that choosing a banana faster or 19 

moving the caterpillar faster does not alter trial duration, except for fast decisions in fast-20 

decision blocks.  21 

 Finally, participants performed a simple reaction time (SRT) task, which was 22 

comparable to the main task, but stripped of decisional aspects by giving away the correct 23 

response in advance. This task allowed to estimate sensorimotor delays attributable to 24 

pressing the first key of a tapping sequence (see Data analysis and Supplemental Material). In 25 
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the pre-decision phase of the SRT task, one motionless baby banana was pointing towards the 1 

left or right, randomized between trials. After a delay of 1000 to 1600 ms, a fully extended 2 

banana covered 180 degrees in the same direction. As soon as the banana thus fully grew, the 3 

corresponding key had to be tapped. Premature responses were followed with the words ‘too 4 

early!’ for three seconds instead of the extended banana. All other phases of the trial were 5 

identical to the main task, with the exception that there was no post-decision phase. The 6 

movement session entailed 40 SRT trials requiring fast tapping (promoted by a chasing 7 

snake) and 40 SRT trials requiring slow tapping (promoted by a retreating snake; with block 8 

order randomized). The decision session entailed 40 SRT trials with no restrictions on 9 

tapping speed (with no snake), as was the case for the main task.    10 

 At the end of the second session, participants had to fill in the S-UPPS-P 11 

questionnaire (Cyders et al., 2014). This impulsivity questionnaire was administered to 12 

potentially account for individual differences in the time allocated for choosing and acting. 13 

Since such individual differences in impulsivity were not central to the purpose of this study, 14 

these data are not reported. 15 

Data analysis 16 

 Behavior. Endpoint measures were computed which reflect decision and motor 17 

performance: Decision duration was computed for each participant as average reaction times 18 

in each experimental condition minus the average reaction time in the corresponding SRT 19 

block (c.f. Derosiere et al., 2019; Reynaud et al., 2020; Lunazzi et al., 2021; Thura, 2020; 20 

Thura & Cisek, 2014, 2016, 2017). This ensured that only the time taken to decide was 21 

compared between experimental blocks, without confounding it with the time needed to 22 

perform a first finger tap. Success probability reflects the objective probability that the 23 

decision is correct, given the length difference in bananas at the time of the decision (see 24 

Supplemental Material for further details on this measure). Decision accuracy, as a related 25 
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measure, was calculated as the factual proportion of trials in which the chosen banana won. 1 

Tap duration was measured as average time difference between successive finger taps and 2 

hence reflects how fast participants moved the caterpillar in the movement phase of the task. 3 

Movement accuracy reflects the proportion of trials in which the four finger taps were carried 4 

out at the proper pace in the movement phase.  5 

  Trials with no response during the decision phase were removed from both the main 6 

experiment and SRT task. Trials with anticipation errors were also excluded: These regarded 7 

key presses occurring in the pre-decision phase, decisions with a duration less than 150 ms in 8 

case of the main task, or with a reaction time less than 50 ms in case of the SRT task. Trials 9 

of the main experiment were excluded if frame rate deviated by at least 1 Hz from the desired 10 

60 Hz in either pre-decision, decision or movement phases. For the SRT task frame rate was 11 

not recorded. Decision duration was calculated based on trials with correct decisions, i.e. the 12 

chosen banana was the correct one, and with correct movements, i.e. the four finger taps were 13 

carried out at the proper pace within the movement phase. Success probability and decision 14 

accuracy were calculated based on trials with correct movements. Movement accuracy was 15 

calculated based on trials with correct decisions. Overall, 22% (decision duration), 8% 16 

(success probability and decision accuracy) or 20% (movement accuracy) of trials were thus 17 

removed from the main experiment, and 7% of trials were removed from the SRT task.   18 

 Statistical tests were conducted separately for each session, which allowed more 19 

targeted testing of the hypotheses. Robust statistical methods were used to address apparent 20 

issues with non-normality and heteroscedasticity (see Figure 2): To compare two 21 

measurements of the same participants, signed-rank tests were used. For more than two 22 

measurements, (Greenhouse-Geisser corrected) repeated-measures ANOVAs were used. To 23 

test ANOVAs for robustness, results were compared for consistency before and after 24 

removing participants with extreme values. Extreme values were defined as data points lying 25 
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outside of three median absolute deviations of the median of all cells of the corresponding 1 

ANOVA (Leys et al., 2013). Pairwise comparisons following ANOVAs were again 2 

conducted with signed-rank tests and corrected for multiple comparisons by the method of 3 

Bonferroni-Holm (Chen et al., 2017). Linear relationships were tested using weighted-least 4 

squares regression. In this approach, the weight of individual data points on the regression 5 

slope is inversely proportional to the increase in spread of these data points with changes in 6 

the predictor variable, thereby accounting for heteroscedacity. These regressions were further 7 

tested for robustness by repeating the same test after removing outliers. Outliers were defined 8 

as data points with a Cook’s Distance three times larger than the group mean (Cook, 1977). 9 

Statistical analysis was conducted in R (R Core Team, 2018), relying on packages BDSA, 10 

rstatix and stats. 11 

 Drift diffusion modelling. To corroborate the interpretation of behavioral data as 12 

reflecting shifts in duration with which decisions and finger tap movements are performed, 13 

drift diffusion models were fit with the hddm- package in Python (version 0.7.3; Wiecki, 14 

2013). Four parameters characterize different aspects of the sensorimotor process: The 15 

decision threshold a reflects the decisional speed-accuracy tradeoff with higher values 16 

indicating that more certainty is needed before commitment, resulting in slower but more 17 

accurate decisions. The drift rate v reflects the efficiency with which a correct decision can be 18 

made. It therefore increases with lower task difficulty, and higher motivation and 19 

performance. The non-decision time t represents sensorimotor delays unrelated to decision-20 

making, such as sensation and response execution. The response bias z reflects an a-priori 21 

tendency to prefer one response over the other, for example when one response is more 22 

rewarded than the other.  23 

 In line with our hypothesis, for each session a model allowing the decision threshold 24 

and non-decision time to change with experimental conditions was fit. This model was 25 
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compared with models of different complexity (see Table S2). The most complex model 1 

assumed that, in addition to the decision threshold and non-decision time, also the drift rate 2 

differed between experimental conditions. All other models assumed a fixed drift rate, as well 3 

as at least one of the parameters of interest (decision threshold and non-decision time) to be 4 

fixed between experimental conditions. For all fitted models, we assumed no response bias 5 

since an equal amount of left and rightward responses was required in the task (i.e. z was 6 

assumed to be 0.5, see e.g. Assink et al., 2015; Herz et al., 2016). Although this may be a 7 

simplifying assumption, it allows for a more powerful test of the effects of interest (Lerche & 8 

Voss, 2016; van Ravenzwaaij et al., 2017). Moreover, our behavioral findings likely cannot 9 

be accounted by response biases. For each model, ‘flexible’ parameters were modelled as 10 

within-subject effects by fitting one parameter value to the slow condition of the respective 11 

session, and another parameter value reflected the deviation thereof in the fast condition (see 12 

Table S2). Models were hierarchical in that parameter values of each subject were assumed to 13 

spread around the group mean of that parameter. Correct and incorrect responses were taken 14 

as upper and lower boundaries of the drift diffusion process. Five percent of responses were 15 

assumed to be outliers, as recommended to improve model fit (Wiecki et al., 2013).  16 

 Models were fit to reaction times of the decision phase of the task (see Figure 1), i.e. 17 

the time from stimulus onset to the first key press in a trial. This allowed to test whether 18 

faster finger tapping in the movement phase of the task was associated with a faster initial 19 

finger tap in the decision phase. Modelling further provided an alternative way of estimating 20 

(non-)decision time, without the SRT task, to ensure that presented findings are consistent 21 

across different methodological approaches. Consistent with this aim, reaction times less than 22 

150 ms were discarded as anticipation errors, rather than decision durations below 150 ms as 23 

was the case in the behavioral analysis. Each model in Table S2 was fit twice with 5000 24 

discarded samples as burn-in and keeping every third of 6000 subsequent samples, resulting 25 
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in 4000 final posterior samples per parameter. Model convergence was assessed by visual 1 

inspection of the Markov-chain traces, as well as computation of the Gelman-Rubin statistic. 2 

With values below 1.1 considered satisfactory by convention (Brooks & Gelman, 1998), 3 

Gelman-Rubin values indicated convergence for all models of the decision session (all below 4 

1.04), as well as the movement session (all below 1.01). Models were then compared based 5 

on the bias-corrected Bayesian Predictive Information Criterion (BPIC, Ando, 2007; 6 

Heathcote et al., 2015), since this criterion does not require the true model to be amongst 7 

candidate models. Best-fitting models were further ratified by posterior predictive checks: 8 

New data was simulated from best-fitting models and visually compared to the real empirical 9 

data (see Figure S6), suggesting good agreement between model predictions and reality. As a 10 

final step in this model analysis, for the best-fitting models, the probability of the existence of 11 

within-subject effects was expressed as proportion of posterior samples smaller than zero for 12 

the respective parameter. This proportion reflects the estimated probability that parameter 13 

values are more negative in fast conditions than in slow conditions. In contrast to p-values, a 14 

probability exceeding 97% indicates that an effect likely exists (Makowski et al., 2019).  15 

 Temporal weighting profiles. To test the predictions that movement preparation 16 

induces a gradual commitment towards a decision, and more so when fast movement is 17 

required, temporal weighting profiles were computed. These profiles outline in how far newly 18 

presented momentary evidence is predictive of the subsequent decision, depending on when 19 

this evidence is presented relative to movement onset. As a first step in computing these 20 

profiles, momentary evidence presented throughout a trial was quantified: In time windows 21 

of 200 ms, frames shifting evidence in favor of either the left (-1) or right (+1) banana were 22 

summed up to a total value. As such, momentary evidence could either be positive or 23 

negative, with larger values indicating stronger momentary evidence towards the left or right. 24 

Momentary evidence was summarized in this way in a moving 200-ms window across the 25 
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entire sequence of decisional evidence presented throughout a trial. This approach is in line 1 

with the notion that sensory evidence is likely integrated into decisions at a rate of circa 5-6 2 

Hz in humans (Carland et al., 2015; Cisek et al., 2009; Scott, 2016). Momentary evidence and 3 

decisions (-1 for left and +1 for right responses) were then correlated across trials for each 4 

participant, experimental condition and time window of presentation (see Bitzer et al., 2020, 5 

for a similar approach). As seen in Figure 3, resulting point-biserial correlations characterize 6 

in how far momentary evidence predicts decisions, depending on the time of presentation 7 

relative to estimated movement onset. To assess the relative weight of earlier versus later 8 

evidence on decisions, for each participant and experimental condition, the slopes of temporal 9 

weighting profiles were extracted for the estimated decision duration, i.e. negative median 10 

decision duration to zero (see Figure 3, see Levi et al., 2018; Spieser et al., 2018, for similar 11 

approaches). Negative slopes suggest that earlier evidence is more predictive of decisions 12 

than later evidence (primacy effect), whereas positive slopes suggest the opposite (recency 13 

effect). For each experimental session, slopes were then compared with signed-rank tests, or 14 

with paired t-tests in case Shapiro–Wilk tests were not violated (see Hubert-Wallander & 15 

Boynton, 2015; Levi et al., 2018, for similar approaches).   16 

 To ensure that main results were not driven by differences in average decision 17 

duration between experimental conditions (Okazawa et al., 2018), for a control analysis we 18 

applied a subsampling procedure: Decision durations were first grouped into time bins of 100 19 

ms. Per participant, trial numbers in each time bin were then matched between compared 20 

experimental conditions by subsampling (see Murphy et al., 2016, for a similar approach). 21 

The remaining trials, now matched in decision duration, were then again used to calculate 22 

temporal weighting profiles. Resulting temporal weighting profiles were averaged across ten 23 

iterations of such subsampling before extracting individual slopes. Three participants of the 24 
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decision session were removed from this control analysis since less than ten trials remained 1 

after matching decision durations by subsampling.  2 
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SUPPLEMENTAL MATERIAL 1 

Control analyses on temporal weighting profiles 2 

 3 
Figure S1. Additional analysis of temporal weighting profiles. Results were consistent across 4 
all additional analyses on temporal weighting profiles. There was a stronger recency effect in 5 
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temporal weighting profiles in fast (decision or tapping) blocks as compared to slow blocks 1 

when summarizing momentary evidence in time windows of 300 ms (1st row), summarizing 2 
momentary evidence in time windows of 100 ms (2nd row), including only trials with fully 3 
random evidence (3rd row), matching success probabilities between experimental conditions 4 

with a subsampling procedure (4th row), splitting trials into relatively fast and slow tapping-5 
trials and again matching these new ‘conditions’ for decision durations (5th row), computing 6 
temporal weighting profiles relative to the onset of the decision phase and again matching 7 
conditions for decision durations (i.e. stimulus-locked, 6th row), and computing temporal 8 
weighting profiles based on absolute rather than momentary evidence, again matched for 9 

decision durations (final row). For more elaboration on visual aspects of these figures, 10 
consult the caption of Figure 3 in the main manuscript. 11 
 12 

To check for robustness of reported results on temporal weighting profiles in the 13 

manuscript, additional tests were conducted. First, we repeated the main analysis after 14 

summarizing momentary evidence within time windows of 300 ms and 100 ms. As similar 15 

results were obtained (see Figure S1, 1st and 2nd row, all p’s < .01), we concluded that the 16 

chosen time window of 200 ms did not affect results critically. Furthermore, we tested 17 

whether results subsist when only trials with fully random evidence are used to compute 18 

temporal weighting profiles. Indeed, if evidence is not fully random (such as in obvious, 19 

ambiguous or misleading trials used in the experiment), earlier evidence may be predictive of 20 

later evidence and vice versa, which may prohibit to isolate the relative contribution of 21 

individual pieces of evidence on decisions (Okazawa et al., 2018). As seen in Figure S1, third 22 

row, an analysis with only random evidence -trials led to similar results (both p’s < .05); it 23 

also showed overall comparable shapes of temporal weighting profiles, suggesting that main 24 

findings did not critically depend on the type of trials entered in the analysis. We then tested 25 

whether findings remain significant after matching experimental conditions in each session in 26 

success probability: This test ensured that changes in temporal weighting profiles do not 27 

primarily reflect changes in overall task performance between conditions. For this purpose, a 28 

similar matching procedure was utilized as described in the Materials and Methods of the 29 

main text, only that trials were matched by success probability, not decision duration. Also in 30 
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this analysis findings were significant for both sessions (see Figure S1, fourth row, both p’s < 1 

.01). 2 

Next, we sought further support for the idea that an increase in tapping speed may 3 

have led to a stronger recency effect in temporal weighting profiles of decisions. Therefore, 4 

we proceeded to sort all trials as fast-tapping and slow-tapping trials, depending on whether 5 

tapping speed in that trial was exceeding median tapping speed of the respective participant 6 

and session (i.e. performing a ‘median-split’ based on tapping speed). These newly assigned 7 

fast-tapping and slow-tapping trials were then again matched in decision durations by the 8 

subsampling procedure described in the main text. As a result, for each experimental session, 9 

we compared trials with relative fast and slow tapping, which were however matched in 10 

decision durations. Again, we found that relatively fast tapping was related to a stronger 11 

recency effect than relatively slow tapping for both sessions (see Figure S1, fifth row, all p’s 12 

< .05), supporting our conclusions. Note that for the movement session this analysis was very 13 

similar to results presented in Figure 3 since relatively faster and slower tapping was 14 

prevalent in fast and slow tapping-blocks, respectively. 15 

As another check for consistency, temporal weighting profiles were derived in 16 

relation to the onset of the decision phase (i.e. ‘stimulus-locked’). For all previous analyses, 17 

profiles were computed relative to estimated onset of the first finger tap (i.e. ‘response-18 

locked’), in line with our research hypothesis. However, findings should be consistent across 19 

both types of analyses. A stimulus-locked analysis was again conducted based on conditions 20 

with matched decision durations to ensure that latencies between stimulus-onset and 21 

decisions were matched. As can be seen in Figure S1, sixth row, results were consistent with 22 

response-locked analyses (all p’s < 10-5), although the shape of temporal weighting profiles 23 

was different due to the nature of this stimulus-locked approach. Finally, Figure S1, final 24 

row, shows a control analysis in which decisional information was not summarized as 25 
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momentary evidence in a moving time window of 200 ms (see main text), but as the absolute 1 

evidence shown up until the time point in question. In this analysis, evidence at e.g. -400 ms 2 

reflected the absolute length difference of bananas at -400 ms, rather than the change in 3 

length difference that occurred in the time window from -300 to -500 ms (i.e. momentary 4 

evidence). We again matched decision durations between experimental conditions in this 5 

analysis. Similar results were obtained (both p’s < .01). 6 

 In summary, additional analyses on temporal weighting profiles consistently support 7 

conclusions drawn in the main manuscript, demonstrating the robustness of these findings. 8 

They demonstrate that the idea, that shifts in recency effects were driven by changes in 9 

tapping speed, is plausible. This strengthens the idea that movement characteristics take 10 

influence on when and how participants arrive at their decisions.  11 

 12 

Behavior in the Simple Reaction Time task 13 

 14 
Figure S2. Behavior in the simple reaction time task. A simple reaction time task with no 15 
decisional aspects was administered, in which participants were required to tap with no speed 16 
constraints (‘free’, in decision session), or fast or slowly (in movement session). A) Tap 17 

duration was shortest when fast tapping was required, followed by free-tapping and slow-18 
tapping blocks. B) Simple reaction times were fastest when no requirements on tapping speed 19 
were given, followed by fast-tapping and slow-tapping blocks. A), B) Individual data points 20 

are shown, with data stemming from the movement session linked with a line. Individual data 21 
points (circles) are flanked by group means (squares). Error bars of group means reflect 95%-22 
Confidence Intervals.  23 
 24 
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Participants performed a simple reaction time (SRT) task, which was comparable to 1 

the main task, but stripped of decisional aspects. This allowed to estimate the time needed to 2 

perform a first key tap in order to isolate decision duration in the main task. The decision 3 

session entailed 40 SRT trials with no restrictions on tapping speed (‘free’ in Figure S2, no 4 

snake in the movement phase), whereas the movement session entailed two times 40 SRT 5 

trials requiring fast (chasing snake) or slow tapping (retreating snake). The effect of tapping 6 

requirements on tap duration and reaction times was tested in two separate repeated-measures 7 

ANOVAs for trimmed means (as more robust alternative to a conventional one-way repeated-8 

measures ANOVA).  9 

As intended, tap duration in the SRT task changed with tapping requirements (F(1.61, 10 

51.44) = 394.83 and p < 10-17). As seen in Figure S2A, tap duration was shortest when fast 11 

tapping was required (median = 139 ms, MAD = 20 ms), followed by free tapping (median = 12 

160 ms, MAD = 31 ms) and longest for slow tapping (median = 255 ms, MAD = 40 ms, all 13 

p’s < 10-9). As seen in Figure S2B, reaction time also varied as a function of tapping 14 

requirements (F(1.86, 59.59) = 30.32 and p < 10-8). Reaction time was shorter when fast 15 

tapping (median = 365 ms, MAD = 92 ms) was required as compared to slow tapping (median 16 

= 433 ms, MAD = 116 ms, p = .001). Interestingly, reaction time was shortest for free tapping 17 

(median = 315 ms, MAD = 71 ms. both p’s < 10-6).  18 

 Taken together, participants followed movement instructions well in the SRT task. 19 

Results further suggest that finger tapping with restrictions on the pacing (i.e. ‘fast’ or ‘slow’) 20 

takes more time to prepare than finger tapping with no speed requirements (i.e. ‘free’).  21 

 22 

 23 

 24 

 25 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.478832doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478832
http://creativecommons.org/licenses/by-nc/4.0/


52 
 

Testing whether instruction comprehension affected behavior 1 

Table S1. Instruction questionnaire. 2 

decision session  3 

1. In 'accurate choice' segments, I felt like I could end a round earlier by choosing the 4 
banana faster. 5 

2. In 'accurate choice' segments, I felt like I could end a round earlier by moving the 6 
caterpillar faster. 7 

3. In 'fast choice' segments, I felt like I could end a round earlier by choosing the banana 8 

faster. 9 
4. In 'fast choice' segments, I felt like I could end a round earlier by moving the caterpillar 10 

faster. 11 

movement session 12 

1. In segments in which the snake was retreating, I felt like I could end a round earlier by 13 

choosing the banana faster. 14 

2. In segments in which the snake was retreating, I felt like I could end a round earlier by 15 

moving the caterpillar faster. 16 
3. In segments in which the snake was chasing me, I felt like I could end a round earlier by 17 

choosing the banana faster. 18 
4. In segments in which the snake was chasing me, I felt like I could end a round earlier by 19 

moving the caterpillar faster. 20 

Note. Participants were asked to strongly agree, somewhat agree, somewhat disagree, 21 
strongly disagree or indicate that they ‘don’t know’ to these statements after the experimental 22 

task in the respective session.  23 
 24 

 Participants were instructed and demonstrated that the task was designed in a way that 25 

the speed with which decisions and finger tapping movements were completed was 26 

inconsequential for the duration of a trial, except for decision duration in fast-decision blocks, 27 

which shortened trial duration. This task design ensured that coregulating the pacing of 28 

decisions and movements was not profitable in terms of capture rate (see Discussion in the 29 

main text). To probe whether participants understood this task design, after each session a 30 

short instruction questionnaire was administered after the experimental task (see Table S1). 31 

In the decision session, one statement read: “In ‘fast-decision segments’, I felt like I could 32 

end a round earlier by moving the caterpillar faster.” This statement was critical since faster 33 

finger tapping was observed in fast-decision blocks, although only fast decisions could 34 

shorten trial duration, allowing to perform more trials. Therefore, a proper understanding of 35 

the task design should lead participants to disagree with this statement. Surprisingly, as 36 
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majority, 37 participants agreed with the statement, suggesting that deciding faster was 1 

associated with a subjective feeling of saving time through movement. Fifteen participants 2 

correctly disagreed with this statement, whereas six participants did not know. More 3 

importantly however, all participants, i.e. those who (somewhat or strongly) agreed (median 4 

= 18 ms, S = 1, p < 10-8), (somewhat or strongly) disagreed (median = 14 ms, S = 0, p < .001) 5 

or did not know (median = 10 ms, S = 0, p = .03), tapped faster in fast-decision blocks, with 6 

no significant difference between the three groups (F(2, 10.98) = 3.45, p = .07), as suggested 7 

by an ANOVA based on trimmed means with INSTRUCTION AGREEMENT as between-subjects 8 

factor and BLOCK TYPE as within-subjects factor. This suggests that deciding faster may have 9 

led to a subjective feeling of saving time by tapping faster in most participants. However, 10 

instruction comprehension was not a critical factor for the experimental effect observed in the 11 

decision session.  12 

For the movement session, proper instruction comprehension was less of a concern as 13 

movement requirements were clearly constrained to the movement phase by visualizing them 14 

as retreating or chasing snakes (see Figure 1). Nevertheless, also here we probed 15 

understanding of the task design to test whether it modulated the experimental effect. The 16 

statement “In segments in which the snake was chasing me, I felt like I could end a round 17 

earlier by choosing the banana faster.” was critical since participants performed faster 18 

decisions in these types of trials although this could not increase capture rate (see Discussion 19 

in the main text). A proper understanding of the task design should therefore lead participants 20 

to disagree with this statement. Twentynine participants correctly disagreed, 21 falsely agreed 21 

and nine did not know. More importantly however, faster decisions in fast-tapping blocks 22 

were observed in those participants who correctly disagreed (median = 84 ms, S = 4, p < 23 

.001), whereas there was no significant effect for those participants who disagreed (median = 24 

21 ms, S = 7, p = .36) or did not know (median = 66 ms, S = 2, p = .36). However, there was 25 
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no significant INSTRUCTION AGREEMENT x BLOCK TYPE interaction (F(2, 19.82) = 0.99, p = 1 

.39), indicating that there was no significant difference in effect size between groups. This 2 

suggests that fast finger tapping may have led to a subjective feeling of saving time by 3 

deciding faster in a minority of participants. However, instruction comprehension was not a 4 

critical factor for the experimental effect observed in the movement session, as a clear 5 

experimental effect was observed for the majority of participants who had a good 6 

comprehension of the task design.   7 

 8 

How success probability of decisions is computed 9 

 As an objective measure of the quality of decisions, success probability was 10 

computed. In each trial of our task, evidence continued to change dynamically after the 11 

decision. Therefore, decisions had a probability of being correct, corresponding to the 12 

objective probability that the chosen banana would be longest by the end of the trial. 13 

Therefore, success probability of each decision can be formally calculated as the proportion 14 

of all hypothetical growth patterns of bananas following the decision in which the chosen 15 

banana wins. In accordance with previous work (Derosiere et al., 2019; Reynaud et al., 2020; 16 

Saleri Lunazzi et al., 2021; Thura & Cisek, 2014, 2016, 2017), success probability can 17 

therefore be computed as 18 

𝑝(𝑆|𝑁𝑂 , 𝑁𝑁) =
𝑁𝑂!

2𝑁𝑂
∑

1

𝑓! (𝑁𝑂 − 𝑓)!

min(𝑁𝑂,89−𝑁𝑁)

𝑓=0

 19 

where the probability p of the selected banana S winning is equivalent to the probability of 20 

unselected banana N not winning. NN is the number of frames in favor of the unselected 21 

banana, NO is the number of outstanding frames, both at the estimated time of decision offset 22 

(i.e. ‘decision duration’). The selected banana S wins if the number of frames in favor of the 23 

unselected banana N stay below 89, i.e. less than half of the 179 frames. The success 24 
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probability of the selected banana therefore depends on the total number of possible growth 1 

patterns for the remaining frames NO, in which the number of frames in favor of the 2 

unselected banana remain below 89, relative to the total number of all hypothetically possible 3 

growth patterns for these frames.  4 

 5 

Supplemental Tables and Figures  6 

 7 
Figure S3. Supplemental behavioral results. A) Probability that decisions led to successful 8 

outcomes was significantly decreased in fast-decision as compared to slow-decision blocks. 9 
B) As consequence, the proportion of correct decisions was significantly reduced in fast-10 
decision blocks. C) In the decision session, participants absolved virtually all tapping 11 
movements correctly, with no significant difference between blocks. D) There was no 12 

significant change in decisional success probability from slow-tapping to fast-tapping blocks. 13 
E) Likewise, there was no significant change in the proportion of correct decisions between 14 
blocks of the movement session. F) Participants performed significant less fast-tapping 15 

movements correctly than slow-tapping movements.  16 
 17 

 18 
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 1 

Figure S4 Average duration per finger tap in the movement phase for each experimental 2 
condition. A) In the decision session, each tap in the movement phase was faster when fast 3 

decisions as compared to slow decisions were required, demonstrating the anticipated 4 

experimental effect. B) In the movement session, each tap in the movement phase was faster 5 

when fast tapping as compared to slow decisions were required, demonstrating that the 6 
experimental manipulation was successful. Note that the first finger tap in each trial reflected 7 
the reporting of the decision in the decision phase, hence for this analysis 2nd to 5th finger tap 8 
are considered. Error bars reflect 95%- confidence intervals.  9 

 10 
 11 

 12 
Figure S5. Session outline.  13 
 14 
 15 
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 1 
Figure S6. Comparison between empirical data and data as predicted by the best-fitting drift 2 
diffusion models of each session. Density distributions are plotted with a fixed bandwidth of 3 

100 ms. Negative reaction times reflect incorrect decisions. Fitted models predict mean 4 
reaction times in the decision phase of the task (vertical bars) and proportion of correct 5 

decisions (horizontal bars in the upper right corner of each plot, scale from 0 and 1) of each 6 
experimental condition well, despite of a slight tendency to overestimate accuracy. 7 
Importantly, fitted models predict a reduction in reaction times for both correct and incorrect 8 

decisions in both fast-decision and fast-tapping blocks as compared to slow-decision and 9 
slow-tapping blocks, as observed in empirical data. As such, behavioral differences in 10 

reaction times observed in the decision phases of experimental conditions were replicated 11 

well, which was the effect of interest. Therefore, agreement between observed and simulated 12 

data was considered satisfactory for the purposes of this study. However, whereas early 13 
responses show a strong agreement between simulated and real data, late responses do not: In 14 
this experiment, by design it was advantageous to respond shortly before the timeout of three 15 
seconds to maximize success probability, causing shifted reaction time distributions towards 16 
late responses in real data. The drift diffusion model, ‘blind’ to this deadline, simulates a 17 
distribution with late responses exceeding three seconds, thereby underestimating the high 18 
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proportion of responses just before timeout. Remarkably, data in fast-decision blocks pose the 1 

exception, as here real and simulated data show a strong overlap. This is because only in fast-2 
decision blocks choosing as soon as possible was the best strategy, leading to a low 3 
proportion of responses just before timeout. For each participant, the same number of trials 4 

were simulated as present in the real data. Data was simulated in this way 100 times, as if 5 
simulated participants performed the experiment 100 times. Resulting response distributions 6 
were averaged to produce most likely behavioral distributions for each model.  7 
 8 
 9 

 10 
Table S2. Model fit of drift diffusion models. 11 

 BPIC 

flexible parameters decision session movement session 

a, v, t   49012* 45768 

a, t  49814   45763* 

a 52361 46784 

t 51947 45858 

none 58146 47020 

Note. Bayesian Predictive Information Criterion (BPIC) scores for five different drift 12 
diffusion models, which varied in model complexity. Lower values indicate better model fit. 13 

Best fitting models are marked with an asterisk. Note that BPIC scores should not be directly 14 
compared between sessions, since models were fit to different data. Flexible parameters were 15 
those which were allowed to differ between experimental conditions. a = decision threshold, 16 

v = drift rate, t = non-decision time. 17 

 18 
 19 
 20 

 21 

 22 
 23 
 24 

 25 
 26 

 27 
 28 

 29 
 30 
 31 
 32 
 33 

 34 

 35 

 36 
 37 
 38 
 39 
 40 
 41 
 42 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.478832doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478832
http://creativecommons.org/licenses/by-nc/4.0/


59 
 

References (Supplemental Material) 1 

Derosiere, G., Thura, D., Cisek, P., & Duque, J. (2019). Motor cortex disruption delays motor 2 

processes but not deliberation about action choices. Journal of Neurophysiology, 3 

122(4), 1566–1577. https://doi.org/10.1152/jn.00163.2019 4 

Okazawa, G., Sha, L., Purcell, B. A., & Kiani, R. (2018). Psychophysical reverse correlation 5 

reflects both sensory and decision-making processes. Nature Communications, 9(1), 6 

1–16. https://doi.org/10.1038/s41467-018-05797-y 7 

Reynaud, A. J., Lunazzi, C. S., & Thura, D. (2020). Humans sacrifice decision-making for 8 

action execution when a demanding control of movement is required. Journal of 9 

Neurophysiology, 124(2), 497–509. https://doi.org/10.1152/jn.00220.2020 10 

Lunazzi, C. S., Reynaud, A. J., & Thura, D. (2021). Dissociating the Impact of Movement 11 

Time and Energy Costs on Decision-Making and Action Initiation in Humans. 12 

Frontiers in Human Neuroscience, 15, 715212. 13 

https://doi.org/10.3389/fnhum.2021.715212 14 

Thura, D., & Cisek, P. (2014). Deliberation and commitment in the premotor and primary 15 

motor cortex during dynamic decision making. Neuron, 81(6), 1401–1416. 16 

https://doi.org/10.1016/j.neuron.2014.01.031 17 

Thura, D., & Cisek, P. (2016). Modulation of premotor and primary motor cortical activity 18 

during volitional adjustments of speed-accuracy trade-offs. Journal of Neuroscience, 19 

36(3), 938–956. https://doi.org/10.1523/JNEUROSCI.2230-15.2016 20 

Thura, D., & Cisek, P. (2017). The basal ganglia do not select reach targets but control the 21 

urgency of commitment. Neuron, 95(5), 1160–1170. 22 

https://doi.org/10.1016/j.neuron.2017.07.039 23 

 24 

 25 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.478832doi: bioRxiv preprint 

https://doi.org/10.1152/jn.00163.2019
https://doi.org/10.1038/s41467-018-05797-y
https://doi.org/10.1152/jn.00220.2020
https://doi.org/10.3389/fnhum.2021.715212
https://doi.org/10.1016/j.neuron.2014.01.031
https://doi.org/10.1523/JNEUROSCI.2230-15.2016
https://doi.org/10.1016/j.neuron.2017.07.039
https://doi.org/10.1101/2022.02.02.478832
http://creativecommons.org/licenses/by-nc/4.0/

